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Voting is used in realizing ultrareliable systems based on multichannel computation.
In practical applications to date, the multiple computation channels have consisted of
identical hardware circuits, which are expected to produce the same outputs, or diverse
software modules, which may produce inexact or incomplete results. The challenge in
hardware voting is the choice of adjudication points where voters must be inserted,
and the associated synchronization and data throughput requirements. In software
voting, algorithms for reconciling multiple inexact or incomplete results, and their
time and code complexities, are important aspects of the problem. Chapter 4 deals
with weighted voting algorithms and their hardware and software realizations, as a
unifying methodology for a variety of voting schemes that have been found to be
useful in practice. As in all algorithm design problems, correctness and performance
of voting algorithms are key properties to evaluate and ascertain. We also show,
through examples, that there is more to voting than the simple majority or plurality
viewpoint heretofore dominating the dependable computing literature. It is argued
that considering voting as a form of data fusion, and drawing from both mathematical
studies of the anomalies in voting as well as sensor fusion work in signal processing,
can be beneficial to further developments in the field of dependable computing.

4.1 INTRODUCTION

Voting is important in many different contexts. It is used, explicitly or implicitly, in
the fusion of data originating from multiple sources [19], for realizing ultrareliable
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systems based on the multichannel computation paradigm [41], as a component of
consistency and agreement algorithms in distributed systems [16, 56], in distributed
self-diagnosis [27], for improved learning [14], and as a classification tool with
neural networks [7]. The use of voting to obtain highly reliable data from multiple
unreliable versions was suggested by John von Neumann half a century ago [60].
Since then, the concept has been practically utilized in fault-tolerant computer
systems and has been extended and refined in many different ways. Reliability
modeling of voting schemes by considering compensating errors [55], handling of
imprecise or approximate data [3], combination with standby redundancy [35],
voting on digital signatures obtained from computation states [28] so as to reduce
the amount of information to be voted on, and adapting vote weights based on
a priori reliability data [50] constitute some of these extensions and refinements
in the history of voting. _

The bulk of the literature on voting in dependable systems pertains to the deri-
vation of an integer or real numerical result based on values offered by several com-
putation channels. With integers belonging to a small set, this is much like voting in
a political election. For example, possible conclusions in evaluating the radar image
of an aircraft may be “civilian” (0), “fighter” (1), or “bomber” (2). If three evaluation
units independently process the available data and arrive at the conclusions (1, 1, 2),
then the presence of a fighter plane may be assumed based on a majority rule; that
is, candidate “1” wins a majority of the vote. Voting with real data, or, more gener-
ally, with a large output space, is more complicated and has no direct counterpart in
political elections. For example, there is no strict majority if three measurements
of the distance to an approaching aircraft yield (12.5, 12.6, 14.0) in kilometers,
even though based on the fairly good agreement between the first two numbers,
an estimate of 12.55 km may be deemed as the “voting” result.

To facilitate and systematize the study of voting in diverse areas, a unified high-
level view is essential. We categorize voting schemes according to implementation
in hardware or software (voting networks or voting routines) and based on the size
and structure of their input/output spaces. A voting algorithm [42] specifies how the
voting result is obtained from the input data and may be the basis for implementing a
voting network or a voting routine. We present an overview of voting networks and
algorithms for dependable systems in Section 4.2. The choice of voting scheme
(algorithm, plus implementation strategy) has important implications for the cost,
speed, and reliability of the voting process and, ultimately, affects the respective
parameters of the system into which voting is embedded. Understanding the com-
plexity and performance of voting schemes is important in choosing the least
costly or fastest algorithm that satisfies the specified correctness and reliability
requirements of the system being designed.

4.2 VOTING IN DEPENDABLE SYSTEMS

Use of voting in dependable systems has a long history, and von Neumann’s work
[60] is generally considered the beginning of research efforts in hardware voting.
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Subsequently, voting was applied as a mechanism for reconciling inaccurate or
conflicting results produced by multiple diverse versions of a software module
[3]. In this section, we review issues in hardware and software voting and provide
a unified framework that can be applied to both.

