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A b s t r a c t - - T h e  relative communication performance of low- versus high-dimensional torus net- 
works (k-ary n-cubes) has been extensively studied under various assumptions about  communication 
pat terns  and technological constraints. In this  paper, we extend the comparison to torus networks 
with incomplete, but  regular, connectivities. Taking an nD torus as the basis, we show tha t  a simple 
pruning scheme can be used to reduce the  node degree from 2n to 4, while preserving many of the  
desirable properties of the  intact  network. Orienting the torus links (removing half of the  channels) 
provides a second form of pruning tha t  leads to (multidimensional) Manha t t an  street  networks. Fi- 
nally, combined pruning and orientation yields the  fourth class of toroidal networks studied here. We 
compare the  static performance parameters  of these networks and evaluate their  dynamic communi- 
cation performance under  the assumptions of virtual  cut- through switching and constant  pin count. 
The  3D case, leading to networks tha t  are efficiently realizable with current technology, is used to 
demonstra te  and quantify the performance benefits. Our results reinforce, extend, and complement 
previous studies t ha t  have demonstrated the performance advantages of low-dimensional k-ary n- 
cubes over higher-dimensional ones. For example pruned 3D tori provide additional design points 
tha t  fall between 2D and 3D tori in terms of implementation complexity but  can outperform both  
of these s tandard  architectures. Thus, from a practical s tandpoint ,  pruning introduces additional 
flexibility in implementat ion options and trade-offs available to designers. (~) 2004 Elsevier Ltd. All 
rights reserved. 

K e y w o r d s - - A n a l y t i c  performance evaluation, Incomplete torus, k-ary n-cube, M a n h a t t a n  street 
network, Pruned torus, Symmetric network, Virtual  cut-through. 

1. I N T R O D U C T I O N  

Advances in electronic technology have led to unprecedented processing power and storage capac- 
ity being packed in a single microchip. Even though the long awaited GHz processors emerged 
right on schedule [1], future technology may prove incapable of keeping pace with a tradition of 
progress which has led to five orders of magnitude in performance increase over the past three 
decades. As an alternative to reliance on faster hardware, large-scale parallelism has become the 
universal hope of high-performance computing [2]. 

tAu thor  to whom all correspondance should be addressed. 

0895-7177/04/$ - see front mat te r  (~) 2004 Elsevier Ltd. All rights reserved. Typeset by .4AdS-TEX 
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After experimentation with many different architectures, particularly the hypercube and its 
various derivatives, practical highly parallel architectures have converged on designs based on 
2D and 3D arrays. Several parallel machines have adopted such networks for interprocessor 
communication, including two that surpassed teraFLOPS performance with 3D configurations 
as early as 1996 [3,4]. There are several reasons for this convergence. One key factor is the 
difficulty of realizing higher-dimensional architecture with what essentially amounts to a 2.5D 
implementation technology that doubly penalizes such structures due to their need for denser 
connectivity and longer wires [5]. Even when optical interconnections become economically viable, 
going beyond 3D connectivity poses challenging problems in layout and packaging. On the other 
hand, networks that are structured in two or three dimensions can be mapped naturally to the 
physical space, thus simplifying their hardware realizations. 

A second key factor is that when implementation cost is normalized, low-dimensional arrays 
have been shown to have an edge in performance. This is due to a combination of short, regular 
connections that allow higher clock rate, simpler logic for routing decisions, and wider data paths 
that are possible with the same pin count. Together, these factors more than offset the negative 
effects of less favorable topological parameters such as diameter and bisection bandwidth. 

Our results add another dimension to such trade-offs. Take a 3D torus, for example. The 
connectivity of this architecture can be reduced in two ways: 

(1) replacing it by a 2D structure, and 
(2) removing some of the links from each node. 

Both approaches simplify the physical realization and can potentially lead to improved perfor- 
mance due to the considerations outlined in the preceding paragraph. However, there is a real 
possibility that pruning a torus leads to complications in routing and algorithm implementation 
due to irregular or less regular structure. We will show that in fact pruning can be done in such 
a way that the resulting network remains node- and edge-transitive. Such symmetry properties 
are critical to the simplicity of routing algorithms and their amenability to analytical evaluation. 

Our approach leads to a unified view of nD toroidal networks whose in- and out-degree s are 
regularly decreased from 2n to a small constant number; for example, from six to four, three, 
or two in the case of 3D torus. We formulate these networks as algebraic graphs, prove that 
they remain both node- and edge-transitive, study their topological properties, and evaluate 
them both in terms of static measures (e.g., diameter or average internode distance) as well as 
dynamic communication performance under various traffic loads. Though not studied in this 
paper, our unified view covers a variety of other networks that have been found useful in the 
past, including torus variants such as honeycomb and diamond networks [6]. 

