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ABSTRACT 

Despite difficulties in general division, magnitude comparison, and sign detection, residue number system arithmetic has 
been used for many special-purpose systems in light of its parallelism and modularity for the most common arithmetic 
operations of addition/subtraction and multiplication. Computation in RNS requires modular reduction, both for the 
initial conversion from binary to RNS and after each operation to bring the result back to within a valid residue range. 
Use of redundant residues simplifies this critical operation, leading to even faster arithmetic. One type of redundant 
mod-m residue, that keeps the representational redundancy to the minimum of 1 bit per residue, has the nearly symmetric 
range [–m, m) and allows two values for each pseudoresidue: 〈x〉m or 〈x〉m – m. We study the extent of simplification and 
speed-up in the modular reduction process afforded by such redundant residues and discuss its potential implications to 
the design of RNS arithmetic circuits. In particular, we show that besides cost and performance benefits, introduction of 
error checking and fault tolerance in arithmetic computations is facilitated when such redundant residues are used. 
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1. INTRODUCTION 

Parallelism and modularity properties of residue arithmetic make it attractive for use in the design of high-performance 
and reliable systems. These features have been utilized in a wide variety of contexts, from error control in conventional 
binary processors (by means of residue encoding and checking) to custom realization of signal processing and other 
application-specific circuits with residue number system (RNS) arithmetic.13, 21, 22   

One factor that affects the performance of all such applications is the frequent need for invoking modular reduction; i.e., 
computation of the modulo-m residue of a given number x. Modular reduction is needed for residue encoding, to perform 
residue checking, after each RNS arithmetic operation, and in virtually any other context where residues are used9. 
Redundant residues (pseudoresidues) have been found to offer benefits in simplifying modular reduction. Many forms of 
redundancy have been applied in an ad hoc manner to gain speed and cost benefits in various applications. A unified 
theory of redundant-residue systems is also starting to emerge14. 

In this paper, we consider a particular class of redundant residues called “double-range symmetric/signed” (DRS) 
pseudoresidues. DRS pseudoresidues, which are allowed to be in the range [–m, m) instead of the standard nonredundant 
interval [0, m), possess sufficient redundancy to allow significant simplification, and thus speed-up, in the modular 
reduction process; yet they imply only (a minimal) one bit of overhead for each redundant residue. 

After presenting algorithms for modular reduction of arbitrary-width operands into DRS pseudoresidues, and arithmetic 
operations on such pseudoresidues, we study the effects of redundancy and show substantial benefits, in terms of circuit 
complexity and latency, in: (1) Residue encoding/checking, (2) Inner-product computation, (3) Modular multioperand 
addition, (4) RNS base extension and mixed-radix conversion, and (5) RNS to/from binary conversion. We conclude by 
analyzing the impact of the aforementioned cost/speed benefits on representative applications: filtering, arithmetic 
coding, and error detection/correction in redundant-modulus RNS. 
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2. RNS WITH REDUNDANT RESIDUES 

An RNS is characterized by a set of k pairwise relatively prime moduli mk–1 > . . . > m1 > m0 and a residue set Ri for the 
ith modulus, typically chosen to be [0, mi). Clearly, at most one of the moduli can be even and that one is usually taken 
to be a power of 2 to simplify the associated circuitry; all other moduli are odd. Roughly speaking, the set of moduli 
corresponds to the choice of a radix and the residue set to the digit set of positional fixed-radix number representations. 
Just as the digit set of nonredundant radix-r system can be chosen to be [a, r + a), a < 0, the residue set Ri associated 
with mi can be selected to be [ai, mi + ai). Such nonredundant RNS have been extensively studied and used, primarily, in 
signal processing applications. An RNS may have a handful of large moduli, typically chosen to be integers of the form 
2h or 2h ± 1, or a larger number of small moduli, often chosen to be primes or powers of primes. The former category of 
RNS corresponds to very-high-radix number representation systems, in which digit manipulation circuits are quite 
complex but there are fewer such circuits, while the latter are akin to moderately high radices such as 16 or 64. Issues in 
choosing the moduli, and the associated cost/speed tradeoffs, are beyond the scope of this paper. 