4.2.1 Hardware Voting

The simplest voter produces an output from 7 bit-inputs, where all inputs are treated
as equals. Greater in sophistication are word voters in which input words may be
associated with weights reflecting their varying reliabilities. The general structure
of a hardware voter with n inputs and one output, along with their associated
votes, is shown in Fig. 4.1. In this subsection, we review some issues for hardware
voters, without repeating the extensive background information, justifications, and
design alternatives provided in Ref. [38]. '

A bit-voter is quite easily implemented using a variety of design strategies. We
first focus on the design of w-out-of-n bit-voters whose output is 1 when w or
more of the inputs are 1s. We have w = l(n + 1)/2} for majority bit-voters and
w > |(n + 1)/2] for supermajority bit-voters. The case w =< n/2 makes sense in a
fail-safe environment where the probability of producing an incorrect output of 1
by a module is significantly smaller than the probability of an incorrect O output.
The design of a w-out-of-n bit-voter is essentially a parallel counting problem,
which has been extensively studied in computer arithmetic due to applications in
fast multiplier designs [46]. An n-input parallel counter supplies the {log,(n + D1-
bit sum of the n input bits as an unsigned binary number. Comparing this sum to
the threshold w and deciding whether the threshold has been matched or exceeded
is an easy matter.

In fact, with a fixed threshold w, the two-stage design outlined in the preceding
paragraph can be simplified through merged arithmetic design [46] for detecting the
sign of w — Y _i,x;. For example, designing a 4-out-7 voter requires only that the
most-significant bit of the 3-bit sum be produced, and this bit serves as the output
without a need for comparison. More generally, a saturating counter [26], which
need not be capable of producing exact counts exceeding w, may be employed.
Gate networks, multiplexer-based design, and construction based on decomposition
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Fig. 4.1 Schematic diagram of a hardware voter and its pipelined implementation.
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are some of the other possible strategies for implementing w-out-of-n bit-voters [38].
All such designs are readily extended to the case of weighted voting. For example,
the parallel counting method will be based on adding the votes associated with 1
inputs rather than the inputs themselves. The resulting multioperand addition
scheme [46] will be based on input operands that are formed by fanning out the
input bits (fixed votes) or ANDing the input bits with arbitrary votes supplied as
inputs.

Hardware word-voters are represented by the same diagrams as in Fig. 4.1, except
that each signal line now represents k bits, where k represents width. The simplest
word-voters take k separate votes on the bits within the words, either in a parallel
structure or sequentially in time through a single bit-voter. This, however, produces
the correct voting output only under certain conditions. For example, with 3-input
majority voting, such a voter would produce the incorrect output of 11 when pre-
sented with the 2-bit input words 01, 10, and 11. However, if a majority does
exist, then independent bit voting does in fact produce the correct majority result
for word inputs. Note that, in word-voting, the k bits of each input are presumed
to represent, collectively, an encoding of a single value. If the k-bit words are
obtained by simply juxtaposing k independent true/false or yes/no data elements
(such as binary properties of a target being tracked), then using k bit-voting oper-
ations may in fact be the right thing to do.

Note that with bit inputs, a majority always exists. Therefore, the only problem in
a majority bit-voter is determining whether more than half of the inputs are 1s; if not,
then 0 is output. For a word voter, on the other hand, none of the input values may be
in the majority; in such cases, we may use plurality voting to determine which input
value appears more often than all of the others. Thus, word-voting is more compli-
cated than bit-voting. It is known that, with a totally ordered input space, voting has

the same time and circuit complexity as sorting and that the requisite circuit can be
implemented by augmenting a sorting network with vote-combining and max-
selection stages, with the time and cost complexity of the sorting stage being domi-
nant [38]. Just as was the case for the weighted version of bit-voting, the weighted
version of word-voting is not fundamentally more difficult than nonweighted word-
voting. It is, however, the case that threshold voting is fundamentally simpler than
plurality voting [40]; thus, the former should be chosen over the latter whenever the

application allows it.

4.2.2. Software Voting

Although it is quite possible to implement the voting schemes of Section 4.2.1 in
hardware or software, the latter is often used when the process of adjudication for
obtaining an output from multiple inputs is more complicated than that in simple
majority or plurality voting. Despite the added complexity, we still call the process
“yoting” under our extended definition of the term. We will see later that voting, as
studied by mathematicians and social scientists, is in fact much more than the
majority or plurality schemes commonly associated with political elections. It is
in this spirit that we use the term “voting” (see Sections 4.2.3 and 4.5.1).
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One hallmark of software voting is that there are often indicators of result
reliabilities that can be taken into account in obtaining the adjudged result [13].
Therefore, the output of the voting process is not only a function of input values
but also depends on ancillary or peripheral information. Such information may be
derived from past histories of modules providing the inputs, results of prescreening
or acceptance tests, special flags supplied to indicate self-evaluation by modules,
fail-safe or exception outputs, and knowledge of correlations between the results
under special circumstances. Using these indicators and the input values (or indi-
cators of agreement and disagreement between various inputs), a decision process
is used to derive the output result. The said result may be one of the input values
or a compromise value, such as the mean or median of a selected subset of input
values [32, 42]. The goal of adjudication in this context is often to maximize the
probability of producing the correct output or to minimize the risk [8, 13], the
Jatter being of interest when various incorrect output values are associated with
different costs or penalties.