Our presentation is organized as follows. In Section 2, we describe the four classes of toroidal 
networks under consideration, with their symmetry properties based on the Cayley digraph model 
derived in Section 3. Section 4 compares the static performance parameters such as diameter, 
average internode distance, and bisection (band)width. Section 5 contains a delay throughput 
relationship for performance comparisons in a dynamic context. Comparative performance results 
are presented in Section 6. Section 7 contains our conclusions. 

2. F O U R  T Y P E S  O F  T O R O I D A L  N E T W O R K S  

To increase the efficiency in utilizing the available communication bandwidth, which may be 
considered a constant under the assumption of limited I/O resources, three variations of the 
complete torus with bidirectional links have been considered. We call these variants "toroidal" 
because they are derived from tori and each is a subgraph of a torus of the same size. Although 
all of these networks were known previously, proof of their symmetry properties, derivation of 
some topological parameters, unified formulation, and performance comparisons are new here. 

The first variant is the directed version derived by orienting links of a torus. Orientation is 
standard graph-theory terminology for converting an undirected edge to a directed one. Choosing 
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a uniform orientation along each dimension permits simple dimension-order routing and is often 
discussed in the literature on performance analysis by virtue of its simplicity [7-9]. A more 
efficient orientation, in the sense of causing minimal increase in the longest and average internode 
distances [10], is to alternately assign opposite directions to the links of each dimension. The 
2D special case of the latter scheme, known as Manhattan street network [11], has been studied 
extensively [12-15]. 

The second variant is the pruned version derived by removing some of the links [16-18]. The 
3D toroidal network of the Tera MTA (multithreaded architecture) [19] is obtained by selecting 
one dimension, keeping its links intact, and alternately removing links of the remaining two 
dimensions along the chosen dimension. When drawn as graphs, such pruned networks bear a 
superficial resemblance to the bus-based structures proposed by Wittie [20], even though the two 
classes of networks are quite different, both topologically and from algorithmic and performance 
standpoints. Incorporating both the orientation and pruning strategies, so as to yield a pruned 
directed torus, has also been proposed [21]. 

We can, therefore, classify the various toroidal networks into four categories based on the two 
dichotomies of undirected versus directed and unpruned versus pruned (Figure 1). For each of 
the torus variants, the trade-offs between cost and performance have been previously justified by 
the fact that the longest and average internode distances are only slightly larger than those of 
the complete torus. Thus, at least for light traffic loads, performance comparable to that of the 
complete torus can be obtained with the pruned versions at lower cost. 

Unpruned Pruned 

Undirected 

Directed 

Toms 
networks 

(Multi- 
dimensional) 

Manhattan 
street networks 

Pruned 
toms networks 

Directed 
pruned 

tori or pruned 
(md)MSNs 

Figure 1. The four classed of toroidal networks studied in this  paper. 

We express node indices as column vectors. In an unpruned undirected nD torus, each node 
(a0, a l , . . . ,  a i , . . . ,  an- l )  is adjacent to 2n neighbors: (a0, a l , . . . ,  ai + 1 , . . . ,  an-i) ,  0 < i < n - 1. 
Here and throughout, it is understood that all node-index expressions are evaluated modulo k in 
view of the wraparound connections. 

:By selecting dimension 0 as the basis and alternately removing dimension-/links, 1 < i < n - 1, 
along dimension 0, each node (a0, az , . . . ,  a i , . . . ,  an-l)  in the pruned undirected nD torus will be 
adjacent to four neighbors (Figure 2) 

(a0 -t- 1 , a l , . . . , a i , . . . , a n _ l ) ,  

(ao, a l , . . . , a i + l , . . . , a n _ l ) ,  if a o - ( i - 1 ) m o d ( n - 1 ) .  

In the directed nD torus, each node (a0, a l , . . . ,  a i , . . . ,  an-l)  is adjacent to n out-neighbors 

(ao, a l , . . .  ,ai + 1,. . .  , a n _ l )  , 

(ao,  a l , . . . ,  a i  - -  1, . . . ,  an-l), 

n - 1  

if aj = even, 
j=o(j~i) 

n--1 

if ~_~ aj = odd. 
j=o(j~i) 
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Figure 2. Three-dimensional pruned 4-torus (pruned, undirected). To avoid clutter, 
wraparound links are partially drawn. 

Figure 3. Three-dimensional Manhattan street network (unpruned, directed). To 
avoid clutter, wraparound links are partially drawn. 