The primary advantage of RNS is that addition, subtraction, and multiplication can be performed independently and in 
parallel on the various residues. When the residues are small, this results in very high speed, particularly for 
multiplication which is slow/expensive with conventional number representation. Figure 1 depicts three implementations 
of a residue adder for a modulus m. The simpler ones in Figs. 1a and 1b, are combinational and sequential versions of the 
same scheme2, 5. They both add two h-bit residues, x and y, to form their sum u + 2hc. If either c or the carry-out d of the 
addition u + 2h – m is 1 (the latter implying, for c = 0, that x + y ≥ m), then the output is v = x + y – m instead of x + y. 
The faster implementation in Fig. 1c forms v directly through a carry-save addition and an ordinary addition17. 
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Fig. 1.  Design of mod-m residue adder. 

A residue multiplier is somewhat more complex, but still considerably simpler and faster than an ordinary binary 
multiplier. A bit-at-a-time implementation would use a modular adder to derive the h-bit mod-m product in h cycles. It is 
also possible to use an h × h combinational (tree or array) multiplier, followed by a mod-m reduction circuit for the 2h-
bit product. Alternatively, modular reduction can be fused with combining of partial products for speed/economy, 
particularly if one takes advantage of the fact that some bit patterns are unused. Here, we say nothing about 
implementing difficult RNS operations such as sign test, overflow detection, magnitude comparison, or general division. 
The methods to be discussed do not cure such difficulties but are meant as mechanisms for making the already efficient 
RNS operations even simpler and more efficient. To the extent that the difficult operations use the simpler ones as 
building blocks, the added efficiency benefits those as well. 

Consider a modulus m satisfying 2h–1
 < m ≤ 2h. Conventional binary residues associated with this modulus are h-bit 

unsigned numbers in the range [0, m); we refer to these as single-range unsigned (SRU) residues. Similarly, single-range 
signed (SRS) residues have a symmetric or almost symmetric range [−⎣m/2⎦, ⎡m/2⎤ ). In both of these cases, the residues 
are nonredundant in the sense that each mod-m equivalence class has a single representative in the residue set. 



 

 

In a manner similar to the use of digit sets with more than r values for radix-r positional representations1, 13, we can 
envisage the use of more than m values in a residue set. Using multiple representatives from some or all mod-m 
equivalence classes does not cause any problem in arithmetic because all operations are modulo m. We refer to residues 
from redundant sets as pseudoresidues and to the resulting RNS as redundant-residue RNS. This is to distinguish our 
systems from redundant-modulus RNS in which extra moduli, beyond the minimum set required for providing a desired 
dynamic range, are employed for the sake of error detection and/or correction.  

Table I shows the nonredundant SRU and SRS residue sets along with several examples of redundant residue sets. The 
redundancy index associated with a modulus m having pseudoresidues in [a, b], or [a, b + 1), is defined as: 

 ρ = b + 1 – a – m    ( 1 ) 

The two single-width redundant residue sets use the entire range of values offered by an h-bit representation as valid 
pseudoresidues, in unsigned (SWU) or 2’s-complement signed (SWS) format. Double-range pseudoresidues can assume 
twice as many values as a nonredundant residue, again in unsigned (DRU) or signed (DRS) form. A useful encoding of 
DRU is the carry-save format in which the pseudoresidue is the sum of two h-bit unsigned numbers that are separately 
represented. Triple-range unsigned (TRU) pseudoresidues with values in [0, 3m – 3] have been called “relaxed residues” 
and used to simplify modular reduction19. Squared- or quadratic-range unsigned (QRU) residues are capable of holding 
the product of two SRU residues and have thus been used in inner-product computations of the type found in digital 
filters11. Double-width unsigned residues can be used in lieu of QRU for implementation simplicity. End-around residue 
sets allow an overflow of weight 2n to be reinserted at the least-significant position16, given the property 2n = 1 mod m. 
For example, mod-9 residues can be accumulated by using 6-bit pseudoresidues with end-around carry (26 = 1 mod 9). 

 
Table I. Some choices for mod-m residue set. 

