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Previous designs of programmable finite impulse response (FIR) digital filters have 
demonstrated that the use of broadcast input data and control can lead to a high per-
formance-to-cost ratio.  As the technology moves into deeper submicron regimes, this 
approach should be reexamined by paying greater attention to the effect of interconnects. 
In this paper, we quantify the contribution of interconnect delay to the cycle time and 
demonstrate its negative effects on both scalability and cost-effectiveness of such 
broadcast designs.  We further show how speed and density improvements secured 
through technology scaling can be maintained by a fully pipelined design in which both 
data and control signals are restricted to local connections.  One important feature of 
our design is that the data input port is reused for delivering the new coefficients.  
Consequently, coefficients can be loaded in bit-parallel form with no increase in the 
number of input pins, thereby facilitating and speeding up run-time adaptation to the ap-
plication environment.  Another feature is that variable-precision coefficients can be 
accommodated easily and flexibly, with no speed penalty. Because the inner-product 
computation at the heart of a FIR filter occurs in many other signal processing applica-
tions, our design methods and conclusions are widely applicable to the design of appli-
cation-specific and embedded parallel architectures. 
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1. INTRODUCTION 

In view of their simplicity, finite impulse response (FIR) digital filters are used in a 
variety of practical signal processing applications, particularly those requiring inexpen-
sive hardware implementations for embedded systems.  A FIR digital filter essentially 
computes the inner product of a data vector and a coefficient (weight) vector.  Simple 
FIR filters have their coefficients built into the circuit or burned into read-only memory.  
In some applications, flexibility and adaptation requirements dictate that the coefficients 
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be changeable in the field or be dynamically modifiable at set-up or run time.  Such 
filters are said to be programmable.  Programming of such digital filters involves load-
ing a coefficient memory with new values or shifting in the new coefficients into special 
registers, with the latter approach preferred when high performance or quicker adaptation 
is needed. 

Conventional designs for programmable FIR digital filters are based on the trans-
posed direct form realization [21].  In this scheme, an N-tap FIR filter is implemented as 
a cascade architecture consisting of N fixed-size cells, one for each tap.  Input data are 
broadcast to all filter taps and their output responses computed as inner-product steps in 
pipelined fashion [7, 10-13, 18, 25, 28].  Coefficients are loaded in either bit-serial or 
bit-parallel form, by connecting all coefficient registers into a chain whose shifting is 
activated by a common enable line.  Designs opting for bit-serial loading of the coeffi-
cients reduce the number of pins but are only suitable for application contexts involving 
slow adaptation, given the long programming time [10]. 

As the required number of taps may vary from one application to another, designs 
must be modular and readily expandable.  Tap counts from 8 to 64 are found in differ-
ent applications [7, 10, 11, 13, 18, 25, 28].  In adaptive applications, an “enable” 
broadcast signal is used in connection with coefficient modification.  When this signal 
is deasserted, desired coefficient values are input through the pipeline registers, which 
form a shift-register chain.  When the enable signal is asserted, the contents of the pipe-
line registers are simultaneously saved as new coefficient values.  The choice of a 
broadcast control scheme, as a simple extension of the input data bus, makes the control 
broadcast overhead relatively insignificant, in view of the latter already being in place, 
leading to cost-effective designs. 

While the preceding assessment may be accurate for short filters, the reduced depth 
of pipeline stages heightens the significance of propagation delays on wires [1, 2, 15]. 
For a long filter, the broadcast overhead for input signals becomes a major portion of the 
cycle time.  The cycle time is affected by two factors: broadcasting data to all filter taps 
and performing a pipelined operation on data in each tap.  The required cycle time in-
creases with N simply because longer interconnections will be involved and a larger load 
must be driven. 

In this paper, we propose a fully pipelined design in which both data and control 
signals are pipelined through the filter, thus restricting the global connection to clock and 
power supply.  Shorter interconnects allow the use of a faster clock rate that is inde-
pendent of the filter size; so even though the N-tap filter’s latency is N clock cycles for 
both the broadcast and pipelined designs, the latter may be significantly faster.  It is our 
goal to quantify the differences in speed and relate them to the overall cost-effectiveness 
of the various designs.  Such a study needs realistic analyses based on an architecture- 
and technology-dependent model that exposes the tradeoffs involved. 