The  resul t ing  unp runed ,  directed toroidal  network, also known as (mul t id imens iona l )  M a n h a t  

t a n  s t reet  network,  is depicted in Figure  3 for n = 3 and  k = 4. 
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]In a similar manner, by alternately removing the network links along dimension 0, each node 
(a0, a l , . . . ,  a~ , . . . ,  a n - l )  in the pruned, directed nD torus is adjacent to two out-neighbors 

(ao + 1 , a l ,  

( a 0 - 1 , a l , .  

a0,  a l ,  

ao,  a l ,  • 

• , a i , . . .  , a n - l )  

• , a i , . . .  ,an-l), 

• ,a~ + 1 , . . . , a ~ _ l ) ,  

• , a  i - -  1,...,an_l), 

n - 1  

if aj = even, 
j = l  

if ~ a j = o d d ,  
j = l  

if )_.£ aj = e v e n  and 
j=o (j¢~) 

n- -1  

if ~ aj = odd and 
m 

j=o (j#~) 

a0 = (i - 1 ) m o d ( n -  1), 

a0 - ( i -  1) m o d ( n -  1). 

Such a pruned directed toroidal network can be visualized by applying the orientations of the 
links in Figure 3 to the links of Figure 2. 

3 .  C A Y L E Y - G R A P H  F O R M U L A T I O N S  

]Next, using Cayley digraphs of abelian groups, we show that  the four networks under s tudy 
(namely, unpruned/pruned,  undirected/directed tori) are node- and edge-transitive. These results 
will allow us to devise efficient distributed routing algorithms and to obtain simple closed-form 
expressions for the average internode distance for each architecture. They  also allow us to make 
assumptions about  uniform traffic in each node and link, thereby facilitating the analysis of 
network performance. 

Given an identity element L from some finite group F, define a subset fl, such that  ~ ¢ fl; i.e., 
there is no self-loop in the resulting digraph. The Cayley digraph is formed with the node set F 

and an edge from a E F to b E F whenever b = ag for some g c ft. The  cardinality I~l of the 
generator set determines the out-degree, which is exactly the same as the in-degree. 

]In our case, we have F = { ( a o , a l , . . . , a , ~ _ l ) l O  < ai <_ k - 1, for all 0 < i < n - 1} and the 
identity element L = (0 ,0 , . . .  ,0). If a = (a0, a l , . . .  , a n - i )  is adjacent to b = (b0,bl , . . .  ,bn_l) ,  
their index vectors are related by a semidirect product• In the following subsections, we specify 
the product  form and the associated generator set f~ for each of the four architectures of interest• 

3 . A .  U n p r u n e d ,  U n d i r e c t e d  T o r u s  

The adjacency relationship of the unpruned, undirected torus corresponds to the expression 
b == a + g and the generator set 

{[i][kllIi]i0] [ i ] 0  k l f l =  , 0 , , 0 , - . - ,  , 

0 0 

or} 0 
0 

k 1 

Note that  because the addition is modulo k, adding k - 1 is the same as subtracting 1. 

3 . B .  P r u n e d ,  U n d i r e c t e d  T o r u s  

The adjacency relationship of the pruned, undirected torus is specified as b -- a + ~aOg, where 
:is an n × n matr ix defined as 
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= 01] 0 . . .  0 

1 . . .  0 . 

0 . . .  1 

We call • the "pruning matr ix" ,  because it specifies the connectivity reduction scheme em- 
ployed. In particular,  pruning along dimension 0 is represented by k~ a°. Note tha t  the ith power 

• ~ of • is obtained by cyclically left-shifting the rightmost n - 1 elements of the bo t tom n -  1 rows 
of the identity matr ix  by i positions. Hence, ~P possesses the periodic proper ty  ~ + ( n - 1 ) j  = ~ i  

with a period of n - 1. The generator set becomes 

ill] [k 1] [i] [ 0 ] /000 k l 00 
EXAMPLE 1. The  pruned undirected 3D torus has the 3 x 3 permuta t ion  mat r ix  

[i°Z] [i 0 0 ~ao = 0 = (ao + 1)2 (a0>2 , 

1 (ao)2 (a0 + 1)2J 

where (x)2 denotes x mod 2. | 

3.C.  U n p r u n e d ,  D i r e c t e d  T o r u s  

The  adjacency relationship of the unpruned, directed torus corresponds to the expression b = 
n - - 1  a~ a + ~ i=0  ~i  g, where ¢~ is an n x n diagonal matr ix  with all entries being - 1 ,  except for the 

i ta entry which is 1. We call ~ the orientation matr ix  associated with dimension i; it leads to 
the assignment of opposite directions to all other links for any two nodes tha t  are adjacent along 
dimension i. The  generator set, having If~l -- n, is obtained by removing the inverses from the 

generator set associated with the unpruned undirected torus 

/Ill [i] Ill} 
EXAMPLE 2. The unpruned, directed 3D torus has the 3 x 3 permuta t ion  mat r ix  

_2 [io o]aO[olO o]al[_lo !]o2 
~-~ ¢~' = -i 0 1 0 0 -i 

i=o 0 -1 0 -1 0 0 

( - 1 )  ao+a2 0 . 

