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Abstract 

Hexagonal mesh and torus, as well as honeycomb 
and certain other pruned torus networks, are known 
to belong to the class of Cayley graphs which are 
node-symmetric and possess other interesting 
mathematical properties. In this paper, we use 
Cayley-graph formulations for the aforementioned 
networks, along with some of our previous results on 
subgraphs and coset graphs, to draw conclusions 
relating to internode distance and network diameter. 
We also use our results to refine, clarify, and unify a 
number of previously published properties for these 
networks and other networks derived from them. 

Keywords– Cayley digraph, Coset graph, Diameter, 
Distributed system, Hex mesh, Homomorphism, 
Honeycomb mesh or torus, Internode distance. 

1. Introduction 

The fact that Cayley (di)graphs and coset graphs 
are excellent models for interconnection 
networks, of the types studied in relation to 
parallel processing and distributed computation, 
is widely acknowledged [1], [2], [4]. Many 
well-known, and practically significant, 
interconnection networks are Cayley (di)graphs 
or coset graphs. For example, hypercube (binary 
q-cube), butterfly, and cube-connected cycles 
networks are Cayley graphs, while de Bruijn 
and shuffle-exchange networks are instances of 
coset graphs [4], [11]. 

Much work on interconnection networks can be 
categorized as ad hoc design and evaluation. 
Typically, a new interconnection scheme is 
suggested and shown to be superior to some 
previously studied network(s) with respect to one 
or more performance or complexity attributes. 
Whereas Cayley (di)graphs have been used to 
explain and unify interconnection networks with 
many ensuing benefits, much work remains to be 
done. As suggested by Heydemann [4], general 
theorems are lacking for Cayley digraphs and 
more group theory has to be exploited to find 
properties of Cayley digraphs. 

In this paper, we explore the relationships 
between Cayley (di)graphs and their subgraphs 
and coset graphs with respect to subgroups and 
formulate general results on homomorphism and 
diameter formulas between them. We provide 
several applications of these results to well-known 
interconnection networks such as hexagonal torus, 
honeycomb torus, and several other classes of 
pruned torus networks. 

Before proceeding further, we introduce some 
definitions and notations related to (di)graphs in 
general, Cayley (di)graphs in particular, and to 
interconnection networks. For more definitions 
and mathematical results on graphs and groups we 
refer the reader to [3], for instance, and on 
interconnection networks to [6], [8]. Unless noted 
otherwise, all graphs in this paper are undirected. 
Proofs are omitted here and will be provided in a 
more complete version of this paper. 



 

A digraph Γ = (V, E) is defined by a set V of 
vertices and a set E of arcs or directed edges. 
The set E is a subset of elements (u, v) of V × V. 
If the subset E is symmetric, that is, (u, v) ∈  E 
implies (v, u) ∈  E, we identify two opposite arcs 
(u, v) and (v, u) by the undirected edge (u, v). 
Because we deal with undirected graphs in this 
paper, no problem arises from using the same 
notation (u, v) for a directed arc from u to v or 
an undirected edge between u and v. 

Let G be a (possibly infinite) group and S a 
subset of G. The subset S is said to be a 
generating set for G, and the elements of S are 
called generators of G, if every element of G 
can be expressed as a finite product of their 
powers. We also say that G is generated by S. 
The Cayley digraph of the group G and the 
subset S, denoted by Cay(G, S), has vertices that 
are elements of G and arcs that are ordered pairs 
(g, gs) for g ∈  G, s ∈  S. If S is a generating set 
of G then we say that Cay(G, S) is the Cayley 
digraph of G generated by S. If 1 ∉  S (where 1 
is the identity element of G) and S = S 

–1, then 
Cay(G, S) is a simple graph. 

Assume that Γ and Σ are two digraphs. The 
mapping φ of V(Γ) to V(Σ) is a homomorphism 
from Γ to Σ if for any (u, v) ∈  E(Γ) we have 
(φ(u), φ(v)) ∈  E(Σ). In particular, if φ is a 
bijection such that both φ and the inverse of φ 
are homomorphisms then φ is called an 
isomorphism of Γ to Σ. Let G be a (possibly 
infinite) group and S a subset of G. Assume that 
K is a subgroup of G (denoted as K ≤ G). Let G/K 
denote the set of the right cosets of K in G. The 
(right) coset graph of G with respect to 
subgroup K and subset S, denoted by Cos(G, K, 
S), is the digraph with vertex set G/K such that 
there exists an arc (Kg, Kg ′) if and only if there 
exists s ∈  S and Kgs = Kg ′.  

The following basic theorem, which can be 
easily proven, is helpful in establishing some of 
our subsequent results [12]. 

