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Abstract 

Interconnection architectures range from complete 
networks, that have a diameter of D = 1 but are 
impractical except when the number n of nodes is 
small, to low-cost, minimally connected ring or loop 
networks whose diameter D = n/2 is unacceptable 
for large n. In this paper, our focus is on swapped 
interconnection networks that allow systematic 
construction of large, scalable, and highly modular 
parallel architectures, while maintaining desirable 
properties of underlying basis networks. We show 
how key parameters of a swapped interconnection 
network are related to the corresponding attributes 
of its basis network and demonstrate applications of 
these results to synthesizing large networks with 
desirable modularity, packageability, performance, 
and fault tolerance attributes. 

Keywords – Average distance, Bisection width, 
Complete graph, Fault diameter, Fault tolerance, 
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Packageability, Routing, Survivability. 

1. Introduction 

Low latency, high bandwidth, modularity, 
energy efficiency, and robustness are some of 
the properties that are sought in networks for 
parallel and distributed computing. Given that 
network performance parameters depend not 
only on the network architecture but also on a 
number of factors relating to applications and 
data exchange characteristics, the challenge in 

interconnection network design is finding the 
right match between communication needs on one 
side and capabilities and limitations inherent in 
each architecture on the other. This, in turn, 
explains the proliferation of implemented and 
proposed connectivity schemes among multiple 
processors, sometimes characterized as the sea of 
interconnection networks [Parh99], [Parh05]. 

Ideally, each network node is directly connected 
to every other node, thus allowing one-hop 
communication between any pair of nodes. This is 
modeled by the n-node complete graph Kn. 
Physically, however, complete-graph connectivity 
is difficult to provide for large systems that are of 
practical interest. At the other extreme from Kn, 
the simplest possible physical connectivity pattern 
is that of n-node ring Rn. Here, each node has only 
two communication channels. Data exchange is 
direct only between each node and one or two 
neighbor(s) and indirect in all other cases. 
Intermediate architectures between Kn and Rn can 
be obtained in a variety of ways, providing 
tradeoffs in cost and performance. Network cost is 
affected, among other factors, by the (maximum) 
node degree d, while indicators of network 
performance include diameter D and bisection 
width B. The degree-diameter product dD is 
sometimes used as a composite measure of 
cost-effectiveness in network comparisons. 

Many of these intermediate architectures can be 
viewed as chordal rings [Arde81], rings to which 
bypass links or chords have been added to reduce 
the network diameter, or richly connected graphs 



 

from which certain links are systematically 
removed via pruning [Kwai98], [Parh01], 
[Parh04] so as to reduce the node degree, wiring 
density, and network cost. Other mechanisms 
for deriving new interconnection networks from 
other (basis) networks include cross-product 
composition, recursive substitution, and 
hierarchical composition. These combining 
strategies lead to families of networks that are 
all based on the same component networks and 
thus share a number of common topological, 
performance, and robustness attributes. 

Our focus of discussion in this paper is swapped 
interconnection networks that allow systematic 
construction of large, scalable, and modular 
parallel architectures, while maintaining 
desirable properties of an underlying nucleus or 
basis network. We show how key parameters of 
a swapped network are related to the 
corresponding attributes of its basis network and 
demonstrate applications of these results to 
synthesizing large interconnection networks 
with desirable packageability, performance, and 
fault tolerance attributes. 

2. Swapped Networks 

Symmetric interconnection networks, in which 
node degree is uniformly equal to d and the 
network “looks the same from every node,” are 
of particular interest due to their algorithmic 
simplicity and greater resilience resulting from 
the absence of weak spots. A symmetric network 
is characterized by its number n of nodes, along 
with one or more other parameters or rules that 
define its connectivity pattern. Focusing on the 
number n of nodes for the moment (e.g., by 
fixing other independent variables at default 
values), topological parameters can be 
expressed as conventional or asymptotic 
functions of n. This is shown in the case of 
network diameter in Fig. 1. 