0 (1) ao+a' 
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3.D. P r u n e d ,  Di rec ted  Torus 

In a similar manner, we can apply the preceding formulations to the pruned, directed torus, 
n - 1  

leading to the adjacency relationship described by the expression b = a + ~ao l-L=0 ~ g "  The 
generator set, which is the intersection of the sets corresponding to the pruned, undirected, and 
unpruned, directed tori, is 

{[i] [i]} 
EXAMPLE 3. The pruned, directed 3D torus has the 3 x 3 permutation matrix: 

2 [ ( - - 1 )  a l+a2  0 0 

~ao [I~, = [ 0 0 (-l)a°+a1(ao + 1}2 (-l)a°+a~(ao>2 | 
i=O (--1)a°+a'(ao)2 (--1)a°+~2 (a0 + 1}2 

:For the aforementioned toroidal networks to be node-transitive, the pruned versions must 
satisfy k mod (n - 1) - 0 and the directed versions must satisfy k mod 2 - 0 (obviously, both 
conditions must hold for the pruned, directed version). These restrictions are not serious for the 
31) case, where it is only required that k be even. 

3.E. S y m m e t r y  and  Othe r  P roper t i e s  

The preceding observations establish the node-transitivity of the toroidal networks. The edge- 
transitivity of these networks follows from the fact that the generators are exchangeable. 

Note that the pruning scheme outlined in Section 3.B above is not the only viable one. Re- 
placing the permutation matrix ~ o  by the more general qJ(~o,al,~2) yields a variety of pruning 
sclaemes. As an example, f ( a o , a l , a 2 )  = ao + al  + a2 yields the diamond network, which can 
be viewed as the 3D version of honeycomb network [6], [17], [22]. However, it has been shown, 
somewhat surprisingly, that the simpler pruning scheme used here is also the best in terms of 
both regularity and performance [23]. 

4. STATIC N E T W O R K  P R O P E R T I E S  

At a very coarse level, networks can be characterized by certain static properties or topological 
parameters [5]. The most important such parameters are the diameter D, average internode 
distance A, fault diameter DR,  and bisection bandwidth B. We review these in the following 
sections. We also briefly review the issues of scalability and packageability. Theorems are given 
without proofs. 

4.A. Ne twork  Diame te r  

The diameter of a network, defined as the length of the longest among the shortest paths 
between all pair of nodes, is clearly important with packet routing because it dictates the worst- 
case communication latency. Whereas it has become fashionable to downplay the importance of 
diameter by stating that in wormhole routing (the dominant routing scheme in modern parallel 
computers), latency is insensitive to the diameter, there are counter arguments that show that 
diameter is in fact still important, even with wormhole routing, when performance penalties of 
blocking and deadlock are factored in. This is especially true with very long messages. 

THEOREM 1. T h e  d iame ter  o f  an n D  pruned,  undirected  k - torus  is [18] 

(n - 1) [k/2J + max (2n - 4 ,  [k/2J), if k _> 2 (n - 1), 

( n -  1) [k/2] + m a x ( n -  3 + [ k / 2 J , k ) ,  i f k  = n -  1. 

Recal l  t ha t  k is a s sumed  to be a mul t ip le  o f  n - 1. | 
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Diameters of various toroidal networks with n = 3 are shown in Table 1, assuming k is even 
and k > 4. The diameter of the pruned, directed k-torus is easily obtained for n = 3, though we 

do not have a counterpart to Theorem 1 for this case. From Table 1, it is quite evident that  for 

systems of practical sizes, the diameter is in fact unimportant  in distinguishing these networks. 

Table 1. Static performance parameters of various 3D toroidal networks. 

nD k-Torus Variant 

Unpruned, Undirected 

Pruned, undirected 

Unpruned, directed 

Pruned, directed 

In/Out Diameter Average Internode Fault Bisection 

Degree d D Distance A Diameter D F Width B 

6 1.5k 0.75k D + 1 2k 2 

4 1.5k 0.75k -t- 2/k - 2 / k  2 ~ D + rk/2] - n + 2 k 2 

3 1.5k + 1 0.75k + 1 - 4/k 3 n/a k 2 

2 1.5k + 3 --~ 0.75k + 3.5 - 4/k n/a 0.5k 2 

4.B.  A v e r a g e  I n t e r n o d e  D i s t a n c e  

Whereas the network diameter is an indicator of worst-case network latency under light load, 

the average internode distance has a similar significance for the average communication latency 

with randomly destined messages. In fact, in symmetric networks, network diameter and average 

internode distance are closely related, so that  either parameter can be used in comparative static 
evaluation of networks. 

For our four node-symmetric networks, the average internode distance can be derived by com- 

puting the sum of distances from a given node, say node (0, 0, . . .  , 0) to all other nodes and 

dividing the result by k 3 - 1 or k 3. While the first option more accurately reflects the intuitive 

notion of internode distance, we take the second option (which also counts the distance of a node 

to itself), because it leads to simpler expressions. Results based on the first option can be easily 
obtained by multiplying our results by k 3 / ( k  3 - 1). 