Theorem 1. For g ∈  G, S ⊆  G, and K ≤ G, the 
mapping φ: g → Kg is a homomorphism from 
Cay(G, S) to Cos(G, K, S). ! 

2. An Inequality for Diameter 

For a digraph Ω, D(Ω) denotes the diameter of Ω, 
that is, it is the longest distance between vertices 
of Ω. Now let G be a finite group and K ≤ G. 
Assume that Γ = Cay(G, S) and ∆ = Cos(G, K, S) 
for some generating set S of G. Let D(ΓK) denote 
the longest distance between vertices of K in Γ. 
Similar to Theorem 2 in [11] we have the 
following result. 

Theorem 2. D(Γ) ≤ D(∆) + D(ΓK). ! 

We can apply Theorem 2 to some well-known 
interconnection networks. Although many results 
on these interconnection networks are known, the 
unified treatment is still beneficial.  

Example1. Diameter of hypercube network. We 
know that the hypercube Qq = Cay(Z q

2 , S), where 
S = {0

(i–1)
10

(q–i)
| i = 1, . . . , q}. Let K = Z2. Then 

we have ∆ = Cos(Z q
2 , Z2, S), leading to D(Qq) ≤ 

D(∆) + 1 by Theorem 2. But ∆ ≅  Qq–1 and thus 
D(∆) ≤ q – 1 by induction. Therefore, D(Qq) ≤ q. 
Since dis(0(q), 1(q)) = q, we have D(Qq) = q. ! 

Example 2. Relating the butterfly network BFq 

to de Bruijn network DB q
2 . Let N = Z q

2  and K = 
Zq. Then, G = Z2 wr Zq is a semidirect product of 
N by K. Assuming S = {0

(q)
1, 0

(q–1)
11}, from [11] 

we have Γ = Cay(G, S) = BFq and ∆ = Cos(G, K, S) 
= DB q

2 . Since D(DB q
2 ) = q, we obtain D(BFq) ≤ q 

+ q/2 by Theorem 2. In fact it is verified easily 
that D(BFq) = q + q/2. ! 

3. Hexagonal Torus Networks 

Let G = Z × Z, with Z the infinite cyclic group of 
integers, and consider Γ = Cay(G, S) with S = 
{(±1, 0), (0, ±1), (1, 1), (−1, −1)}. It is evident 
that Г is isomorphic to the hexagonal mesh 
network [7], [10]. Figure 1 depicts a small part of 
an infinite hexagonal mesh network in which the 
six neighbors of the center node (0, 0) are shown. 
A finite hexagonal mesh is obtained by simply 
using the same connectivity rules for a finite 
subset of the nodes located within a regular 
boundary (often a rectangle or hexagon). In the 



 

latter case, wraparound links are sometimes 
provided to keep the node degree uniformly 
equal to 6. Here, we do not concern ourselves 
with these variations and deal mainly with the 
hexagonal torus networks. 

 

Fig. 1. Connectivity pattern for hexagonal 
mesh network, where node (i, j) is 
connected to the six neighboring 
nodes (i ± 1, j), (i, j ± 1), (i + 1, j + 1), 
and (i − 1, j − 1). 

Let H = Zl × Zk, where Zl and Zk are cyclic 
groups of orders l and k respectively(l and k are 
both positive integers). Assume that S is defined 
as above. Then ∆ = Cay(H, S) is the hexagonal 
torus of order lk. Let K = 〈l〉 × 〈k〉. Then ∆ ≅  
Cos(Z × Z, K, S) and so the hexagonal torus is a 
homomorphic image of the infinite hexagonal 
mesh according to Theorem 1. 

Using the results obtained for infinite hexagonal 
meshes, we may deal with problems on 
hexagonal tori which are, in general, more 
difficult. Let ∆ be defined as above. Then we 
have the following result.  

Proposition 1. For the hexagonal torus ∆ of 
order lk and integers a and b, 0 ≤ a < l, 0 ≤ b < k, 
we have dis((0, 0), (a, b)) = min(max(a, b), 
max(l – a, k – b), l – a + b, k + a – b). ! 

4. Honeycomb and Other Tori 

Let G be a (possibly infinite) group and S a subset 
of G. Consider the problem of constructing a 
group G ″ and its generating set S ″ such that G ″ = 

G as sets and S ″ ⊆  S, and a homomorphism φ: Γ ″ 
→ Γ, where Γ = Cay(G, S) and Γ ″ = Cay(G ″, S ″). 
It is shown in [12] that a number of pruning 
schemes, including the one studied in [9], are 
equivalent to the construction above. Pruning of 
interconnection networks constitutes a way of 
deriving variants with lower cost and greater 
scalability [5]. If pruning is done with care, and in 
a systematic fashion, many of the desirable 
properties of the original (unpruned) network, 
including symmetry and regularity, can be 
maintained while reducing both the node degree 
and wiring density. We give new proofs of the 
construction above in the following example. 