As far as run-time resource utilization is concerned, table-based adjudication is
the most efficient scheme; it is also the most general. The table lists, for each poss-
ible combination of values for the various indicators, the appropriate output or the
rule to be used for computing the output. The table may be represented in alternate
forms, such as coteries [15] or Boolean expressions [25]. Consider for example
three sensors, each of which detects the occurrence of an event with one of three
degrees of confidence. Using a, b, and ¢ for the three sensors and subscripts 1, 2,
and 3 for degrees of confidence (3 being the highest), the adjudged detection
output f may be specified by the following Boolean expression:

f= aibic1 vV ayby V bacy V ases

This Boolean expression essentially specifies that the event’s detection is sig-
naled if all three sensors agree with low degree of confidence, if a and c agree
with the highest degree of confidence, or if b agrees with a or ¢ with medium
degree of confidence. The greater confidence level required of a and ¢, when b
disagrees with them, may be due to our knowledge that a and ¢ have a common
weakness that makes them prone to correlated failures, leading to false alarms.

Figure 4.2 depicts the same decision process in the form of quorums, or subsets
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Fig. 4.2 Quorums for the three-sensor reliable detection problem.
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needed for a positive decision. The confidence level O has been added to Fig. 4.2 to
denote nondetection.

From the viewpoint of the relationship of the output to inputs, the voting process
can be categorized as selection or compromise. Selection voting implies that one of
the finite or infinite set of possible output values is selected as the voter output. This
is based on the notion of a majority or plurality of inputs “supporting” the chosen
output (the notion of support will be discussed later; often, it means exact or approxi-
mate, matching of values). Compromise voting, on the other hand, allows flexibility
in computing an output based on all, or a selected subset of, inputs. Compromise
voting is exemplified by the (generalized) median or mean selection rule from a
set of candidate inputs. Generalized median rule refers to the process of eliminating
pairs of data points that are furthest apart (using an arbitrary distance metric), until
only one or two data points remain. Figure 4.3 illustrates the process on a Euclidian
plane, where the set of candidates is initially selected to be a maximal set of
proximate data points.

4.2.3 A General Framework

To allow systematic study of the voting methods discussed in Sections 4.2.1 and
4.2.2, as well as many other schemes, we present the following definition of
weighted voting. Given n input data objects xy, x5, . .. , x,, and associated nonnega-
tive real votes (weights) vy, vo, ..., v, with > [ v; = V, (generalized) weighted
voting aims to compute the output y and its vote w such that y is “supported by” a
number of input data objects with votes totaling w, where w satisfies a condition
associated with the voting subscheme; e.g., w > V/2 for majority voting, w > ¢
for t-out-of-V (generalized w-out-of-n) voting, and w corresponding to maximal sup-
port among all possible outputs in the case of plurality voting. Figure 4.1 depicts the

n]nm 1 1t1
elements of this definition.

A number of features in the definition above are noteworthy. First, we speak of
input objects, not input values. This is because it is possible, and indeed quite useful,
to deal with voting on composite or nonnumeric data. Second, we introduce the

Largest maximal
compatible class &

Proximity
limit

Fig. 4.3 Generalized median voting on a subset of nine data points. Once the furthest pairs
of points are removed from the subset, the sole remaining point is the output.
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M
Fig. 44 Results from five character recognizer and mutual support among their conclusions
(heavier lines indicate greater levels of support).

notion of input objects “supporting” the output y. In the simplest case, an input
supports a chosen output if the two are equal. However, approximate equality, as
well as more complex notions of support, may be envisaged. An example is depicted
in Fig. 4.4 where five character recognizers draw independent conclusions with
varying degrees of mutual support. For each possible output, such as “B,” the
total level of support can be derived and the results used in the final selection.

Despite its generality, as illustrated in Fig. 4.4, our weighted voting model does
not cover all possible adjudication schemes. As an example, consider a system with

four sensors placed at the corners of a square area. The system should signal an event
" that can only occur outside the square area, if and only if any two adjacent sensors
indicate the event but not if two diagonally opposite sensors do so. It is easy to see
that no assignment of votes allows us to emulate this decision process through
weighted voting. When weighted voting is a feasible implementation alternative,
the assignment of weights to the various inputs can be nontrivial [6].

