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Abstract

Incomplete or pruned k-ary n-cube, nX3; is derived as follows. All links of dimension n � 1 are left in place and links of the

remaining n � 1 dimensions are removed, except for one, which is chosen periodically from the remaining dimensions along the

intact dimension n � 1: This leads to a node degree of 4 instead of the original 2n and results in regular networks that are Cayley

graphs, provided that n � 1 divides k: For n ¼ 3 ðn ¼ 5Þ; the preceding restriction is not problematic, as it only requires that k be

even (a multiple of 4). In other cases, changes to the basis network to be pruned, or to the pruning algorithm, can mitigate the

problem. Incomplete k-ary n-cube maintains a number of desirable topological properties of its unpruned counterpart despite

having fewer links. It is maximally connected, has diameter and fault diameter very close to those of k-ary n-cube, and an average

internode distance that is only slightly greater. Hence, the cost/performance tradeoffs offered by our pruning scheme can in fact lead

to useful, and practically realizable, parallel architectures. We study pruned k-ary n-cubes in general and offer some additional

results for the special case n ¼ 3:
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Keywords: Cayley graph; Fault diameter; Fault tolerance; Fixed-degree network; Interconnection network; k-Ary n-cube; Pruning; Routing

algorithm, VLSI layout
1. Introduction

Pruning is the process of removing links from a basis
network with the goal of simplifying its implementation
(scalability, modularity, VLSI layout, etc.) and over-
coming the bandwidth limitations at various levels of
the packaging hierarchy, while maintaining the smaller
diameter and average internode distance associated with
higher degrees of connectivity. A number of useful
interconnection networks were derived by pruning
suitably chosen networks or were subsequently shown
to be pruned versions of other networks. Examples
include the cube-connected cycles with power-of-2 size
[16], packed exponential connections [9], periodically
regular chordal rings [15], and binary Gaussian cubes
[8]. In the preceding networks, each node is provided
with a subset of its original connections and a group of
nodes collectively provide the same communication
capabilities as one node of the original network.

One advantage of a pruned network is that it may be
capable of emulating the original basis network effi-
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ciently, given their structural similarities. However, if
pruning is not done carefully, the routing algorithm may
become so complicated and/or message traffic so
unbalanced as to hurt performance. We are thus
motivated to focus on pruning schemes that produce
symmetric networks. Our pruned k-ary n-cubes ðnX3Þ
are derived as follows. All links of dimension n � 1 are
left in place and all but one of the links for the remaining
n � 1 dimensions are removed in a periodic fashion
along the intact dimension n � 1: This leads to a node
degree of 4 instead of the original 2n and results in
regular networks that are Cayley graphs, provided that
n � 1 divides k: For n ¼ 3 ðn ¼ 5Þ; the preceding
restriction is not problematic, as it only requires that k

be even (a multiple of 4). In other cases, changes to the
basis network to be pruned, or to the pruning scheme,
can mitigate the problem.

Whereas pruning leads to reduced node degree,
Cartesian or cross-product networks work in the
opposite direction [17]. The k-ary n-cube [6] is simply
the cross-product of n rings of size k: Pruning a cross-
product network may be viewed as an attempt to offset
the complexity introduced by using Cartesian products,
while maintaining some of the benefits gained. Pruned
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versions of k-ary n-cubes have been shown to be quite
effective [2,13], but the studies thus far have been
restricted to 3D torus as the basis network. Advantages
of more general incomplete k-ary n-cubes over their
unpruned counterparts may be viewed in two comple-
mentary ways:

* Simplified packaging due to an effective reduction in
dimensionality.

* Accommodation of wider communication channels
with a fixed pin limit.

Together, these advantages more than offset the
negative effects of less favorable topological parameters
such as slightly increased diameter and lower bisection
bandwidth.
2. Network structure and symmetries

Consider a k � k � k torus, where k is even. In the
pruned version of this torus, links of dimensions x and y

are alternately removed [2]. Each node ðx; y; zÞ;
0px; y; zpk � 1; is connected to two neighbors
ðx; y; z71Þ and also has two other neighbors:
ðx71; y; zÞ if z is even, or ðx; y71; zÞ if z is odd.
Throughout the paper, it will be understood that node-
index expressions are evaluated modulo k: Since
dimensions x; y; and z can be permuted without
changing the connectivity, the preceding yields a node-
transitive (symmetric) graph of degree 4. An example,
with k ¼ 4; is depicted in Fig. 1.