Example 3. Pruned three-dimensional toroidal 
network T1 of [5]. Let G = (〈a〉 〈b〉) 〈c〉 be the 
group generated by the elements a, b, c, satisfying 
the relations ak = bk = ck = 1, ab = ba, c–1ac = b–1, 
c–1bc = a–1. Here, k is even. Thus the group 〈a〉 〈b〉 
= 〈a, b〉 is a direct product of 〈a〉 and 〈b〉, and G is 
a semidirect product of 〈a, b〉 by 〈c〉. Let S = {a, 
a–1, c, 1−c } and ∆1 = Cay(G, S). We now prove that 
∆1 is isomorphic to the pruned 3D toroidal 
network T1 in [5], as shown in Fig. 2. In fact, let 
a1 = (1, 0, 0)T, b1 = (0, 1, 0)T, c1 = (0, 0, 1)T. It is 
easily shown that a1, b1, and c1 satisfy the same 
relations as those of ∆1; namely, a k

1 = b k
1 = c k

1 = 1, 
a1b1 = b1a1, c

1
1
− a1c1 = b 1

1
− , c 1

1
− b1c1 = a 1

1
− . Thus, 

the mapping a → a1, b → b1, c → c1 is an 
isomorphism of ∆1 to T1. ! 

Example 4. Pruned three-dimensional toroidal 
network T2 of [5], depicted in Fig. 3. We obtain 
the results for the network T2 in a manner similar 
to those for T1 of Example 3. Let G = 〈a, b〉 〈c〉 be 
the group generated by the elements a, b, c, 
satisfying the relations a2k = b2k = ck = 1, a2 = b2, 
(ab)k/2 = (ba)k/2 = 1, c–1ac = b, c–1bc = a. Here k is 
even and 〈a, b〉  =  〈ab〉 〈a〉 is a complex group. 
Let S = {a, a–1, c, c–1} and ∆2 = Cay(G, S). Then, 
the mapping a → (1, 0, 0)T, b → (0, −1, 0)T, c → 
(0, 0, 1)T is an isomorphism of ∆2 to T2. ! 
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Fig. 2. Pruned 3D torus network (T1 of [5]). 

 
Fig. 3. Pruned 3D torus network (T2 of [5]). 

To avoid clutter, the wraparound 
connections are not drawn fully. 

The authors of [9] studied the honeycomb torus 
network as a pruned 2D torus. They also proved 
that the honeycomb torus network is a Cayley 
graph, without explicating its associated group. 
We filled this gap in [12], while also showing 
why the parameter k in [9] must be even. Let G 
= (〈c〉 〈b〉) 〈a〉 be the group generated by the 
elements a, b, c, satisfying the relations ak = b2 
= cl/2 = 1, bcb = c–1, aba–1 = c–1b, aca–1 = c–1. 

Here, k and l are even integers. Thus, the group 
〈c〉 〈b〉 = 〈c, b〉 is a semidirect product of 〈c〉 by 〈b〉, 
and G is a semidirect product of 〈c, b〉 by 〈a〉. Let 
S = {a, a–1, b} and ∆ = Cay(G, S). We have shown 
in [12] that ∆ is isomorphic to the honeycomb 
torus network in [9].  

Proposition 2. In [12], we introduce the infinite 
honeycomb network as a Cayley graph of a 
different infinite group. Let G = (〈c〉 〈b〉) 〈a〉, 
where 〈c〉 and 〈a〉 are infinite cyclic groups, and c, 
b, a satisfy the relationships b2 = 1, bcb = c–1, 
aba–1 = c–1b, aca–1 = c–1. Let S = {a, a–1, b} and 
∆∞ = Cay(G, S). Then ∆∞ is isomorphic to the 
infinite honeycomb network (see Fig. 4). !   

 

Fig. 4. Connectivity pattern for honeycomb 
mesh network. Each node is labeled in 
two ways corresponding to its 
coordinates on the grid (upper label) 
and the notation in Proposition 2 (lower 
label), with the associations being      
(0, 1) = a, (1, 0) = b, (2, 0) = c. 