Our design is completely modular and allows the corresponding implementations to 
take full advantage of the improved raw circuit performance due to the scaling of dimen-
sions in integrated circuits.  We note that the broadcast overhead cannot be alleviated 
by merely pipelining the data signals, because the overhead will then shift to the control 
signals.  Pipelining both data and control signals appears to be the only viable alterna-
tive.  Using data from 1.0 and 0.5 µm CMOS technologies, we show that the increased 
area to accommodate more pipeline registers can be compensated for by the higher oper-
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ating frequency, thus maintaining the throughput rate with scaling.  One important fea-
ture of our design is that the data input port is reused for delivering the new coefficients.  
Consequently, coefficients can be loaded in bit-parallel form with no increase in the 
number of input pins, thereby facilitating and speeding up run-time adaptation to the ap-
plication environment.  Another feature is that variable-precision coefficients can be 
accommodated easily and flexibly, with virtually no speed penalty. 

Our presentation in the rest of this paper is organized as follows.  In section 2, we 
categorize four modes of data and control flow that can be used in designing program-
mable FIR digital filters and also derive our fully pipelined design.  Section 3 discusses 
the cost-performance tradeoffs and the effects of scaling on the above designs.  In sec-
tion 4, we show that our fully pipelined design allows us to extend the precision of coef-
ficients without degrading the speed, while a similarly flexible broadcast design would 
imply an elongated cycle time.  Section 5 contains our conclusions. 

2. FULLY PIPELINED FIR FILTERS 

2.1 Modes of Data and Control Flow 

The fully pipelined design is derived from the direct form by successively applying 
retiming transformations [8, 19].  Fig. 1 shows the retimed realization of a FIR filter of 
order N.  The same structure can also be derived by using the dependence method [14]. 
We refer the reader to [6] for other variants. 

 
Fig. 1. Retimed direct-form realization of an FIR filter of order N. 

For a programmable design, mechanisms must be provided to input and store the 
coefficients.  Given that the data and control signals can be either broadcast to, or pipe-
lined through, the filter, four categories of design with regard to data and control flow 
can be distinguished. 
1. Broadcast control, broadcast data (BCBD): Input data are broadcast to all filter taps 

and the coefficients are pipelined through the registers via a separate input port.  
The common “enable” control signal is asserted when the registers are to be filled up 
with new values for the coefficients.  These coefficients are input in order from h(0) 
to h(N – 1); see Fig. 2a. 

2. Pipelined control, broadcast data (PCBD): The coefficients share the same input port 
with broadcast data.  The control signal is shifted through the filter, sequentially 
enabling the coefficient registers to store their new values in order from h(N – 1) to 
h(0); see Fig. 2b. 
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3. Broadcast control, pipelined data (BCPD): Input data and coefficients are pipelined 
through all taps using two separate input ports.  The common control signal is as-
serted until the registers are filled up with the coefficients, which are input in order 
from h(0) to h(N – 1); see Fig. 2c. 

4. Pipelined control, pipelined data (PCPD): Coefficients share the same input port 
with pipelined data.  If the coefficients are input from h(N – 1) to h(0) before the 
assertion of control and input of data, the pipelined control signal arrives at a tap just 
when its coefficient reaches the register; see Fig. 2d. 
 

 

 
Although the PCBD mode has the advantage that the coefficients can be loaded in 

bit-parallel form without increasing the number of pins, this sharing of data input port  

 

Fig. 2. The four modes of data and control flow in programmable FIR digital filters: (a) broadcast 
control, broadcast data, (b) pipelined control, broadcast data, (c) broadcast control, pipe-
lined data, and (d) pipelined control, pipelined data. 
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Although the PCBD mode has the advantage that the coefficients can be loaded in 
bit-parallel form without increasing the number of pins, this sharing of data input port 
can seriously aggravate the data broadcast overhead. Most existing designs ignore the 
control broadcast overhead and adopt the BCBD mode.  Their focus, instead, is on op-
timizing the multiply-add operation which, in effect, leads to the reduction of circuit 
depth within each cell.  Ironically, the speed gained by such reductions in circuit depth 
exacerbates the effect of propagation delays on long wires. 