The average internode distance of torus and Manhat tan street networks have previously been 

derived. For the 3D pruned, undirected torus, we have the following result, which is easily derived 

as explained in the preceding paragraph. 

THEOREM 2. T h e  average in ternode  dis tance ofa  3D pruned,  undirected  k - to rus  is 0.75k + 2 / k -  
2 / k  2. | 

The average internode distances of various 3D toroidal networks are shown in Table 1. In 

the case of 3D pruned, directed torus, no closed form formula has been found for the average 

internode distance; however, the expression 0.75k + 3.5 - 4 / k  is a good fit to numerically derived 

results for k _> 8. Figure 4 plots the average internode distance as a function of the radix k, 
with k assuming all even values from 4 to 32. Note that, as was the case for network diameter, 

pruning has a lesser effect on the average internode distance than orientation. Figure 5 compares 

unpruned and pruned tori of four and five dimensions with respect to average internode distance. 

As we observed in the case of network diameter, Figures 4 and 5 indicate that  for networks of 

practical sizes, the average internode distance variation among these networks is small enough 
not to be of major concern. 

4 .C .  F a u l t  D i a m e t e r  

The fault diameter of a network, defined as the diameter of the surviving part after the oc- 

currence of a small number of faults (fewer than the network's connectivity) is an indicator of 
network resilience [24]. Provided that  routing in the incomplete or "injured" network is not 

significantly more difficult than in the intact network, a small fault diameter might allow the 
network to function close to full performance despite the occurrence of faults. This is the case, 

for example, when adaptive routing is used on the intact network for performance reasons. 

The fault diameter of an nD torus (with n - 1 or fewer faults) is known to be no more than 

one hop greater than its fault-free diameter [25]. In a companion paper [18], we have proven the 
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Figure 4. The average internode distance for the four types of 3D toroidal networks. 
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Figure 5. Average internode distance of some higher-dimensional toroidal networks. 

following result about  the fault diameter of pruned torus networks. This is done constructively 

by deriving four node disjoint paths between node 0 and an arbitrary node and noting the length 
of the longest of the four paths. 

THEOREM 3. For k >_ 4(n - 1), the fault diameter of an nD pruned, undirected k-torus is no 

greater than (n - 1) [k/2J + k - n + 2. | 

No corresponding result on the fault diameter of Manhat tan  street networks and, consequently, 
for pruned directed tori, is known to us. Note that  due to node symmetry, which allows the 
largest possible number of node-disjoint paths between any pair of nodes [26], we expect the fault 
diameters of these networks to also be close to those of the undirected variants. 

4 . D .  B i s e c t i o n  W i d t h  

The bisection width of a network, defined as the minimum number of links whose removal 
divides the network into two equal halves, is a good indicator of the network's ability to efficiently 
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run communicat ion intensive applications tha t  may involve frequent invocation of many- to-many 
communication primitives. Bisection bandwidth is similarly defined, except tha t  the sum of link 
capacities, ra ther  than  the number of links, is considered. 

THEOREM 4. The bisection width of an nD pruned, undirected k-torus is 2kn -1 / (n  - 1), where 

a bidirectional link is assumed to consist of two unidirectional links. | 

The bisection width of an nD pruned, directed k-torus is half of tha t  given in Theorem 4. 
Bisection widths of the 3D toroidal networks are provided in Table 1. If  all links in the various 

networks have unit capacity, then bisection bandwidths of these networks are similarly related. 

However, if we assume tha t  the sparser architectures allow the use of wider links, with the same 

total  network cost, then B must  be appropriately weighted for each scheme for a fair comparison 
of the bisection bandwidths.  A reasonable weight might be the inverse of node degree d, also 

shown in Table 1, because with the same pin count per node, wider links can be accommodated  
when the node degree is smaller. This is further discussed in Section 4.E. below. 

(a) 3D view. 

Y 
x . )  

f 

y-] 

(b) Side view. 

Figure 6. Folded layout of a pruned 3D 4-torus network. 
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4.E. Scalability and Packageability 

We limit our discussion in this section to 3D structures. A 3D k-torus, folded in 3D space to 
allow implementation with only short wires occupies a 2 × 2 x 2 subgrid per node, for a total space 
of 8k 3. It is easily seen that  pruning reduces the required volume (or layout area, in the case of 
2D layout of the 3D structure). In fact, the improvement factor is greater than that  suggested by 
the halving of the bisection width; another factor of 4/3 improvement results from the fact that  
folding needs to occur along only one of the two pruned dimensions (Figure 6). Thus, even after 
the increase in link width by a factor of 3/2 is factored in (due to node degree being reduced 

from 6 to 4), the layout space or area is still smaller for the pruned variant. 