Code Type of residue Residue set ρ 
SRU Single-range unsigned [0, m) 0 
SRS Single-range signed [−⎣m/2⎦ , ⎡m/2⎤ ) 0 
SWU Single-width unsigned [0, 2h) 2h − m 
SWS Single-width signed [−2h–1, 2h–1) 2h − m 
DRU Double-range unsigned [0, 2m) m 

DRUCS DRU, carry-save variant [0, 2m – 2] m – 1 
DRS Double-range signed (−m, m)  or  [−m, m)  or  [−m, m] m − 1  or  m  or  m + 1 
TRU Triple-range unsigned [0, 3m) 2m 
QRU Squared-range unsigned [0, (m – 1)2] m2 − 3m + 2 
DWU Doublewidth unsigned [0, 22h) 22h − m 
EAU End-around unsigned [0, 2n) 2n − m 

 
As evident from Table I and discussion of the examples it contains, redundant residue sets have been applied in an ad 
hoc fashion as tools for speeding up or simplifying circuit realizations3, 8, 11, 12, 16, 19. Only very recently have these been 
explicitly recognized as redundant residues and, thus, received a unified treatment14. A general theory of redundant-
residue RNS representations allows us to obtain such implementation strategies as special cases, thus facilitating design 
tradeoffs and fostering the portability of techniques and results among different application contexts. 

Note that among the redundant-residue examples listed in Table I, SWU and SWS imply no representational redundancy 
in the sense that the width h of their pseudoresidues can be the same as that of conventional residues. These do lead to 
some simplification in residue arithmetic, but significant speed benefit requires at least a (near) doubling of the range. 
Intuitively, this is because SWU and SWS allow two distinct representations only for a subset of the m residues; other 
residues must always be derived precisely, as there is no room for error in the single-representation cases. The closer m 
is to 2h, the lower the redundancy and, hence, the more rigid the implementation requirements. For this reason, double-
range redundant pseudoresidues can be viewed as having the minimal redundancy for our purposes because they entail 
pseudoresidues that are only 1 bit wider than ordinary residues. Among these, we prefer DRS because its narrower range 
of product (approximately 2m2 versus 4m2 possible values) can lead to simpler circuit realizations. 



 

 

3. MODULAR REDUCTION TO PSEUDORESIDUES 

In this section, we consider the problem of reducing a k-bit unsigned or 2’s-complement number into an (h + 1)-bit DRS 
pseudoresidue. Unless otherwise noted, we consider the nearly symmetric variety of DRS with pseudoresidues in the 
range [–m, m). Much of what we derive is directly applicable, or easily adapted, to the other two varieties of DRS shown 
in Table I. The k-bit input argument can itself be viewed as a pseudoresidue with the range [0, 2k) or [–2k–1, 2k–1). Hence, 
we formulate our problem as conversion between mod-m pseudoresidues of varying ranges. In what follows, we discuss 
some of the more useful conversions. Similar methods can be used for virtually any such conversion. 

First, note that a DRS pseudoresidue X can be converted to a conventional residue x. Symbolically, this type of residue 
set conversion is denoted by: 

 (Xh . . . X1X0)2’s-compl ∈ [–m, m)  →mod-m  (xh–1 . . . x1x0)two ∈ [0, m)  ( 2 ) 

This conversion is done by simply adding m to the pseudoresidue X if it is negative. Thus, the circuit implementing this 
conversion consists of an h-bit adder, with one input connected to Xh–1:0 and the other input to Xh × m, where the latter 
number is formed by fanning out Xh to all bit positions where m has a 1 in its binary representation. Thus, the cost and 
latency of this circuit are essentially those of an h-bit adder when it is built for a specific m. If the circuit must work for 
different values of m, where m is an input, then Xh × m is the output of a mux which has 0 and m as inputs. 