We note that even if the BCPD mode is used, broadcast overhead is not totally 
eliminated, because we still need to broadcast the control signal.  If reprogramming is 
rather infrequent, it is possible to design the filter such that the overhead is not paid dur-
ing normal operation.  This, however, leads to added circuit complexity and may de-
grade the cost-effectiveness of the resulting design. 

2.2 Deriving the Pipelined Control 

We now derive the pipelined control signals in the PCPD mode, which we refer to 
as a fully pipelined design. The pipelining of control signals with the data signals can be 
interpreted as attaching special control tags to the data streams X = {x(0), x(1), x(2), . . .} 
and Y = {y(0), y(1), y(2), . . .}.  The coefficients are loaded, via the x input port, in the 
descending order h(N – 1), h(N – 2), . . . , h(0), prior to the insertion of the first input data 
item x(0).  The loading elongates the data stream X by N and takes N clock cycles for 
any subsequent change. 

To facilitate our derivation, we unroll the signal flow graph of Fig. 1 along time 
steps into a dependence graph, as depicted in Fig. 3.  The original signal flow graph can 
then be seen as a projection of the dependence graph along the horizontal direction. The 
light diagonal lines show the schedule.  The dependence graph is augmented with nodes 
acting to pass and store the coefficients (black nodes, and shaded nodes to their left). 
Once the coefficient h(i) turns into the projection (horizontal) direction, it will be stored 
at the tap.  The shaded nodes to the right of the black nodes are needed because we have 
to ensure x(i) = 0 for i < 0 in order to apply the formula y(n) = ∑i=0,n h(i) x(n – i) uni-
formly.  Thus, y(n), 0 ≤ n ≤ N – 2, simply passes through taps h(n + 1), . . . , h(N – 1) 
with no change. 

The nodes in Fig. 3 have been labeled with binary x and y tags that together specify 
the node function: 11 for store, 10 for pass, and 00 for multiply-add operation. The fourth 
combination 01 is not used in this design.  The preceding tag assignment can be derived 
as follows.  We observe that the nodes for multiply-add operations are aligned along the 
diagonal direction of the data stream X.  Hence, we assign an x tag of 0 to distinguish 
these nodes from the other two node types; i.e., pass and store.  Similarly, the nodes for 
store are aligned along the vertical direction, which corresponds to the flow direction of 
the data stream Y.  Hence, we assign a y tag of 1 to distinguish these store nodes from 
the other two node types; namely, pass and multiply-add.  The combination of the x and 
y tags, when data streams X and Y meet at a node, results in the assignments depicted in 
Fig. 3b [17]. 

The coding scheme used for the tags corresponds to the following simple interpreta-
tions of the control signals.  An x tag of 1 indicates that the associated input data item is 
a coefficient, while a y tag of 1 distinguishes the input data element as the last item in the 
sequence of coefficients. 
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Fig. 3. (a) Dependence graph of a programmable FIR filter, featuring three node types. (b) Node 
definitions. 

2.3 Basic Cell Structure 

Based on the coding derived in section 2.2, the basic cell structure for the program-
mable FIR filter can be easily obtained (Fig. 4).  The added Z data stream allows us to 
efficiently realize a linear-phase FIR filter of order 2N (or 2N – 1) by the well-known 
method of folding it into N taps, taking advantage of the symmetric property of its coef-
ficients h(i) = h(2N – 1 – i), 0 ≤ i ≤ n – 1.  To see this, rewrite the system function as 

 
y(n) =  ∑i=0,2N–1 h(i) x(n – i)  

=  ∑ i=0,N–1 h(i) x(n – i) + ∑ i=0,N–1 h(i) x(n + i – 2N + 1) 
 
and rename the second summation term in the last expression as z(n – 2N + 2i + 1), 
where z(n) = ∑ i=0,N–1 h(i) x(n – i).  Thus, the computation of z(n – 2N + 2i + 1) is the 
same as that of y(n – 2N + 2i + 1) by the first N taps.  The index difference 2N – 2i – 1 
between y(n) and z(n – 2N + 2i + 1) implies a delayed y output with two more pipeline 
registers inserted between cells and one register added to the z output following the last 
cell.  Fig. 5 shows the first and last cells of the linear-phase FIR filter of even order 2N.  
In a similar manner, the folded linear-phase FIR filter of odd order 2N – 1 can be derived 
by removing the register added to the z output following the last cell. 
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Fig. 4. The basic cell structure of the programmable FIR filter with pipelined data and control. 