An nD k-torus (k-ary n-cube) with kn nodes, nX3;
can be similarly pruned to a constant node degree
z

x

y

Fig. 1. Three-dimensional pruned 4-torus (4-ary 3-cube).
of 4. In the resulting network, node ða0; a1;y; an�1Þ is
connected to two dimension n � 1 neighbors
ða0; a1;y; an�171Þ and also has two other neighbors:
ða0; a1;y; ai71;y; an�1Þ; where an�1 mod ðn � 1Þ ¼ i:
To assure that an equal number of links are provided
along each pruned dimension (a necessary condition for
symmetry), we require that k be a multiple of n � 1:
Then, every group of n � 1 consecutive nodes around
each k-node ring in dimension n � 1 possess a complete
set of dimensional links.

The k-ary n-cube is known to belong to the class of
Cayley graphs and is thus node-transitive. Our proof
that incomplete k-ary n-cube shares the same property is
similar to that for n-CCC [5]. Let � be an associative
binary operator and O be a subset (generator set) from a
finite group G such that ieO (where i is the identity
element) and for each oAO; its inverse o�1 (satisfying
o � o�1 ¼ i) is also in O: A Cayley graph [1] is a graph
whose nodes x and x � o; both in G; are connected iff
oAO: The proof that a network is a Cayley graph is
constructed by specifying the structure of the group (the
node set G and the operator �) and the associated
generator set O: For more details, the reader is referred
to [12].

Theorem 1. Incomplete k-ary n-cube is a Cayley graph.

Proof. The set G consists of node indices
ða0; a1;y; an�1Þ; 0paipk � 1: To simplify our presen-
tation, we write the node index ða0; a1;y; an�1Þ as ða; bÞ;
where a ¼ ½a0; a1;y; an�2�T is an ðn � 1Þ-vector and b ¼
an�1: We next define the group operator � as

ða; bÞ � ða0; b0Þ ¼ ðaþ Fba0; bþ b0Þ;
where Fb is the bth power of the ðn � 1Þ � ðn � 1Þ
matrix:

F ¼

0 0 0 y 0 1

1 0 0 y 0 0

0 1 0 y 0 0

: : : : :

0 0 0 y 1 0

2
6666664

3
7777775
:

The first addition in the expression defining � is
component-wise and both additions are modulo k: The
matrix F has the periodic property Fi ¼ Fiþjðn�1Þ; where
0pipn � 2: The proof is complete upon specifying the
identity element i ¼ ð½0; 0;y; 0�T ; 0Þ and the generator
set O ¼ fð½0; 0;y; 0�T ; 1Þ; ð½0; 0;y; 0�T ; k � 1),
ð½1; 0;y; 0�T ; 0Þ; ð½k � 1; 0;y; 0�T ; 0Þg; whose closure
under inverse makes all links bidirectional. Note
that the operator � corresponds precisely to our
definition of incomplete k-ary n-cube; i.e., it
connects ð½a0;y; an�2�T ; an�1) to ð½a0;y; an�2�T ;
an�171) and ð½a0;y; ai71;y; an�2�T ; an�1) if
an�1 mod ðn � 1Þ ¼ i: &
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Note that because dimension n � 1 is treated differ-
ently from other dimensions in the proof of Theorem 1,
the proof remains valid for a class of networks that are
derived from pruning a k � k �?� k � l torus, where
l4k: This generalization leads, among other things, to
an alternate derivation of the cube-connected cycles
network as a Cayley graph. It also reduces the burden
imposed by the requirement that k be divisible by n � 1;
because only l; and not k; needs this property. Thus, k

can be chosen to be a power of 2, which is often most
convenient in practice.

In addition to node-symmetry, which is a direct
consequence of the Cayley graph result of Theorem 1,
incomplete k-ary n-cubes are also edge-symmetric;
meaning that the network looks exactly the same when
viewed from different edges. Edge-transitivity has
important practical implications for balanced utilization
of network resources and for fault tolerance.

Theorem 2. Incomplete k-ary n-cube is edge-transitive.