Next, we consider modular reduction for an arbitrary (h + 1)-bit 2’s-complement number to a DRS pseudoresidue of the 
same width. Symbolically: 

 (Xh . . . X1X0)2’s-compl ∈ [–2h, 2h)  →mod-m  (Yh . . . Y1Y0)2’s-compl ∈ [–m, m)  ( 3 ) 

The conversion consists of adding m to X if it is negative and subtracting m from it (adding 2h+1 – m) if it is nonnegative. 
Circuit realization consists of an (h + 1)-bit adder with inputs being X and Xh′ ⊕ m (selective complement of m) and its 
cin connected to Xh′. An h-bit unsigned input can be reduced to a DRS pseudoresidue by unconditionally subtracting m 
from it. This corresponds to the symbolic representation: 

 (Xh–1 . . . X1X0)two ∈ [0, 2h)  →mod-m  (Yh . . . Y1Y0)2’s-compl ∈ [–m, m)  ( 4 ) 

Now consider converting from a pseudoresidue X of width 2h + 1 to DRS. For most RNS applications where h is 
relatively small, the following table lookup scheme is attractive. Divide X into two parts: the upper h + 2 bits X2h:h–1 and 
the lower h – 1 bits Xh–2:0. Use X2h:h–1 as the address into a 2h+2 × h lookup table that holds xhi = m – (2h–1X2h:h–1 mod m). 
Compute the desired DRS pseudoresidue as Xh–2:0 – xhi.  

An arithmetic-based method involving short multiplications by constants can be used in lieu of table lookup. We are 
investigating the possibility of a more direct approach, but for now we advocate the use of a method due to Posch and 
Posch19, 20 which performs reduction into an (h + 2)-bit TRU pseudoresidue (Table I) using a pair of short multiplications 
by constants. Let this TRU pseudoresidue be (Yh+1 . . . Y1Y0)two. We then add 0, –m, or –2m to this value depending on the 
3 MSBs Yh+1YhYh–1 (000, 001, and otherwise, respectively); this needs a simple control logic circuit, a multiplexer, and an 
adder. Note that the method of Posch and Posch works for 2h + 4 bits to handle the product of two (h + 2)-bit TRU 
pseudoresidues. This property, symbolized as follows, may prove useful in some contexts: 

 (X2h+3 ... X1X0)two ∈ [0, 22h+4) →mod-m (Yh+1 ... Y1Y0)two ∈ [0, 3m) →mod-m (Zh–1 ... Z1Z0)2’s-compl ∈ [–m, m)  ( 5 ) 

It is also helpful to contemplate reducing from the set of 2h values 2g × [0, 2h) to a DRS pseudoresidue. Let b represent 
the h-bit constant 2g mod m. Then, 2gx mod m = bx mod m. So, we need a multiplication by the precomputed constant b 
and modular reduction of the 2h-bit unsigned product. 

Finally, an arbitrarily wide k-bit number can be reduced to a DRS pseudoresidue by dividing it into various segments, 
reducing each segment to a mod-m residue or inverse residue (if the rightmost segment is h – 1 bits, it needs no 
conversion), pairing residues with inverse residues, performing subtraction to get half as many DRS pseudoresidues, and 
finally adding all the pseudoresidues to get the final result. Addition of pseudoresidues will be discussed in the next 
section alongside other arithmetic operations.  



 

 

4. ARITHMETIC OPERATIONS WITH PSEUDORESIDUES 

In this section, we discuss how basic arithmetic operations and a few useful composite operations are performed with 
pseudoresidues. Note that two types of arithmetic with pseudoresidues can be envisaged: hybrid (mixed with ordinary 
residues) or pure. For example, 2-operand addition involving pseudoresidues might take the following forms: 

 Pseudoresidue + Residue → Pseudoresidue ( 6 ) 

 Pseudoresidue + Pseudoresidue → Pseudoresidue ( 7 ) 

The first kind is akin to carry-save addition in that it might be used to accumulate the sum of a set of numbers 
(represented with ordinary residues) while taking advantage of speed/ease of arithmetic with pseudoresidues; the second 
kind is of the same flavor as adding redundant operands in (generalized) signed-digit arithmetic. In this paper, we are 
interested in operating on numbers that are represented with pseudoresidues; thus, it is the second type of arithmetic 
operation above that will be discussed. 