It is our contention, however, that weighted voting, as defined above, is general
enough to provide a useful unified framework for the study of voting in data fusion
and dependable computation. Such a unified framework allows the use of a common
set of algorithms that have been analyzed and optimized for correctness and
efficiency. As an example, we show how the adjudication scheme of Fig. 4.2 can
be formulated in this manner. Figure 4.5 depicts a possible assignments of votes
and a threshold to convert the problem into weighted threshold voting.

Confidence level

0 1 2 3
a 0 3 4 5
Vote
]
Sensor p 0 4 6 6
c 0 3 4 5

Fig. 4.5 Possible vote assignments to implement the outcome f = aibycy V axca V bycy V
asb; as weighted threshold voting with a threshold of 10.
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A relevant idea in discussing what can and cannot be implemented as weighted
voting is that of coteries [15]. A coterie is simply a collection of subsets (quorum
groups) of the units that participate in a decision process such that no subset is a
superset of another and any two subsets intersect. In the context of distributed sys-
tems, mutual exclusion can be guaranteed if critical operations require permission
from all members in any subset within a coterie. Because any two subsets intersect,
there is no way that another permission can be granted. The notion has been gener-
alized to read and write coteries so as to ensure high-performance and reliable read/
write operations with replicated data. For example, with 9-way replication, one can
view the replicas as being logically arranged in a 3 x 3 array. If each write operation
updates at least three replicas that are in the same row and each read accesses at least
three replicas located in the same column, then the replicas read are always guaran-
teed to contain the latest information.

At this point, two items of bad news can be revealed. First, coteries are more gen-
eral than weighted voting in the sense that there exist coteries that one cannot
implement as weighted voting. Second, adjudication processes of interest in depend-
able computing and data fusion are even more general than coteries, in the sense that
the requirement for intersection of the subsets may be dropped: if an alarm is to be
activated due to unsafe conditions, we do not really care whether several subsets inde-
pendently arrive at this conclusion. Figure 4.2 supplies an example. When the decision
process has more than two possible outcomes, an extra layer of complexity may result
from separate decision processes for each of the possible outputs. For example, in the
graduated response system for nuclear reactor safety (blinking light, siren, automatic
shutdown), the more drastic decisions may be associated with larger subsets.

There is also some good news. First, any coterie can be replaced by a multilevel
weighted voting system [57]. Providing the details is beyond the scope of this chap-
ter, but intuitively, some decisions are made early and others are postponed to later
rounds of voting where different vote values are used with candidate sets that have
been identified in earlier rounds. Second, even more general decision schemes than
coteries can often be converted to weighted voting, as illustrated by the example in
Fig. 4.5. Third, any quorum set (set of subsets of inputs to the voter) can be realized
as multidimensional voting [1], a generalization of weighted voting.

4.3 VOTING SCHEMES AND PROBLEMS

Voting schemes can be classified in many different ways. In this section, we present
a classification of voting schemes in the framework of our generalized weighted
voting paradigm and discuss the salient features of, as well as potential problems
in applying, some of the more important categories.

4.3.1 A Taxonomy of Voting

The four main components of a voting algorithm, namely input data (the x;s), output
data (y), input votes (the v;s), and output vote (w), can be used to impose a binary
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Input Output
Exact/ Consensus/
Data Inexact Mediation
Oblivious/ Threshold/
Vote Adaptive Plurality

Fig. 4.6 Variations in voting based on input/output data and input/output votes.

4-cube classification scheme, leading to 16 classes [44]. Briefly, the four dichoto-
mies used in the classification are defined as follows (see Fig. 4.6). The exact /inexact
dichotomy has to do with whether input objects are viewed as having inflexible
values or as representing flexible “neighborhoods.” For example, bit-voting algor-
ithms are exact, whereas word-voting on floating-point data may be inexact. Con-
sensus voting involves agreement or quorum, in the sense of a subset of inputs
“agreeing with” or “supporting” y, as we have chosen in our definition of weighted
_ voting. With mediation voting, the output y is chosen to minimize or maximize an
objective function of all inputs. This is excluded from our definition of weighted
voting because in this case “support” has levels, perhaps related to the notion of dis-
tance between input and chosen output values. For example, a least-squares fit may
be used to derive y. The oblivious/adaptive dichotomy corresponds to the v;s being
set at design time or allowed to change dynamically (be adjustable or variable).
Finally, threshold voting requires that w exceed a given threshold, whereas plurality
voting identifies an output y with greatest support from the inputs.