Proof. We first note that the kn nodes of the incomplete
k-ary n-cube constitute a set of kn�1 node-disjoint
rings of k nodes, in two different ways; one of the
sets is formed by edges of dimension n � 1 and the
other set by edges of all other dimensions (see Fig. 1).
Consider two edges from different dimensions (the
case of same-dimension edges is trivial). If both
edges are in k-rings of dimensions other than n � 1;
then their roles can be exchanged by simply renumber-
ing the dimensions. If one edge belongs to dimension
d; 0pdpn � 2; and the other is from dimension n � 1;
then relabeling links of dimensions f0; 1;y; n � 2g as
dimension n � 1; and vice versa, will do the trick (again,
refer to Fig. 1). &
3. Diameter and shortest paths

Given two nodes A ¼ ða0; a1;y; an�1Þ and B ¼
ðb0; b1;y; bn�1Þ; the Lee distance [4] between them is
defined as

Pn�1
i¼0 jDdij; where the offset jDdij ¼ minðjbi �

aij; k � jbi � aijÞ is the minimum possible number of
routing steps along dimension i in moving from A to B:
In the complete k-ary n-cube, the Lee distance is also the
length of the shortest path between the nodes. To
incorporate the direction (forward/positive or back-
ward/negative) of the shortest dimensional distance
from A to B; we define:

Ddi ¼ if bi � ai ðmod kÞpai � bi ðmod kÞ
then jDdij else � jDdij:

Theorem 3 shows that the diameter (maximum inter-
node distance) of the incomplete k-ary n-cube is equal to
or only slightly larger than that of its unpruned
counterpart.

Theorem 3. The diameter of the incomplete k-ary n-cube

is

nIk=2mþ maxð2n � 4 � Ik=2m; 0Þ if kX2n � 2;

nIk=2mþ maxðn � 3;Jk=2nÞ if k ¼ n � 1:

Proof. We can establish the network diameter by
constructing a shortest path from source node
ð0; 0;y; 0Þ to destination node ðDd0;Dd1;y;Ddn�1Þ;
where jDdijpk=2; and maximizing its length. Links of
dimension n � 1 are accessible at every node, so their
traversal involves no added overhead. Links of dimen-
sion 0 are directly accessible from the source node and
can be traversed at the outset, if needed. As we take the
required jDdn�1j hops along dimension n � 1; links from
the other n � 2 dimensions become accessible for
traversal. Thus, if jDdn�1jXn � 2; links for every other
dimension become accessible while routing along
dimension n � 1 and there will be no extra hop
compared to routing on a complete k-ary n-cube. We
need not consider this case further. For jDdn�1jon � 2;
we must consider two cases, as routing in the direction
indicated by the sign of Ddn�1 may not be the best choice
when the extra hops needed to accommodate the
unencountered dimensional links are taken into ac-
count.

Case 1 (Route according to the sign of Ddn�1Þ: In this
case, jDdn�1j of the n � 2 dimensions can be traversed
with no added overhead. We may need up to 2ðn � 2 �
jDdn�1jÞ extra hops for the remaining dimensions; going
past the destination along dimension n � 1 and return-
ing to cancel the redundant moves. Thus, the worst-case
routing distance is

Pn�1
i¼0 jDdij þ 2n � 4 � 2jDdn�1j:

Case 2 (Route in the direction opposite to the sign of

Ddn�1): In this case, k � jDdn�1j nodes are visited.
Subcase 2a: If k � jDdn�1jXn � 2; then nothing more

is needed and the total routing distance is
Pn�1

i¼0 jDdij þ
k � 2jDdn�1j:

Subcase 2b: If, however, k � jDdn�1jon � 2; we may
need 2ðn � 2 � k þ jDdn�1jÞ additional hops, making the
worst-case distance

Pn�1
i¼0 jDdij þ 2n � 4 � k:

To proceed with the proof, it is more convenient to
consider the case k ¼ n � 1 separately (recall that n � 1
divides k). For kX2ðn � 1Þ; we have k �
jDdn�1jXk=24n � 2 and k42n � 4: So, case 1, which
always has a smaller distance than the applicable
subcase 2a, leads to the overall worst-case distance ðn �
1ÞIk=2mþ 2n � 4 for jDdn�1j ¼ 0; which, combined
with the fact that the diameter cannot be less than
nIk=2m; proves the first statement of the theorem (for
kX2n � 2).