Addition of DRS pseudoresidues can of course be performed via standard binary addition followed by modular reduction 
using the methods discussed in Section 3. However, we can avoid the two-stage process if we note that X + Y can fall 
outside the range of pseudoresidues only if the operands have like signs. If both operands are nonnegative, subtracting m 
is guaranteed to bring the sum to within [–m, m), while if both are negative, adding m will do the trick. Hence, we can 
perform addition directly: 

 (Xh . . . X1X0)2’s-compl + (Yh . . . Y1Y0)2’s-compl ∈ [–2m, 2m – 2]  →mod-m  (Sh . . . S1S0)2’s-compl ∈ [–m, m)  ( 8 ) 

Figure 2 depicts an efficient hardware implementation for DRS adder. Based on the signs of the two input operands, one 
of the three values 0, m, or –m is added to X + Y by means of a carry-save adder followed by an (h + 1)-bit binary adder. 
The carry out of position h + 1 is ignored for both the CSA and the binary adder. Comparing the adder in Fig. 2 to that in 
Fig. 1c reveals both lower cost and greater speed. The speed advantage is even more pronounced if the adder is built for 
a constant m, because in this case, the gate network producing the rightmost input to the CSA is simplified. 
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Fig. 2.  DRS modular pseudoresidue adder. 

Note that in Fig. 2, the XNOR and AND gates can be replaced by 2-to-1 multiplexers realizing the h + 1 functions 
mi(XhYh) ∨ mi′(Xh ∨ Yh)′. Thus, for a fixed m, the two bits XhYh and (Xh ∨ Yh)′ are simply fanned out to appropriate 
positions in the rightmost CSA input in Fig. 2. As a rule, we present our designs assuming that m is an input parameter. 
This will allow our units to be time-shared for performing operations associated with several different moduli if desired. 
Simplifications resulting from a specific choice of m are straightforward. The only requirement for the aforementioned 
shared use is that all residues sharing the unit have (h + 1)-bit redundant representations; that is, all m values must be in 
the range (2h–1, 2h]. However, practical RNS applications already use moduli that are comparable in magnitude, leading 
to residues of exactly or approximately the same width.  



 

 

Negation (change of sign) for symmetric DRS pseudoresidues in (–m, m) or [–m, m] is done by 2’s complementation. 
For pseudoresidues in [–m, m), negation may lead to an invalid pseudoresidue m which must be converted to 0. This can 
be done by detecting –m at the input and forcing the output to zero. Subtraction can be performed by negating Y and 
adding. To negate Y, its bitwise complement is formed and a 1 is inserted in lieu of the 0 LSB in the left input to the 
adder in Fig. 2. Of course, the gate network must also be modified to allow either addition or subtraction to be 
performed. The only remaining issue is to show that in case of Y = –m, no problem arises. Note that in this case, the sum 
is in the slightly wider range [–2m, 2m). However, because we reduce the sum by m whenever both summands are 
nonnegative, the output will be in [–m, m). 

Multiplication of two DRS pseudoresidues produces a (2h + 1)-bit 2’s-complement number. This number can be reduced 
to a pseudoresidue as discussed in Section 3. The hardware realization of the preceding scheme consists of an ordinary 
binary multiplier and a reduction circuit. As usual, it is possible to interlace modular reduction with the product 
accumulation. Consider the following symbolic representation of our reduction: 

 (Xh . . . X1X0)2’s-compl × (Yh . . . Y1Y0)2’s-compl ∈ [–m(m – 1), m2]  →mod-m  (Sh . . . S1S0)2’s-compl ∈ [–m, m)  ( 9 ) 

Multiplication via left-shift-add iterations is the best one to use for modular multiplication (P is initialized to 0): 

 2P + Yh–j X ∈ [–3m, 3(m – 1)]  →mod-m  New P ∈ [–m, m) (10) 

The left-hand side of (10) can be reduced to a pseudoresidue via one doubling (simpler form of addition that does not 
require the CSA in Fig. 2) and a modular pseudoresidue addition. Note that doubling is done by computing 2P ± m, 
where addition or subtraction is chosen based on the sign of P. The resulting circuit will have a critical path that goes 
through two adders, one CSA, and 5 gate levels (XOR is counted as 2 levels). The first adder can be replaced by a CSA 
forming 2P ± m + Yh–jX  as a carry-save number. The result will have a value in [–2m, 2(m – 1)]. Using a lookahead 
circuit to determine the sign of this value allows us to add ±m to it to bring the result to within [–m, m) by reducing a 
positive value and increasing a negative value. In this way, the first adder of the previous design is replaced by a CSA 
and a single lookahead circuit, leading to a simpler and faster circuit. 