Practical interconnection networks used in 
parallel computers fall on the right side of Fig. 1, 
where networks tend to be scalable, readily 
packageable, and low-cost. Interconnection 

network research over the past two decades, on 
the other hand, has focused on lower-diameter 
networks constituting the left half of Fig. 1. 
Swapped networks offer some of the advantages 
of each group in that they can have 
sublogarithmic diameters while remaining both 
packageable and relatively scalable. 

Definition 1: The swapped network Sw(G), 
derived from the n-node nucleus or basis graph G, 
is a graph with n copies of G numbered 0 to n – 1, 
so that vij, node j in copy i, is connected to vji, 
node i of copy j, for all i ≠ j and 0 ≤ i, j ≤ n – 1. 
For the sake of uniformity, we can assume that 
node vii possesses an external I/O link. ! 

Algorithm Rsw: Routing in a swapped network 
with basis network G from vij to vkl using at most 
one intercluster hop – If i = k, then use the routing 
algorithm for G to route in δG(j, l) hops. 
Otherwise, route from vij to vik within the source 
cluster i in δG(j, k) hops, then from vik to vki in a 
single intercluster hop, and finally from vki to vkl 
within the destination cluster k in δG(i, l) hops. ! 

Note that Rsw is not a shortest-path routing 
algorithm. The path vij → vik →sw vki → vkl, which 
is of length δG(j, k) + δG(i, l) + 1, may be longer 
than vij → vim →sw vmi → vmk →sw vkm → vkl, via 
intermediate cluster m, which is of length δG(j, m) 
+ δG(i, k) + δG(m, l) + 2 (see Fig. 3). The alternate 
path may be shorter, for example, if the pairs of 
nodes j and m, i and k, and m and l are neighbors 
in G whereas δG(j, k) + δG(i, l) > 4. Consider, for 
instance, a 4 × 4 torus as G, with i, j, k, l, and m 
located at (2, 1), (0, 0), (2, 2), (0, 2), and (0, 1). 
Despite the observation above, the fact that Rsw 
uses at most one intercluster link makes it 
preferable in a modular system with hierarchical 
packaging where intracluster communication is 
much faster than intercluster data exchange. 

3. Historical Perspective 

One of the referees of this paper pointed out that 
swapped networks are the same as OTIS (optical 
transpose interconnection system) architectures 
which have been extensively studied by other 
researchers. Tracing the history of OTIS, the 



 

author discovered that its roots go back to 1993, 
when Marsden et al published a 3-page note in 
Optics Letters [Mars93] suggesting a topology 
in which nodes (i, j) and (j, i) are linked via an 
optical channel. It appears that transfer of the 
OTIS idea to the computer architecture and 
parallel processing community occurred, in part, 
due the 1998 PhD dissertation of C.-F. Wang at 
University of Florida, under Sartaj Sahni, and 
publication of its results beginning in 1997 (see, 
for example, [Raja98], [Wang98], [Oste00], 
[Wang00], [Wang01]). Architectural and some 
topological considerations for OTIS networks 
have been studied by Zane et al [Zane00] and 
Day and Al-Ayyoub [Day02], among others. 

Concurrent with the developments cited above, 
and before any reference to OTIS appeared in 
the computer architecture or parallel processing 
literature, Chi-Hsiang Yeh (a former doctoral 
student of the author) proposed swapped 
networks [Yeh96a], [Yeh96b], [Yeh96c] as tools 
for unifying and extending a number of known 
hierarchical networks. Prominent among these 
prior architectures were the two-level special 
case of WK-recursive networks [Dell87], 
[Dell88] (beyond two levels, WK-recursive and 
swapped networks diverge in structure and do 
not have much in common), hierarchical cubic 
networks [Ghos95], and recursively fully 
connected networks [Yeh96]. The unification 
was due to the replacement of complete-graph 
or hypercube component networks of the prior 
architectures with an arbitrary graph. 