The preceding informal argument, combined with the observation that  the pruned links along 
some of the dimensions make the network easier and less costly to part i t ion (e.g., by slicing 
Figure 2 vertically rather than horizontally), should be enough to convince the reader tha t  when 
cost is also taken into account, pruned and/or  directed tori exhibit additional benefits. The scal- 
ability of pruned nD pruned torus network is a direct result of its combining the node complexity 
of 2D torus with the diameter and average internode distance of nD torus. We will report  on 
cost-effectiveness and scalability issues separately in the near future. 

5. D Y N A M I C  P E R F O R M A N C E  M O D E L  

With the same clock speed and I /O  pin count for the four types of toroidal networks, reducing 
the connectivity allows an increase in the link width and, thus, improved link bandwidth. To be 

concrete, we exemplify our comparisons assuming the link width to be 16, 24, 32, and 48 bits, 
inversely proportional to the in- and out-degrees of 6, 4, 3, and 2 (a total of 96 I /O  pins per 
node). All estimates are based on conservative packaging assumptions [27] and with reference to 
Cray 3TE [4]. The effect Of various link widths can be specified by a factor F = L / W  denoting 
that  each L-bit  message must be broken into F flits for transmission over a W-bit  link. 

As the toroidal networks under s tudy were shown to be both node- and edge-transitive, it 
is reasonable to assume that  in a dynamic routing context, each node generates requests on a 
uniform basis and each link encounters the same traffic load. With no contention, the network 
performance can simply be described by the static parameters listed in Table 1. 

:For switches that  use store-and-forward routing, the average message latency is sAF,  where s 
is the switch delay (or fall-through time) in clock cycles. For switches that  use virtual cut- through 
routing [28], the average message latency becomes F + s(A - 1). Note that  trading connectivity 
for wider links is always beneficial for store-and-forward routing. We will not pursue this further 
in this paper. For virtual cut- through routing, the trade-off might be worthwhile if the message 
is long enough to compensate for the increased average internode distance. The exact crossover 
point depends on the switch delay s. 

As was noted in Section 4, the pruned and/or  directed versions of the torus network have 
relatively minor differences among themselves, and with standard tori, in terms of maximum and 
average internode distances, especially as the network size grows. One can thus draw an early 
conclusion that  pruning and/or  directing a torus is worthwhile because of the smaller degree- 
diameter and degree-average distance products. We will show that  this is indeed the case, even 

after conflicts and other routing complexities are factored in. 
Let the message generation rate at a node be m packets/cycle. In any cycle, the probability 

that  a packet injected from the local resource travels along a particular link is m/d, where d is the 
node degree. A packet on average takes A hops to arrive at its destination. When the network 
reaches steady state, the arrival rate or utilization p of an arbitrary link is given by 

p = ( m / d ) F A ,  

where F = L / W  is the message length as defined earlier. 
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In the absence of contention, the average latency experienced by a message is F ÷ A - 1 steps 
or~ more generally, F + s(A - 1) cycles when each routing step within a switch is pipelined to 
take s cycles. For instance, the router design of Tera MTA uses s = 3, with two cycles spent in 
node logic and one on the wire leading to the next node. In this paper,  we take s = 3 as a default 
value, but  let s grow to as large as seven for architectures tha t  require more complex routing 
decisions (i.e., up to three times as complex in terms of latency). 

To model contention, the length of the queue associated with each outgoing link is t reated as 

a discrete random variable b E [0, oo); i.e., we assume no message loss due to buffer overflow. 
Note tha t  a finite buffer can support  near-optimal performance, given tha t  the probabil i ty of b 

significantly exceeding its mean value ~ is negligibly small. Hence, the assumption of unlimited 
buffer space is commonly used to make the analysis of different types of networks and switching 
schemes t ractable  [7, 29-34]. 

The arrival rate p can be decomposed into two components,  depending on how a packet proceeds 
in the network 

m / d  = p~ ( F A ) ,  

p - m / d  = p (1 - 1 / ( F / k ) ) ,  

the probabili ty the packet enters/exi ts  the network, 

the probabili ty tha t  the packet stays in the network. 

Consider an intermediate node along the route. The  packet is never sent back to the node 

where it came from and the remaining d - 1 neighboring nodes are equiprobable to be used as 
the next hop. The probabil i ty p(i) of i packets being sent from d - 1 input links to a particular 
output  link has a binomial distribution of the general form p(i) = (k)(1--  A)k-iA i, with k = d -  1 
in our case and ), = p(1 - 1 / ( F A ) ) / ( d -  1). Thus 