Multiply-add operation can be handled by using the bits of the additive operand, from MSB to LSB, to replace the 0 LSB 
of 2P in the multiplication iterations. Squaring can be done via multiplication or directly to take advantage of circuit 
simplifications. In particular, when h is moderate but not very small, direct lookup table based realization of squaring 
might be feasible where multiplication is not. In this latter case, pseudoresidues offer no advantage for the squaring itself 
because the tables can hold conventional residues. 

Multioperand addition with pseudoresidues leads to no new problem if performed sequentially using the 2-operand adder 
of Fig. 2 or by a tree of such adders. Similarly, if accumulation is done before modular reduction, conventional CSA 
trees can be used for the accumulation phase with appropriate provisions for correct handling of signed values13. 
Piestrak’s method of multioperand modular addition with end-around carries16 is also easily adapted to pseudoresidues. 
It is noteworthy that RNS arithmetic (with or without pseudoresidues) offers little, if any, advantage over binary 
arithmetic for multioperand addition involving a large number n of operands. Binary arithmetic requires O(log n) latency 
for carry-save addition, besides the final carry-propagate addition. Multioperand addition in RNS implies O(log n) levels 
of modular addition, using an adder similar to that in Fig. 2, or O(log n) levels of ordinary carry-save addition followed 
by modular reduction. In the first case, the slower modular adders lead to binary arithmetic winning in most cases. In the 
second case, the modular reduction unit is likely to be slower than the final fast adder of binary arithmetic.  

For inner-product computation, a scheme based on very wide pseudoresidues can be used11. The required hardware for 
sequential realization, or one cell in a pipelined linear-array, is shown in Fig. 3. A running total of width 2h + 1 is 
maintained to which the (2h + 1)-bit product pseudoresidue is added to get a (2h + 2)-bit result which is latched. In case 
the two MSBs of the (2h + 2)-bit result are different, the result has overflowed the target (2h + 1)-bit range and must be 
reduced/increased by a multiple of m to bring it to within the target range. The multiple of m used is 2hm because it 
allows us to do the adjustment by an (h + 1)-bit adder. Of course if increasing the number of data lines is acceptable 
from area and pin-out viewpoints, the running total can be kept in carry-save form and the design in Fig. 3 accordingly 
modified to use carry-save adders. The final conversion of the (2h + 1)-bit result to an (h + 1)-bit pseudoresidue is done 
following the process outlined in Section 3. 
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Fig. 3. Modulo-m multiply-accumulate cell. 

 
Example 1 (FIR filter implementation): A finite impulse response filter can be implemented in RNS via an initial 
conversion of the input to RNS representation, performing filter calculations independently for each residue channel, and 
a final RNS to binary conversion. The main computational part of the filter for each residue is a linear array of n cells of 
the type shown in Fig. 3, one for each tap. The preceding adaptation of an ordinary RNS-based FIR filter to one based on 
pseudoresidues will work and is somewhat more efficient that the nonredundant version. However, pseudoresidues allow 
us to take a different approach which is considerably more efficient. Let us use our standard 2’s-complement encoding 
for input psudoresidues but encode all intermediate pseudoresidues as binary signed-digit (BSD) numbers using the 
radix-2 digit set {–1, 0, 1}. Conceptually, this encoding is very similar to carry-save representation. The pseudoresidue X 
is encoded as two residues X+ in [0, m) and X– in [0, –m], with X = X+ – X–. The (2h + 1)-bit output of the multiplier is 
broken into two parts: the lower h – 1 bits constitute Y+ and the upper h + 2 bits are converted via a lookup table or 
special circuit to a negative residue in [0, –m]. The output of this block, together with the lower h – 1 bits form a BSD 
pseudoresidue. This is added to the pseudoresidue representing the running total to form an (h + 1) digit BSD result 
having a wider range than our pseudoresidues. This wider result is brought to within [–m, m) in the early part of the next 
stage by adding to it a constant whose value is determined only by the MSBs of the positive and negative components. 
The speed and cost advantage of the design in Fig. 4 over that in Fig. 3 is quite obvious. The two BSD adders are only 
slightly slower than carry-save adders and the latency of one of them is completely overlapped with the multiplication. 
In addition to each cell being faster, the final conversion is also sped up because it consists of a correction (identical to 
that in the left half of Fig. 4) followed by recoding the BSD pseudoresidue to 2’s-complement format. � 
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Fig. 4.  RNS FIR filter implementation with BSD-encoded intermediate pseudoresidues. 