It thus seems that it is the OTIS community that 
has failed to take note of our prior work on 
swapped networks, and not the other way 
around. Incidentally, “swapped network” is a 
much more descriptive, as well as more 
appropriate, name than OTIS because many of 
the algorithms and topological properties 
discussed in the literature are independent of the 
implementation technology. Reference to optical 
implementation may in fact serve to discourage 
researchers not involved in optical computing or 
communications to overlook the results which 
may be useful in other contexts. 

4. Topological Parameters 

In this section, we relate some of the topological 
parameters of a swapped network to the respective 
parameters of the basis network G. 

Theorem 1: Degree and diameter of swapped 
networks – If G has node degree d and diameter D, 
the degree and diameter of Sw(G) are dsw = d + 1 
and Dsw = 2D + 1, respectively [Yeh96a]. ! 

An implication of Theorem 1 is that if the basis 
network has logarithmic/sublogarithmic diameter, 
then so does the resulting swapped network. 

Theorem 2: If the n-node graph G is 
node-symmetric and has an average internode 
distance ∆, then Sw(G) has an average internode 
distance ∆sw satisfying ∆sw < 2∆ + 1 – (∆ + 1)/n, 
where the right-hand-side expression is the 
average internode distance with respect to the 
routing algorithm Rsw. 

Proof: Let vij denote node j in the ith component 
graph G and δ(v, v′) denote the distance between 
nodes v and v′ when the routing algorithm Rsw is 
used. Then, the average internode distance ∆Rsw of 
Sw(G) with respect to Rsw is derived as follows: 

n4∆Rsw = 1 1 1 1
0 0 0 0δ( , )n n n n

i j k l ij klv v− − − −
= = = =∑ ∑ ∑ ∑  

  = 1 1 1
0 0 0 δ( , )n n n

i j l ij ilv v− − −
= = =∑ ∑ ∑  +  

   1 1 1 1
0 0 0( ) 0 [δ( , ) 1 δ( , )]n n n n

i j k k i l ij ik ki klv v v v− − − −
= = = ≠ = + +∑ ∑ ∑ ∑   

  = n3∆ + n 1 1 1
0 0 0( )δ( , )n n n

i j k k i ij ikv v− − −
= = = ≠∑ ∑ ∑   

   + n3(n – 1) + n 1 1 1
0 0( ) 0 δ( , )n n n

i k k i l ki klv v− − −
= = ≠ =∑ ∑ ∑  

  = n4 + n3(∆ – 1) + n2 1 1
0 1 0 0δ( , )n n

j k j kv v− −
= =∑ ∑   

   + n(n – 1) 1 1
0 1 0 0δ( , )n n

i l i lv v− −
= =∑ ∑  

  = n4 + n3(∆ – 1) + n2 1 1
0 1 0 0δ( , )n n

j k j kv v− −
= =∑ ∑   

   + n3(n – 1)∆ 

  = n4(∆ + 1) – n3  

   + n2 [ 1 1 1
0 0 00 0 0 00δ( , ) δ( , )n n n

j k jj k jv v v v− − −
= = =−∑ ∑ ∑ ] 

  = n4(∆ + 1) – n3 + n2[n2∆ – n∆]   

  = n4(2∆ + 1) – n3(∆ + 1)  ! 



 

Theorem 3: Bisection width Bsw of the swapped 
network whose basis network G has bisection 
width B is upper bounded by n × min(n/4, B). 

Proof: An upper bound u for the bisection width 
of a network can be established by showing a 
particular bisection cut of size u. Let n be even 
(the case of odd n is more involved, but similar). 
A bisection cut placing basis networks 0 through 
n/2 – 1 on one side and n/2 through n – 1 on the 
other is of size n2/4. Bisecting each basis 
network, so that nodes 0 through n/2 – 1 are on 
one side and nodes n/2 through n – 1 on the 
other, leads to the second bound nB. Note that in 
the latter case, all swap links are confined to the 
same side of the bisected network. ! 