 

Fig. 5. The first and last cells of a programmable linear-phase FIR filter of order 2N. 

3. TRADEOFFS AND SCALABILITY 

In this section, we compare the various filter designs with respect to 
cost-performance ratio and also examine their scalability.  Only BCBD and PCPD 
modes are considered, which represent the two extremes with lowest cost and highest 
performance, respectively.  To facilitate our analyses, we assume data to be represented 
by fixed-point fractional numbers with 16-bit inputs, 16-bit coefficients, and 32-bit out-
puts.  Our concern here is the core array. When implemented on a single chip, the out-
put is often truncated or rounded and extra hardware is required on the periphery. 

The coefficients are assumed to be encoded using a canonic signed-digit (CSD) 
representation, using a minimal number of nonzero digits from the digit set {–1, 0, 1}.  
This encoding, which reduces the number of partial products to be generated in view of 
the absence of consecutive nonzero digits, is standard.  It has been used in several FIR 
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filter designs as well as some automatic synthesis tools [7, 11-13, 18, 28]. For simplicity, 
let us select two signed digits to represent each coefficient value: 

 
h(i) = s0(i) 2

−p
0
(i) + s1(i) 2

−p
1
(i) 

 
The coefficient h(i) is fully characterized by the four-tuple (s0(i), p0(i), s1(i), p1(i)), 

where s0(i), s1(i) ∈ {–1, 0, 1}, p0(i) ∈ {0, 1, . . . , 13}, and p1(i) ∈ {2, 3, . . . , 15}, thus 
requiring 2(2 + 4) = 12 bits for its representation [20]. 

The two partial products are generated by shifting the input data x(n – i) by p0(i) and 
p1(i) positions, respectively, and complementing if required.  The two partial products 
are added with the sum and carry from the previous cell by a two-level carry-save adder 
tree.  However, to avoid carry propagation delay in each cell, the true result is not com-
puted until after the last cell.  This technique too, which replaces multiplications by 
carry-free additions, is common practice in high-performance filter design [11]. 

3.1 Comparison for 1.0 µm CMOS 

We estimate the area and cycle time for our filter designs using a 1.0 µm CMOS 
technology.  Compared to the broadcast (BCBD) design, the layout of the fully pipe-
lined (PCPD) design shows about 20% increase in area for each cell.  Fig. 6 shows the 
corresponding relative cycle times and area-time products for different values of N.  
The area-time product, obtained by multiplying the relative area and cycle time, is a 
commonly used measure of cost-effectiveness. 

 

Fig. 6. Cycle time and area-time product of the fully pipelined design relative to the broadcast de-
sign, using 1.0 µm CMOS technology. 

According to Fig. 6, the speed improvement resulting from pipelined data and con-
trol signals is not enough to offset the area increase for N ≤ 128.  This is because the 
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original cell has a relatively low circuit depth and by adding control logic to the critical 
path, our design increases the cycle time for small N.  Thus, for existing applications 
with N ≤ 64, the broadcast design is more cost-effective when relatively old implementa-
tion technologies are used.  In such cases, signal propagation delays incurred on long 
wires do not significantly affect the cycle time, making the broadcast design uncondi-
tionally better for small N (say, N ≤ 16), while offering a worthwhile speed-for-area 
tradeoff in the case of larger N (say, 32 ≤ N ≤ 64). 

3.2 Comparison for 0.5 µm CMOS 

The results of section 3.1 lose their validity with continued downward scaling of 
feature size for devices and wires in integrated circuits.  As the dimensions are scaled 
down by a given factor, wire lengths are expected to shrink by the same factor.  How-
ever, signal propagation delays on wires are not reduced at the same rate as device 
switching times [3, 4, 22].  The interconnect delay is a function of the wire resistance 
and capacitance (RC delay).  Whereas wire resistance increases due to a reduction in 
cross-sectional area, there is no corresponding decrease in the wire capacitance, leading 
to a net increase in interconnect delay. 