For k ¼ n � 1; we have k � jDdn�1jXn � 2 if
jDdn�1jp1: So, subcase 2a, which has a smaller distance
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than case 1, leads to a worst-case total distance ðn �
1ÞIk=2mþ k ¼ nIk=2mþ Jk=2n: The remaining case
where jDdn�1jX2 makes the total routing distancePn�1

i¼0 jDdij þ 2n � 4 � 2jDdn�1j for case 1 andPn�1
i¼0 jDdij þ 2n � 4 � k for subcase 2b. Since the latter

two values vary in opposite directions as jDdn�1j
changes, the smaller of the two is maximized if they
are (approximately) equal; this leads to jDdn�1j ¼ Jk=2n
(or Ik=2m) and the worst-case shortest distance
nIk=2mþ n � 3: The latter two cases prove the second
statement of the theorem (for k ¼ n � 1). &

Corollary 1. The diameter of the incomplete k-ary n-cube

is at most k � 2 larger than that of its unpruned

counterpart. This worst case occurs only when k ¼ n � 1
and nX7: For kX4n � 4; which almost always holds in

practice (because usually n is relatively small and k is

rather large), the diameter is equal to that of the unpruned

network.

Proof. In Theorem 2, the additive max terms represent
the increase in diameter due to pruning. In the second
statement of Theorem 2, n � 3 ¼ k � 2 is larger
than Jk=2n if kX6 ðnX7Þ: The additive term in the
first statement never exceeds n � 3; which is in turn less
than k=2: &

Corollary 2. The shortest path between nodes A and B in

the incomplete k-ary n-cube is at most 2n � 4 hops longer

than that of its unpruned counterpart.

Proof. The path lengths derived for cases 1 and 2 in the
proof of Theorem 2 readily lead to this result. For
jDdn�1jpk � n þ 2; subcase 2a applies and the length of
the shortest path is derived, from the smaller of case 1
and subcase 2a, to be

Pn�1
i¼0 jDdij þ minð2n � 4; kÞ �

2jDdn�1j: This path length exceeds
Pn�1

i¼0 jDdij by no
more than 2n � 4: For jDdn�1j4k � n þ 2; subcase 2b
applies and the length of the shortest path is derived,
from the smaller of case 1 and subcase 2b, to bePn�1

i¼0 jDdij þ 2n � 4 � maxðk; 2jDdn�1jÞ ¼
Pn�1

i¼0 jDdij þ
2n � 4 � k; leading to a considerably smaller increase, if
any, over the shortest path in the unpruned torus. As an
example, for n ¼ 3; the shortest path between two nodes
in an incomplete k-ary 3-cube is no more than 2 hops
longer than that in an unpruned 3D k-torus. &

Intuitively, the fact that shortest paths are only
slightly longer in the worst case suggests that the
average internode distance for an incomplete k-ary n-
cube should be very close to that of its unpruned
counterpart. We do not have closed-form results for the
average internode distance, except in the case of n ¼ 3
(see Section 6). However, extensive numerical experi-
mentation has shown that the increase is indeed
negligible in practice [11].
4. Other topological properties

The bisection width of a network is the minimum
number of links that must be removed to divide the
network into two equal parts. Bisection width is an
indicator of communication capacity and also sets a
lower bound on interconnect length for a given diameter
[3]. Theorem 4 shows that the bisection width of the
incomplete k-ary n-cube is smaller than that of its
unpruned counterpart by a factor of n � 1:

Theorem 4. The bisection width of the incomplete k-ary

n-cube is 2kn�1=ðn � 1Þ:

Proof. It is easily seen that the network can be bisected
by removing 2kn�1=ðn � 1Þ links, e.g., by a hyperplane,
near a0 ¼ k=2; that cuts only links of dimension 0. To
complete the proof, we must show that the network
cannot be bisected by removing fewer than 2kn�1=ðn �
1Þ links. Assume the opposite, i.e., the existence of a
bisection cut with 2kn�1=ðn � 1Þ � 1 or fewer links. The
incomplete k-ary n-cube contains at least kn�1=ðn � 1Þ
rings of length k in each dimension. Let us call the nodes
that form any such k-ring a ‘‘string’’. Each node belongs
to two strings. Consider the worst-case number of nodes
that have at least one of their strings disconnected by the
hypothesized bisection. Given that cutting one pair of
links can create no more than k such nodes, their
number is no greater than kn=ðn � 1Þ � k=2: The
remaining nodes, that number at least knðn � 2Þ=ðn �
1Þ þ k=2; remain fully connected, given that there is at
least one connected string along every dimension.
Because ðn � 2Þ=ðn � 1ÞX1=2; the assumed bisection
cut cannot exist. &