The preceding probabil i ty is based only on the packets tha t  s tay in the network. If we include 

the packets tha t  enter the network at  the intermediate node, we have 

q(i):-- ( 1 - - A A ) P ( i ) + - A A P ( i - 1 ) ,  

where q(i) is the probabil i ty of i packets requiring to use the link at the same time. 
The probabil i ty r(i) of i packets simultaneously contending for the same outgoing link follows 

a Markovian process. The state, indicating the current number of contenders, changes based on 
the number  of incoming packets, and possibly one outgoing packet. Enumerat ing  all possible 
combinations, we get the s tate  distribution r(i) 

i+1 

r(i)  = r(O)q(i)  + ~ -~r ( j )q ( i  + 1 - j ) .  
j = l  

0 waiting, j waiting,  1 forwarded, 

i arrive i + 1 -- j arrive 

The preceding equation can be writ ten as a recurrence for ease of evaluation 

( i  + i )  = - -  1 f ] q(0) r ( i ) - r ( 0 ) q ( i ) - ~ r ( j ) q ( i + l - j )  , 
j----1 

with r(0) = 1 - p. Figure 7 shows typical probabili ty mass functions of r(i) for low, medium, 
and heavy utilizations (p -- 0.1,0.5, 0.9). 
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Figure 7. Probabil i ty r(i) of i packets simultaneously contending for the same output  
link. 

When i packets contend for the same outgoing link, all but one must be queued, leading to the 
requirement for a buffer of size (i - 1)F. The average queue length can be shown to be 

p~ (d - 2) F A  + 2 - d~ (FA)  
= ~ _ , ( i - 1 )  f r ( i ) =  2 ( 1 - p )  ( d - 1 ) A  

i=2 

Using Little's identity, the average queue length/3 at steady state is equal to the product  of 
the mean time j3/p waiting for a link and its utilization p. As a packet on average goes through 
A links, the delay T~ attr ibutable to contention is 13Alp. 

Tc = P (~ - 2) F A  + 2 - d~ ( F A )  

2(1 -p) d -  1 

The latency-throughput relationship of the directed network can be similarly developed. The 
only difference is tha t  all d, rather than d -  1, output  links are equiprobable for forwarding an 
incoming packet at the intermediate node. The delay due to contention in this case is: 

Tc = P ( d -  1 ) F A  + 2 -  ( d +  1 ) / ( F A )  
2(1 - p) d 

We are now in a position to find the average message latency in the presence of contention. 

Le.t Pw denote the probability of waiting at some buffer [28]. Then, cut- through occurs with 
probability 

~r  (i) 
1 - p ~ o = r ( 0 ) +  : . 

i=1 

Thus, including the effect of contention, the average message latency is: 

T = [F + s ( A  - 1)] (1 - pw) + To. 

This completes the construction of our analytic performance model. 
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Average message latency in toridal networks with side length (radix) 
k = 16, message length L = 96, and switching delay s = 7. 

6. P E R F O R M A N C E  C O M P A R I S O N S  

We begin by assuming relatively short messages of length L = 96 bits and compare the four 
types of 3D toroidal networks with radix k = 16 (4096 nodes). The switch delay of s = 3 cycles 
represents state of the art router designs. Figure 8 shows the results. The immediate conclusion 
here is that  as long as the network does not operate close to saturation, either pruning or ori- 
entation can improve the average message latency. The combination of pruning and orientation, 
however, is not an attractive option. At heavy loads, pruning is more effective than orientation. 
Note that  the routing algorithm for pruned torus is simpler than that  of MSN; thus, the foregoing 
comparison, which assumes s = 3 in either case, is somewhat unfair. More on this later. In- 
creasing the switch delay to s = 7 (Figure 9) leads to similar results, but tends to magnify small 
differences in the average internode distance. Overall, pruning appears to be the best option 
under the assumption of short messages. 

Figures 10 and 11 present the corresponding results for somewhat longer messages of L = 384 
bits. Again, we see that  pruning and orientation provide comparable performance benefits; what 
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Figure 13. Virtual cut-through switching performance of 3D toroidal networks with 
message generation rate m = 0.01. 

has changed most  dramatical ly relative to Figures 8 and 9 is tha t  the combination of pruning and 
orientation is no longer as bad as in the case of shorter messages, part icularly when s is small. 

Having established tha t  pruning and orientation have comparable performance benefits, let us 
examine the differences between the two schemes in more detail. The  average latency T is shown 

as a function of the message generation rate m for k = 16 (N = 4096) in Figure 12. With  equal 

message length L and number  of pins, the message length F will be proport ional  to the node 
degree d (three for MSN, four for pruned torus, and six for ordinary torus).  Because current 

VLSI packages are limited to several hundred pins [1], our assumption of F = 3 for 3D k-MSN 

implies tha t  each packet contains no more than a single word of data. We note tha t  pruning 

improves the latency uniformly, except when operating close to saturation. The  saturat ion point 
corresponds to full utilization or p = 1; thus the message generation rate  m must  be strictly 

less than  d/(FA). Given that ,  as argued above, d/F is a constant  for our toroidal networks, it 

is easy to see tha t  the average internode distance A, which grows with network size, limits the 

scalability. The  preceding problem is exacerbated for long messages. 