We conjecture that the bound in Theorem 3 is 
tight for a wide class of symmetric basis 
networks, but have been unable to derive a 
formula for the exact bisection width. 

Swapped networks can be built up recursively 
beginning with a fairly small basis network. The 
number of nodes increase from n to n2 to n4 and 
so on. It is fairly easy to prove that when so 
constructed, the node degree of a recursive 
swapped network is a double-logarithmic 
function of its size. In this paper, we continue to 
focus on two-level swapped networks. 

5. Structural Properties 

In this section, we cover some structural 
properties of swapped networks. These shed 
light on the relationships between classes of 
swapped networks and facilitate not only 
systematic studies of such networks, but also 
comparison with competing networks. 

Theorem 4: If H is a subgraph of G, then Sw(H) 
is a subgraph of Sw(G). 

Proof: Number nodes of G from 0 through n – 1. 
Let the nodes of H be i1, i2, . . . , ik. Then, the 
subgraphs H in clusters i1, i2, . . . , ik of Sw(G), 
along with their swap links, form Sw(H). ! 

Theorem 4 can be easily extended to the case of r 
disjoint subgraphs H1, H2, . . . , Hr, leading to the 
associated r swapped networks Sw(Hi) forming 
disjoint subgraphs of Sw(G). This is a generalized 
version of Theorem 1 in [Day02] which pertains 
to the case of all the Hi being identical.  

Hamiltonicity and Hamiltonian connectivity are 
useful properties of interconnection networks. 

Theorem 5: If G is Hamiltonian-connected, then 
so is Sw(G). Also, Hamiltonian connectivity of G 
ensures the Hamiltonicity of Sw(G).  

Proof outline: Consider nodes vij and vkl in 
clusters i and k of Sw(G) and a Hamiltonian path 
between them in the n-node complete graph 
formed by the clusters (supernodes). This path can 
be converted to a Hamiltonian path between vij 
and vkl by simply replacing the x → y → z 
segment of the Hamiltonian path through the 
clusters by vxy → vyx ~ 

H vyz → vzy, where vyx ~ 
H vyz 

represents a Hamiltonian path between nodes x 
and z within cluster y. ! 

Modular construction of networks is of great 
significance. Given limitations of the currently 
available and forthcoming packaging technologies 
for digital systems, a hierarchy of packaging 
levels is imposed so that crossing the packaging 
boundaries is undesirable, not only in terms of 
implementation cost, but also with regard to 
communication performance [Parh00]. Swapped 
networks are naturally modular. 

Theorem 6: For an integer m that divides n, an 
n2-node swapped network can be partitioned into 
m modules having (n2/m)(1 – 1/m) external links. 

Proof: Each of the m modules holds n/m clusters, 
or n2/m nodes. Within a cluster, n/m of the nodes 
do not have links to outside the module. So, the 
number of intermodule links is (n/m)(n – n/m). ! 

The modularity suggested by Theorem 6, 
requiring roughly 1 external link per node in a 
module of  n2/m nodes, is better than those of the 
hypercube that requires (n2/m)log2m links per 
module. It also compares favorably with other 
networks of similar performance.  



 

6. Fault Tolerance 

Swapped networks are quite robust. This is 
intuitively justified by noting that the complete 
connectivity among clusters is not much 
affected even if all nodes in a cluster, or parts of 
several clusters, fail. As exemplified by the pair 
of paths depicted in Fig. 3, there are typically 
many node- and edge-disjoint paths between 
pairs of nodes in various clusters. The existence 
of intercluster links also has a positive effect on 
fault tolerance within the same cluster in the 
sense that nodes becoming inaccessible in the 
cluster due to faults may be reachable through 
intermediaries in other clusters. The following 
three theorems collectively establish the strong 
fault tolerance features of swapped networks. 

Theorem 7: If G is h-connected, then Sw(G) is 
also h-connected (Theorem 6 of [Day02]). ! 