 

 

5. AUXILIARY RNS OPERATIONS 

Having discussed conventional arithmetic operations with pseudoresidues, we now want to show that certain auxiliary 
operations needed for successful implementation of RNS arithmetic are also facilitated by redundant residues. We have 
already covered binary to residue conversion in Section 3. Here, we discuss operations such as RNS to mixed-radix 
conversion, base extension, RNS to binary conversion, approximate sign detection, which is needed for division among 
other operations6, and approximate Chinese remainder theorem (CRT) decoding7. 

Base extension refers to deriving a subset of RNS residues for a number from the remaining residues, provided that the 
number being represented is within the range of the latter subset. Both base extension and RNS to binary conversion can 
be performed by doing RNS to mixed-radix conversion first. For this reason, we present the latter in some detail. 

Example 2 (RNS to mixed-radix conversion): Consider an RNS representation with the k moduli mk–1 > . . . > m1 > m0. 
The mixed-radix number system corresponding to this RNS has k digits, with the ith digit having the same range as the 
ith residue and a weight equal to mi–1 . . . m0 (the weight is 1 for the digit in 0th position). In our case, the residues are 
redundant, so the mixed-radix number is also obtained with a redundant digit set. However, as in the case of fixed-radix 
positional systems, conversion from this redundant mixed-radix representation to nonredundant form is straightforward. 
The conversion process is iterative. In the ith iteration, the ith residue is taken to be the ith mixed-radix digit. This digit 
is subtracted from all remaining residues to get a number that is divisible by mi. Division by mi is then performed through 
multiplication of residues by the multiplicative inverse of mi. To the extent that modular addition and multiplication are 
faster with pseudoresidues, the iterations are speeded up. At the end, either the redundant mixed-radix number is 
converted to nonredundant form or it is used directly to deduce the information of interest such as sign or relative 
magnitude through special lookahead circuits. Table II contains a numerical example in which u = (6 –2 –2 1)RNS is 
converted from a 4-modulus RNS (7, 5, 3, 2) to (1 –2 –3  1)MR in the equivalent mixed-radix format The computation is 
easily checked by noting that the mixed-radix number has the value 30 – 12 – 6 + 1 = 13. � 
 

Table II. Example of RNS to mixed-radix conversion with pseudoresidues. 

RNS moduli    
��

 m3 = 7 m2 = 5 m1 = 3 m0 = 2 
RNS representation of u 6 –2 –2 1 
Subtract u0 = 1 5 –3 –3  
Multiplicative inverse of 2 4 3 2  
Multiply by 2–1 6 –4 –3  
Subtract u1 = −3 2 –1   
Multiplicative inverse of 3 5 2   
Multiply by 3–1 3 –2   
Subtract u2 = −2 5    
Multiplicative inverse of 5 3    
Multiply by 5–1 1    
Mixed-radix digits vi 1 –2 –3 1 
Position weights wi 30 6 2 1 
Worth of each digit vi × wi 30 −12 −6 1 

 
Approximate CRT decoding, and consequently approximate sign detection, can be performed with pseudoresidues in 
virtually the same way as with residues. In approximate CRT decoding, the residues are used as indices into a table from 
which the normalized contribution of that residue to the magnitude of the number, with the entire range of numbers 
normalized to [0, 1), is read out with a few bits of precision. These values are then added, modulo-1, to form an 
approximate normalized magnitude in [0, 1). Modulo-1 addition means that any integral bit that is obtained is simply 
dropped. So, this is much simpler than mod-M addition required by standard CRT decoding, where M is a large integer 
constituting the dynamic range of our RNS. The wider the lookup tables used, the more precise this decoding becomes. 
If residues are supplied directly as inputs to separate tables, then the effect of using pseudoresidues is to double the size 
of the tables. To reduce the size penalty, one can use a technique similar to optimal bit-groupings for RNS to binary 
conversion10. In this way, the total table size is increased by a factor of 1 + 1/h instead of doubling.  