Figure 13 shows the message latency as a function of the radix k for m = 0.01. The  two 
sets of curves correspond to different message lengths, again assuming a constant  pin count. The  

aforementioned concern with scalability not withstanding, we note tha t  the advantages of pruning 
over orientation are even more pronounced for longer messages. Our tentat ive conclusion is tha t  
the pruned torus outperforms MSN for large networks and heavy loads, whereas MSN does bet ter  

for smaller networks and lighter loads. Given tha t  the difference in latencies is relatively smaller 

in the latter case, pruned tori  can be considered superior overall. 
To s tudy the effects of varying both the network size N = k 3 and the message length F on 

the communicat ion performance of pruned 3D k-torus, we plot the average latency relative to 

its unpruned counterpart  in Figure 14. The message generation rate  is again fixed at m = 0.01 
which is below the saturat ion level for both  networks. At some point, the average internode 
distance A and the message length F cause the average latency to grow quadratically rather  
than  linearly. Figure 14 clearly shows tha t  the improvement due to pruning is more significant 

for larger network sizes and longer messages. 
To explain the foregoing, let us simplify the equation for the average latency T by setting 

p ~ = p a n d F A > > l .  

p d - 2  
T -- IF + s (A - 1)1 (1 - p) + 1 ~  2d _------~ F A .  

Expanding this approximate  expression using Taylor series and subst i tut ing p with (m/d)FA, 
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Figure 14. Virtual cut-through switching performance of the pruned 3D k-torus with 
m = 0.01 relative to an unpruned torus. 

Figure 15. Virtual cut4hrough switching performance of the pruned 3D k-torus with 
F = 4 relative to an unpruned torus. 

we have 

d - 2  
2" = [F + s (A - 1)] (1 - p) + p2--~-~_2FA (1 + p + . . . )  

F igure  15 shows how well the  p runed  3D k-torus  handles  various traffic levels relative to its 

u n p r u n e d  counte rpar t .  As expected,  p run ing  offers l i t t le or no advantage  at  low traffic, given the  
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Figure 16. Performance of pruned, undirected torus relative to unpruned, directed 
torus(MSN), with MSN's more complex router accounted for by increasing its switch 
delay from three to seven cycles. 

assumption of short messages (F  = 4). The advantage of pruning starts to show for moderate 
traffic levels and larger network sizes. The 3D k-MSN behaves similarly, except tha t  it reaches 
saturation more quickly (see Figures 8-11). 

Finally, in Figure 16, we show the relative performances of pruned tori and MSNs when a 

slower switch is assumed to be required for the more complex routing task in MSN. 

7. C O N C L U S I O N  

We have compared four classes of toroidal networks, corresponding to unpruned/pruned and 
undirected/directed variations of a torus network. There is more to be done to arrive at definite 
conclusions, but  based on this work, pruned torus networks seem to hold promise for use in 
designing cost-effective high-performance parallel architectures. Even though the pruned torus 
network architecture has already been used in the design of Tera MTA [19], our characterization of 
such networks (using the Cayley graph model) and analytical performance comparisons provide 
a starting point for more detailed evaluations of such networks for highly parallel processing. 
Such evaluations must entail both general and application-specific message traffic patterns and 
be performed with more realistic network models. We strongly expect tha t  comparison results 
will be fundamentally the same, if not even more in favor of pruned networks. This expectation 
arises from the fact tha t  random traffic is, in a sense, the worst possible communication pat tern 
for pruned networks with their smaller bisection bandwidths. 

Similar advantages can be demonstrated for pruning higher-dimensional tori. However, the 
comparison will be more involved for n > 3. If the layout is carefully planned for expandabil- 
ity, the wire delay of the 3D torus and its pruned derivatives can become virtually independent 
of network size, while the same cannot be said about higher-dimensionM tori (see [35] and the 
references therein). The dependence of wire delay on the physical dimensions makes it diffi- 
cult to compare these architectures fairly and realistically. Several a t tempts  based on different 
assumptions, such as constant bisection width and wire delay, have pointed to widely different 
conclusions [7,9,30,36]. 

Our pruned torus network represents but one way to reduce the connectivity of a torus while 
preserving many of its desirable properties. For example, a 4D torus might be pruned by keeping 
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links along two dimensions intact, and alternating between links in the other two. This reduces the 
node degree from eight to six, rather than to four, but offers correspondingly greater performance. 
Pruning is also applicable to other network topologies; for example, we have previously applied 
it I;o chordal rings [37]. In other recent work, we have explored pruned networks as Cayley 
graphs as well as networks obtained from pruning Cayley graphs [38,39]. We expect the benefits 
of ]pruning, demonstrated in this paper for torus networks, to extend to many other networks 
classes. We will report additional results on such pruned networks in the near future. Combined 
with hierarchical interconnection networks [40], which also offer reduced connectivities, the design 
space for cost-effective and scalable networks is quite vast. 
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