Theorem 8: If the fault diameter of the basis 
network G is D + ε, the fault diameter of Sw(G) 
is no greater than 2D + 3 + ε. 

Proof outline: Let d be the minimum node 
degree of G. Then, the fault diameter of G being 
D + ε means that for d – 1 or fewer faults in G, 
the diameter of the remaining (connected) 
network is D + ε or less. Because the 
connectivity of Sw(G) is also d, we need to 
consider the distance from a source node vij to a 
destination node vkl in the surviving network 
when Sw(G) has d – 1 or fewer faults. Consider 
the source node j along with d of its neighbors 
in the source cluster i. Let these neighbors be m1, 
m2, . . . , md. These d + 1 nodes have at least d 
swap links to different clusters. Consider also 
nodes m1, m2, . . . , md in the destination cluster k. 
There should be some mg for which both the 
cluster mg and node mg in cluster k are fault-free. 
This is because at least d faults are needed to 
have a fault in cluster mr or node mr in cluster k 
for every r. Then, it is easy to see that the path 
from vij, perhaps via one of its neighbors in 
cluster i, to some node x in cluster mg, then to 
node k of cluster mg (≤ D hops), to node mg of 
cluster k, and finally to node vkl (≤ D + ε hops) 
is of length no greater than 2D + 3 + ε. !    

We conjecture that the tighter bound of 2D + 2 + ε 
may be provable for the fault diameter of a 
swapped network. Also, placing mild restrictions 
on the structure of G may allow the establishment 
of the optimal 2D + 1 + ε as the fault diameter. 
These improvements are being investigated.  

Swapped networks are also provably survivable in 
the sense that they do not contain any obvious 
vulnerability points [Hobb91]. Consider, for 
example, the behavior of swapped networks under 
complete cluster failures, as opposed to a small 
number of node failures. The following result is 
established in a manner similar to Theorem 8.     

Theorem 9: The diameter of an incomplete 
swapped network, with d – 1 or fewer clusters 
completely removed, where d is the minimum 
node degree of G, is no more than 2D + 2. ! 

7. Conclusion 

We derived some general properties of a swapped 
network Sw(G) based on parameters and structure 
of the basis network G. In particular, we showed 
that swapped networks are cost-effective, modular, 
packageable, and quite robust. Table 1 indicates 
how the main topological parameters of certain 
classes of interconnection networks change as the 
network size is scaled from n to n2. The various 
parameters are formulated in terms of the 
respective parameters for the network of size n. 
As evident from Table 1, swapped networks offer 
a mechanism for increasing the size of a network 
with relatively small cost increase, while limiting 
the deterioration of topological parameters and 
ensuring strong fault tolerance. 

Work in progress includes expanding our results 
on the properties of swapped network to include 
other topological attributes as well as a deeper 
analysis of their performance parameters and 
robustness attributes. In particular, a fault-tolerant 
routing algorithm is required if the existence of 
multiple node- or edge-disjoint paths is to be 
practically exploited. Other fault tolerance notions, 
such as fault-survivability and fault-Hamiltonicity, 
are also under investigation. 
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Fig. 1. The spectrum of interconnection networks in terms of diameter for size n. 
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Fig. 2. The general structure of a swapped network and an example network with 

the 4-node complete graph as its basis. 
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Fig. 3. The path prescribed by Rsw and an alternate path from vij to vkl. 

 
 

Table 1. Change in topological parameters for various ways of increasing network 
size from n to n2. For example, an entry of D for diameter means that there is no 

change when the network size is squared and 2D means that the diameter is doubled. 
Squared network refers to the cross product of a network with itself. 

 
Network Degree Diameter Avg. dist. Bisection 

Complete d2 + 2d D ∆ 4B2 

Squared network 2d 2D 2∆ nB 

Hypercube 2d 2D 2∆ 2B2 

2D square torus d D2 4∆2/3 B2 

Swapped network d + 1 2D + 1 2∆ + 1 ?  