 

 

6. FAULT TOLERANCE IMPLICATIONS 

There are two ways in which one might discuss fault tolerance in connection with redundant residues: (1) Impact of 
redundant residues on conventional residue or inverse-residue checking of arithmetic operations, and (2) Application of 
error checking and/or fault tolerance methods to RNS arithmetic operations performed with pseudoresidues. 

In residue checking of arithmetic operations, an operand u is encoded as (u, u mod m), where m is a suitably chosen 
check modulus. If u is k bits wide and mod-m residues are h bits wide, the relative representational redundancy is h/k. 
Using a DRS pseudoresidue in lieu of an ordinary residue increases the representational redundancy to (h + 1)/k. This 
small increase, from 4 bits to 5 bits, say, for a residue check attached to 32-bit data words, simplifies the initial residue 
encoding, residue arithmetic within the ALU needed to check the main computation, and the final residue generation for 
comparison with the predicted residue. On the negative side, the residue comparison itself becomes more complicated. 
This may be a worthwhile tradeoff, especially if within the context of a pipelined implementation, the residue 
comparison for one stage can be overlapped with computation in the next stage.  

Error-checked or fault-tolerant arithmetic with pseudoresidues can take several forms. Here, we briefly discuss the use of 
redundant-modulus RNS whereby the RNS is extended with one or more moduli beyond the number needed to provide 
adequate dynamic range. Let us focus first on the use of an extra modulus mk (mk > mk–1 > . . . > m0) in a k-modulus RNS. 
Computation is performed as usual within the k + 1 residue channels. Checking of the computation consists of predicting 
the kth residue on the basis of the remaining residues (base extension) and comparing the result to the computed value. 
Thus, the checking problem is of the same order of complexity as mixed-radix conversion discussed in Section 5. Again, 
as suggested in the preceding paragraph, the check computation can be overlapped with the main computation in the next 
pipeline stage to minimize the time overhead. 

Error correction requires the use of more than one redundant modulus. For example, single error correction can be done 
with two redundant moduli mk+1 and mk. Again the key component of the fault diagnosis circuits is base extension. 
Several algorithms for the correction process and its corresponding hardware realization are available. The pipelined 
systolic design suggested by Di Claudio, Orlandi, and Piazza4 is particularly attractive for use with our pseudoresidues. 
In this scheme, the moduli, of which there are an even number, are paired and each pair of residues is derived from base 
extension. The results are compared to computed residues and one or the other value is selected by means of a relatively 
simple control circuit. Details remain to be worked out. 

 

7. CONCLUSIONS 

We have shown that using certain redundant residues leads to circuit simplifications and speed-up in RNS arithmetic. 
Our focus was on DRS pseudoresidues that offer the benefits of representational redundancy while keeping the overhead 
to the minimum of 1 bit per residue. However, other representations with the same amount of redundancy are possible. 
These include any residue set that forms a subinterval of [–2h, 2h) or [0, 2h+1). Whether or not other residue sets from this 
category offer advantages over DRS pseudoresidues remains to be established. Even though it appears that using greater 
redundancy to some extent defeats the short-word modular nature of RNS arithmetic, going beyond DRS (perhaps to 2 
bits of redundancy per residue) might be justifiable with additional studies. 

With regard to arithmetic operations, we have considered addition/subtraction, multioperand addition, multiplication, 
and inner-product computation. Besides the more difficult RNS arithmetic operations such as division and square-root 
extraction, future work may focus on the impact of certain specializations of general arithmetic operations. For example, 
it would be interesting to see if more efficient methods for multiplication and division by constants can be devised or if 
squaring can be significantly simplified18.  

Finally, fault tolerance implications need further study to quantify the benefits in terms of fault coverage and system 
reliability improvement. Extensions in this area include the possibility of encoding DRS pseudoresidues in BSD format. 
In the context of residue checking, this increases the overhead (2h instead of h + 1 check bits for a k-bit data word). 
Some benefits of the BSD representation include faster arithmetic and the possibility of using parity-preserving 
transformations15 to check the residue channel itself. This contributes to improved fault tolerance, particularly with 
regards to certain fault patterns that tend to have compensating effects on the main and residue computations. 
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