We thus need to reexamine the relative measures of layout area and cycle time for 
different values of N, with each change in technology.  Fig. 7 shows the results for 0.5 
µm CMOS technology.  Compared to the results for 1.0-micron CMOS, the relative 
cycle time is now seen to drop more rapidly.  While the observation that downward 
technology scaling has adverse effects on signal propagation delays is not new, there is a 
dearth of published work on quantifying the degradation and analyzing the tradeoffs. 

According to Fig. 7, the area saved by the broadcast design is not enough to offset 
the speed degradation as N is extended beyond 16.  An alternate view of our simulation 
results appears in Fig. 8 which shows the speed improvement due to the scaling down of 
the feature size from 1.0 to 0.5 µm.  The superiority of the fully pipelined design in 
preserving the speed and density benefits of scaling is clearly visible.  Even cautious 
interpolation of these results to the current leading edge and future technologies points to 
the inevitability of fully pipelined design for high-performance FIR digital filters of even 
modest size (say, N ≤ 16). 

Fig. 9 [16] shows the interconnect delay on wires for 1.0, 0.5, and 0.25 µm CMOS, 
presented as ratios with respect to the device switching time for the corresponding tech-
nology [3, 4, 9].  For the broadcast design, we have conservatively estimated the wire 
length in the range of 2 mm (8 taps) to 6 mm (64 taps), using a 1.0 µm CMOS technol-
ogy and distributing the broadcast data by a standard treelike network [26].  These base 
points appear on the bottom curve in Fig. 9. 

4. MORE PRECISE COEFFICIENTS 

In section 3, we assumed that each coefficient is represented by two signed digits 
and their corresponding positions (powers of two).  In practical applications, some co-
efficients may need more precision to satisfy given criteria [24, 27]. To maintain the 
modularity, we can decompose a more precise coefficient 
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Fig. 7. Cycle time and area-time product of the fully pipelined design relative to the broadcast de-

sign, using 0.5 µm CMOS technology. 

 

Fig. 8. The speed improvement of fully pipelined (PCPD) and broadcast (BCBD) designs when the 
feature size is scaled from 1.0 to 0.5 µm. 

 
h(i) = ∑k=0,L(i)–1 sk(i) 2

–pk(i) 
 
with L(i) signed digits into consecutive two-digit pairs hj(i), 0 ≤ j ≤ L(i)/2 – 1, such that 
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Fig. 9. The ratio of interconnect delay to device switching time versus wire length for 1.0, 0.5, and 
0.25 µm CMOS technologies using standard aluminum/silicon dioxide-based metallization. 

h(i) = ∑j=0, L(i)/2 – 1 hj(i) 2
–pk(i) = ∑j=0, L(i)/2 – 1 (s2j(i) 2

–p2j(i) + s2j+1(i) 2
–p2j+1(i)) 

 
In the broadcast design, the partial products hj(i) x(n – i) are accumulated in such a 

way that each of the y outputs of the first L(i)/2 – 1 cells is passed directly to the next 
cell without going through a pipeline register [13].  This is akin to using a 
2L(i)/2-level carry-save adder tree to reduce 2L(i)/2 + 2 operands to 2 operands. 
However, because the broadcast input x(n – i) lasts only for one clock cycle on the data 
bus, completing such a computation necessitates a significant increase in cycle time. As a 
result, extension of precision for the coefficients implies a serious degradation in speed. 

In the fully pipelined design, such a flexibility can be provided with virtually no 
sacrifice in speed.  We note that in Fig. 1, the data item x(n – i) will lag one clock cycle 
behind y(n) once they meet at cell hj(i).  Thus, to let them meet again at the next cell 
hj+1(i), we can simply allow x(n – i) to skip over one pipeline register, thereby reducing 
its 2D delay to D.  Fig. 10 shows an example with N = 3, L(0) = L(2) = 2, and L(1) = 4.  
It is clear that the pipelined data flow mode is preserved. 