Now let N = 〈ak〉 〈cl/2〉, where k and l are even 
integers. We can easily verify that N < G (N is a 
normal subgroup of G). Construct the quotient 
group G ′ = G/N and let S ′ = {Na, Na–1, Nb}; the 
graph Cay(G ′, S ′) is isomorphic to honeycomb 
torus network. Thus the honeycomb torus is a 
homomorphic image of the infinite honeycomb 
network by Theorem 1. 
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For the infinite honeycomb network ∆∞ any 
element of G can be expressed as the product 
cjblai, where l is 0 or 1 and j and i are integers. 
We obtained in [12] the distance formula 
between vertices 1 (the identity of G) and cjblai, 
as stated in the following theorem.  

Theorem 3. For | i | ≤ | 2j + l |, we have           
dis(1, cjblai) = | 4j + l + ½ [(–1)i+l – (–1)l] |; 
otherwise, dis(1, cjblai) = | i | + | 2j + l |. ! 

In [12] we proved that Theorem 3 has the 
following corollary. 

Corollary 1. In the infinite honeycomb 
network, distance between nodes (x, y) and (u, v) 
is obtained as follows. If | v – y | ≤ | u – x |, then 
dis((x, y), (u, v)) is given by | 2(u – x) + 
½[(–1)u+v – 1] |, when x + y ≡ 0 mod 2, and by           
| 2(x – u) + ½ [(–1)u+v+1 – 1] |, otherwise. In the 
remaining case of | v – y | ≥ | u – x |, we have 
dis((x, y), (u, v)) = | u – x | + | v – y |. ! 

Using Theorem 3 and Corollary 1, we obtain a 
result on the diameter of honeycomb torus 
network ∆, generalizing theorem 3 in [9] which 
states that D(∆) = l when l = k. 

Theorem 4. For the honeycomb torus network 
∆, we have D(∆) = max(l, (l + k)/2). ! 

As an application of our construction, we 
consider the pruned three-dimensional toroidal 
networks T1 of Example 3 further. We shall 
derive a formula for the distance between the 
identity element 1 and the vertex aibjcl, where 0 
≤ i, j, l < k. Theorem 3 of [5], characterizing the 
network T1, is a direct corollary of this formula. 

Theorem 5. For T1 we have dis(1, aibjcl) = 
min(i, k – i) + min(j, k – j) + min(l, k – l) if l > 0. 
When l = 0, we have dis(1, aibj) = min(i, k – i) + 
min(j, k – j) + 2 if j > 0 and min(i, k – i) 
otherwise. ! 

Corollary 2. For the network T1 with k ≥ 4, we 
have D(T1) = 3k/2. ! 

Finally we shall show that Theorem 2 in [5] 
does not hold in general. The following example 
shows that the pruned three-dimensional 

toroidal network T1 of Example 3 may not be 
edge-symmetric.  

Example 5. Consider the case of k = 4. Let A = 
Aut(T1) be the automorphism group of T1. We 
shall show that there is no σ ∈  A such that σ(1) = 
1 and σ(c) = a. Similarly, we show that there is no 
τ ∈  A such that τ(1) = a and τ(c) = 1. Hence T1 is 
not edge-symmetric for k = 4. In fact, we show 
that the assumption σ ∈  A, such that σ(1) = 1 and 
σ(c) = a, leads to a contradiction. Since the edge 
(1, c) is in the cycle C = {1, c, c2, c3} and the edge 
(1, a) is only in the cycle A′ = {1, a, a2, a3}, C is 
mapped to A′ by σ. Hence, σ(c2) = a2 and σ(c3) = 
a3. Now consider the cycle B = {a, ac, ac2, ac3}. 
Since σ(1) = 1 and (1, a) is an edge, (1, σ(a)) is 
also an edge. This implies that σ(a) equals c or c–1. 
Let σ(a) = c (the case of σ(a) = c–1 is similar). 
Since (a, ac) is an edge, (c, σ(ac)) is also an edge. 
Because the cycle B cannot be mapped to the 
cycle C by σ, we have σ(ac) = ca or ca–1. Given 
that (c2, c2a) is an edge and σ(c2) = a2, (a2, σ(c2a)) 
is also and edge. Therefore, σ(c2a) equals a2c or 
a2c–1. Since c2a = ac2, {a, ac, c2a} is in the cycle 
B. But {σ(a), σ(ac), σ(c2a)} is not in any cycle of 
order four. This is a contradiction. !  

5. Conclusion 

In this paper, we have provided a number of 
general results on homomorphism and diameter 
between Cayley (di)graphs and their subgraphs 
and coset graphs. We have also demonstrated the 
applications of these results to some well-known 
interconnection networks, including hexagonal 
and honeycomb tori and related networks. 

We are currently investigating the applications of 
our method to the problems related to routing and 
average internode distance in certain subgraphs of 
honeycomb networks. We also aim to extend our 
results to other classes of networks as well as to 
other topological properties of networks. 
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