Embedding of an unpruned k-ary n-cube into a
pruned network allows us to run algorithms of the k-
ary n-cube on the incomplete network with reasonable
efficiency, provided that the dilation and congestion of
the embedding are not too large. The dilation is defined
as the maximum distance in the host graph between
nodes onto which a pair of neighboring nodes of the
guest graph are mapped. The congestion is defined as
the maximum number of times that a link is used to
route messages between such pairs of nodes. The
aforementioned embedding also has fault tolerance
implications in that it allows us to emulate algorithms
for an intact network on a faulty one that is missing
certain links. In deriving the dilation and congestion of
the embedding in Theorem 5, we assume that each
bidirectional link is composed of two unidirectional
links.

Theorem 5. The incomplete k-ary n-cube can embed its

unpruned counterpart with dilation 2Jn=2n� 1 and

congestion 2In=2mJn=2n� 2In=2mþ 1:
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Fig. 2. Example of four parallel paths between two nodes (A and B).
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Proof. Recall that every set of n � 1 consecutive nodes
along dimension n � 1 have a complete set of dimen-
sional links. Thus, a node ða0; a1;y; an�1Þ can gain
access to dimension i link by taking at most Jðn �
2Þ=2n ¼ Jn=2n� 1 steps along dimension n � 1: The
dilation is obtained by doubling the above to account
for routing forward/backward along dimension n � 1
and adding 1 for the hop along dimension i itself.

To perform communication along dimension
i; 0pipn � 2; we cluster every n � 1 nodes along
dimension n � 1; centered at a node ðb0; b1;y; bn�1Þ
with bn�1 mod ðn � 1Þ ¼ i: There are In=2m� 1 nodes
on one side and Jn=2n� 1 nodes on the other side of
the aforementioned center that share the dimension i

link with node ðb0; b1;y; bn�1Þ: The congestion is
obtained by noting that the dimension n � 1 link to
ðb0; b1;y; bn�1Þ is used 2In=2mðJn=2n� 1Þ times to
route forward and backward along the pruned dimen-
sions and adding 1 for routing along dimension
n � 1: &
5. Parallel paths and fault tolerance

One important consequence of edge-transitivity (The-
orem 2) is that the number of node-disjoint parallel
paths between any two nodes is the largest possible, i.e.,
equal to the node degree [12]. Such parallel paths allow
us to select alternate routes and thus lead to maximal
fault tolerance for the given node degree. An optimal
(tight) upper bound for the lengths of these parallel
paths yields the network’s fault diameter [10]; that is, the
maximum length of the shortest fault-free path in the
presence of d � 1 or fewer faults in a network with node
degree d: The fault diameter of the k-ary n-cube is
known to be nIk=2mþ 1 [7].

In Theorem 6, we build four parallel paths between
two nodes in an incomplete k-ary n-cube with kX4n � 4
and derive their maximum length. In such a case, the
network diameter is nIk=2m (see Corollary 1), making it
easier to compare the derived fault diameter with that of
the corresponding unpruned k-ary n-cube. This also
leads to a worst-case result in view of the fact that the
length k of our k-cycles is much greater than n: Even
though the existence of four parallel paths in the case of
n ¼ 3 is guaranteed only for kX8; examining the
parallel paths depicted in Fig. 2 (with k ¼ 4) might be
helpful in understanding the proof.