Programming the delay of the x output requires a control signal that enables or dis-
ables the transmission gate added to bypass the register [13].  Any change in the 
precision of coefficients must be preceded by resetting of the delays, so that the pipelined 
control flow can effect the subsequent pass and store operations.  This can be conven-
iently accomplished by using the unassigned tag value 01 to reset the delay. When multi-
ply-add operations are performed, all x tags are labeled with 0s.  We insert a y tag of 1 
before the change. The combination of the y tag of 1 with previously inserted x tags of 0 
yields a sequence of pipelined resets.  Fig. 11 shows the dependence graph correspond-
ing to the programmable FIR filter of Fig. 10.  Heavy arrows indicate the flow of data 
stream X. 
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Fig. 10. An FIR digital filter of order 3, with the coefficient h(1) having 4 digits in its CSD repre-
sentation. 

 

Fig. 11. The dependence graph corresponding to the programmable FIR filter of Fig. 10. 

With the CSD representation, the width of the data input port is likely not used in its 
entirety for delivering the coefficients.  Therefore, it can easily accommodate the sin-
gle-bit bypass flag with each coefficient to indicate its continuation.  The coefficient 
register in each cell must also be expanded by one bit. Fig. 12 shows the resulting cell 
structure.  For simplicity, we have omitted the linear-phase part which is not affected by 
the extended-precision modification. 

 
Fig. 12. The basic cell structure allowing more precise coefficients to span multiple cells. 
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The pipelined mode of control, using the x and y tags, is as follows. When the x tag 
is 0 and the y tag is 1, the multiplexer at the top of Fig. 12 selects 0 to be stored as the 
bypass flag, thus disabling the bypass.  The coefficients, received with x tag of 1 and y 
tag of 0, can then be loaded through the registers until the y tag becomes 1.  Then, the 
coefficients are stored and the bypass path is set up. Multiply-add operations are per-
formed on the subsequently inserted data items carrying x tag of 0 and y tag of 0. 

5. CONCLUSIONS 

Different designs, involving broadcast of data or control signals, have been pro-
posed for the realization of programmable FIR filters.  Our results show that whereas 
the broadcast design leads to a high cost-performance ratio with the 1.0 µm CMOS 
technology, especially when the filter size is small, more advanced implementation 
technologies or larger filters lead to severe overheads.  This is due to the contribution of 
signal propagation on long wires to the clock cycle time. 

To alleviate the broadcasting overhead, we proposed a fully pipelined design that 
restricts the global connections to clock and power supply.  We showed that such a fully 
pipelined design is feasible and requires only one control tag bit per data element.  Our 
data-driven control scheme thus requires two tag bits in all (compared to one control bit 
in the broadcast design) to effect the desired cell operations.  To deliver the coefficients 
into the filter, the broadcast design requires a separate coefficient input port.  Our fully 
pipelined design, by contrast, reuses the data input port for this purpose.  Additionally, 
we showed that the precision of coefficients can be extended easily and flexibly in our 
design, with no sacrifice in speed. 

Even though continued downward scaling of feature size will make the fully pipe-
lined design a necessity in future, the current density levels may favor a hybrid design in 
which pipeline stages are inserted after every k-tap segment and broadcasting is used 
within each segment. We have analyzed the resulting hybrid architectures in a compan-
ion paper [16], concluding that by restricting the segment size to a small number of taps, 
the benefits of scaling can be secured. Our results serve to reiterate the importance of 
local and pipelined communication in modular designs, based on state-of-the-art VLSI 
technology. 

Modifications to reduce the wire resistance and capacitance through the use of new 
conductor (e.g., copper) and insulator (e.g., polymer) materials, as well as multi-level 
interconnections, do not significantly affect our conclusions.  Optimistically, the inter-
connect RC time constant can be reduced by a factor of three [5].  Such a change is 
equivalent to dividing the interconnect delay/switching time ratio of Fig. 9 by three, and 
thus shifting the optimal segment size by the same factor.  As such a change involves 
greater development and production complexities, the resulting cost factors must be 
taken into account for a fair and complete comparison. 

Our data-driven control scheme is quite general [17] and can be applied to the de-
sign of many embedded or application-specific systems that require extremely high per-
formance. Notable among such applications is the design of an insertion sorter [23] that 
doubles as a priority queue and can handle insertions and extractions with no idle clock 
cycle in between consecutive operations of either type. Other applications are under in-
vestigation, as are error detection and fault tolerance schemes. 
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