Theorem 6. For kX4n � 4; the fault diameter of the

incomplete k-ary n-cube is at most nIk=2mþ Jk=2n�
n þ 2:

Proof. We prove the result by constructing four parallel
paths between node ð0; 0;y; 0Þ and the arbitrary node
ða0; a1;y; an�1Þ; where an�1 mod ðn � 1Þ ¼ i: Table 1
contains the specifications of the four paths, together
with a record of the maximum path length to
each intermediate point in the leftmost column.
Node ð0; 0;y; 0Þ has links of dimensions 0 and
n � 1: To ensure that the paths are node-disjoint, they
start by visiting nodes ð1; 0;y; 0Þ; ðk � 1; 0;y; 0Þ;
ð0; 0;y; 1Þ; ð0; 0;y; k � 1Þ and from there proceed
respectively to ða0;y; ai þ 1;y; an�1Þ; ða0;y; ai �
1;y; an�1Þ; ða0; a1;y; an�1 þ 1Þ; ða0; a1;y; an�1 � 1Þ
before arriving at node ða0; a1;y; an�1Þ: That the
maximum path length does not exceed nIk=2mþ
Jk=2n� n þ 2 is evident from Table 1. To demonstrate
why the four paths are node-disjoint, we indicate how
they are constructed. For path 1, after the initial hop,
dimensions are adjusted in order, from n � 2 down to 1,
with traversals of different dimensions separated by a
single downward step along dimension n � 1; this is
followed by adjustment of dimensions 0 and n � 1: Path
4 is quite similar to path 1, but is made to pass through
different nodes (node labels starting mostly with 0 as
opposed to 1). A key difference is that dimensions i and
n � 1 are adjusted last to ensure separation near the end.
Paths 2 and 3 are similarly related, this time taking
upward steps in dimensions n � 1: Again, it is easily
verified that the node labels encountered on these two
paths are distinct from each other and from those of
paths 1 and 4. &
6. Incomplete 3D k-torus

The case of n ¼ 3 is of special interest to us because
lower dimensional networks are easier to build and
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Table 1

Four node-disjoint paths from node 0n to node a0a1yan�1 in an incomplete k-ary n-cubea

Max hop distance Node on path 1 Node on path 2 Node on path 3 Node on path 4

0 0n 0n 0n 0n

1 10n�1 ðk � 1Þ0n�1 0n�11 0n�1ðk � 1Þ
2 10n�2ðk � 1Þ ðk � 1Þ0n�21 y y

Ik=2mþ 1 y y 0a10
n�31 0n�2an�2ðk � 1Þ

Ik=2mþ 2 10n�3an�2ðk � 1Þ ðk � 1Þa10
n�31 y y

y y y y 0iþ1aiþ1yan�2

ðk � n þ i þ 1Þ
y y y 0a1yai�1 y

0n�i�1i

y 10n�ian�iyan�2 ðk � 1Þa1yai�1 y 0iðai þ 1Þaiþ1y

ðk � iÞ 0n�i�1i an�2ðk � n þ i þ 1Þ
iIk=2mþ i y y 0a1yðai�1Þ y

0n�i�2i

iIk=2mþ i þ 1 10n�i�1an�i�1y ðk � 1Þa1yai y y

an�2ðk � iÞ 0n�i�2i

ðn � 1ÞIk=2mþ n � 1 y y a0yai�1ðai � 1Þ a0yai�1ðai þ 1Þ
aiþ1yan�2ðn � 1Þ aiþ1yan�2ðk � n � 1Þ

ðn � 1ÞIk=2mþ n a0a1yan�2 a0a1yan�2 y y

ðk � n þ 1Þ ðn � 1Þ
ðn � 1ÞIk=2mþ k � n þ 2 a0a1yan�1 a0a1yan�1 a0a1yan�1 a0a1yan�1

aFor a symbol sAf0; 1g; the notation s j stands for j repetitions of s:
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potentially offer greater performance when the cost and
delay of interconnects, packaging limitations such as pin
count, and the complexity of routing decisions are
considered. In this special case, both the dilation and
congestion of embedding a complete k-ary n-cube into
the incomplete one (Theorem 5) are equal to 3. We can
also derive a closed-form exact expression for the
average internode distance in this case that serves to
confirm our intuition regarding the negligible effect of
pruning on this parameter.

Theorem 7. The average internode distance of incomplete

3D k-torus is 3k=4 þ 2k�1 � 2k�2:

Proof. We need to find the sum of shortest distances
from node (0,0,0) to all other nodes, dividing the result
by the number k3 of nodes (one could divide by k3 � 1
to account for the fact that a node does not send
messages to itself, but dividing by k3 leads to simpler
expressions and is adopted here). In the case of a
complete 3D torus, the sum of distances would be 3k4=4
and the average internode distance is 3k=4: For the
incomplete torus, the proof of Theorem 3 suggests that
path lengths do not change except when the destination
node ðx; y; zÞ satisfies ya0 and z ¼ 0: In the latter case,
two additional hops are added. As the number of such
nodes is k2 � k; we must add 2k2 � 2k to the original
total distance of 3k4=4; proving the desired result. &

To keep the interconnect length balanced, long
wraparound links should be avoided. The usual solution
to this problem is folding, i.e., shuffling the odd-
and even-indexed nodes in each cycle and placing
them on different grid lines of the standard VLSI grid
model. For a 3D k-torus, the volume occupied will be
8k3; as each node and its links occupy a 2 � 2 � 2
subgrid after folding. The pruned links of the incomplete
3D k-torus allow a much more compact layout,
requiring a volume of only 3k3: Fig. 3 depicts an
example. To begin with, we can allocate a 1 � 2 � 2
subgrid to each node. Furthermore, in stacking the
layers, folding along one or the other dimension is
required, not both of them. This reduces the volume by
an additional factor of 4/3.

Like the unpruned 3D k-torus, the incomplete version
is also Hamiltonian, meaning that it contains a ring
encompassing all the nodes as a subgraph. Here is an
explicit construction of the Hamiltonian cycle for the
incomplete 3D k-torus with kX4: Beginning from node
(0,0,0), we proceed along dimension z; from z ¼ 0 to
z ¼ k � 1; and from there to node ð0; 1; k � 1Þ: We next
go backward along dimension z; from k � 1 down to 0,
and from there to node ðk � 1; 1; 0Þ: These sweeps are
repeated 2k � 1 times, each time visiting k nodes, until
we reach node ð1; 1; k � 1Þ: We next move one step
forward in dimension y; k � 1 steps back in dimension z;
and one step back in dimension x to node ð0; 2; 0Þ: From
node ð0; 2; 0Þ; the entire process can be repeated, leading
to node ð0; 4; 0Þ: It is easily seen that such a path will
eventually return to ð0; 0; 0Þ; after visiting all other
nodes, via a wraparound link from ð1; k � 1; k � 1Þ; see
Fig. 4 for an example.
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(a)

(b)

Fig. 3. Folded layout of a pruned 3D 4-torus network. (a) 3D view, (b)

Side view.
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Fig. 4. A Hamiltonian cycle of the 3D pruned 4-torus network.

Arrows are used only to highlight the cycle’s construction (links are

undirected).

B. Parhami, D.-M. Kwai / J. Parallel Distrib. Comput. 64 (2004) 183–190 189
7. Conclusion

In this paper, we applied a pruning scheme to the k-
ary n-cube to reduce its node degree from 2n to 4. We
showed that by removing links from the k-ary n-cube in
a regular (periodic) fashion, many desirable properties
of the basis network can be preserved. The pruned
network obtained in this manner remains in the class of
Cayley graphs and is additionally edge-transitive. The
diameter and fault diameter of the resulting pruned
network are close to those of the original network.
These results can be viewed as additional evidence that
k-ary n-cube is highly resilient, given that many of its
desirable properties are maintained after removing a
large number of links. A complementary conclusion is
that dense connectivity is unnecessary for ensuring these
properties. Given the same node capacity and complex-
ity, we can use a smaller node degree, with correspond-
ingly wider channels, to achieve improved
communication performance [11].

Even though we focused on a particular type of
pruning, with a degree-4 network as the end result, other
pruning schemes can be easily envisaged. For instance,
pruning to a node degree of 6, rather than 4, can be done
by keeping two common dimensions and removing all
but one of the remaining dimensions from each node in
a periodic fashion. The resulting improvement in
network diameter and fault diameter will be minimal,
given the near-optimal results already achieved with
node degree 4. However, improvements in other aspects,
such as embeddings and communication performance,
may make such networks worthy of additional investi-
gation. Pruning is also applicable to other topologies
[14]; for example, it can be applied to chordal rings [15]
and to general torus networks with unequal side lengths.
These latter derivative networks, an example of which
was discussed immediately after Theorem 1, may prove
important because in most practically built mesh- or
torus-based parallel computers, unequal side lengths
have been employed for various reasons, including
packageability and incremental expandability.
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