Within each of the four boxes in Fig. 4.6, the first option is simpler (in terms of
time complexity and implementation cost) than the second one and is taken to be the
default option. The 16 classes of voting schemes obtained from the four dichotomies
may be labeled by four-letter acronyms, beginning with the simplest scheme ECOT
and ending with the most complex IMAP. When we talk about threshold voting, we
are really considering the 8 schemes XXXT out of 16. Similarly, adaptive voting
refers to any of the eight schemes XXAX and inexact adaptive voting encompasses
the four schemes IXAX. When default settings are used for the unspecified features,
we characterize the voting algorithm as simple: e.g., simple voting (ECOT), simple
plurality voting (ECOP), and simple inexact adaptive voting (ICAT).

In the remaining subsections of Section 4.3, we consider some of the more
common voting schemes and point to all possible variations of the basic variants
of each scheme in relation to the categorization of Fig. 4.6.

4.3.2 Threshold Voting

Threshold voting is the simplest and oldest voting method. In consensus versions of
this scheme, an a priori threshold value is specified (e.g., three inputs, or inputs with
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votes totaling 10), and any output that has this level of support among the inputs is
considered a valid output. Thus, if candidate outputs y; and y, are both supported by
three inputs in a 3-out-of-5 majority voting scheme, then either output can be pro-
duced by the voting scheme. In this example, if the notion of support is defined to
require exact equality, then standard majority voting with at most one valid
output will result. Note that threshold voting is quite general in that it allows
schemes such as 2-out-of-n (any output that is proposed and “seconded”) or even
1-out-of-n (when inputs represent threats that are too serious to ignore, even if
only one computation channel or a single sensor signals the threat). At the other
extreme, unanimity voting is also a special case of threshold voting. In all these
cases, the output vote w is implicit and built into the algorithm.

Threshold voting can be implemented without actual vote tallying, which is a
requirement for plurality voting (see Section 4.3.3). Threshold voting can thus be
significantly more efficient in cost and time complexity. For example, when the
output must equal one of the inputs and “support” is transitive (x; supports x; and
x; supports x; implies that x; supports xy), t-out-of-V weighted threshold voting
requires O(np) time and working storage space for O(p) input objects, where
p =|V/t] and the unit of time is the latency to establish whether x; supports x;
[40]; contrast this with the () (n 2y time complexity and (}(n) space complexity of
weighted or unweighted plurality voting when the input objects cannot be ordered
and the Q(n log n) time complexity if they can. Easily derived corollaries of this
result establish the relative simplicity of unweighted w-out-of-n and majority
voting, the latter requiring O(n) time and working storage space for a single input
object. The algorithm just mentioned is readily parallelized for even greater
performance [45].

Threshold voting may be used in a two-stage process. First, mutual support
among the inputs is used to establish compatibility classes in which every
member supports every other member. A compatibility class with total vote exceed-
ing the threshold ¢ is then chosen for the second stage where one of the members of
the class (consensus voting) or a compromise output (mediation voting) is chosen as
the output. Examples of the latter include calculating the mean within the chosen
class or generalized median selection rule, as in Fig. 4.3.

4.3.3 Plurality Voting

In plurality voting, some form of vote tallying is required to determine which output
has the greatest support among the inputs. If the output must equal one of the inputs,
then vote tallying amounts to pairwise comparison of all inputs in order to establish
which input supports which other inputs. This is required even if “support” is tran-
sitive because, in the worst case, only one pair of inputs support each other and only
that particular comparison can establish this fact; all other comparisons indicate lack
of support, thus not contributing toward deducing mutual support between x; and x;
[40]. If input objects are ordered, however, sorting can be used before vote tallying
to reduce the time complexity from Q(r%) to Q(n log n) in software. Fairly efficient
sorting-based voting networks can be similarly designed in this latter case.
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The case of arbitrary output (not necessarily equal to one of the inputs) is much
more complicated, especially when the output space is large (the usual case for this
type of voting). In such a case, it is clearly impractical to tally the votes for all poss-
ible outputs to select an output with maximal support. Practically, however, this is
not a problem because “support” is not arbitrary in the sense, for example, of an
input value 3.10 supporting 3.12 but not 3.11 or 3.09. In other words, support or
lack thereof is a simple function of a suitably defined distance metric rather than
an arbitrary relation. For example, if a numerical input x; is taken to support all
real values in the interval [x; — &, x; + €], plurality voting is converted to interval
voting (see Section 4.3.4).

Like threshold voting, plurality voting may be used in a two-stage process. First,
mutual support among the inputs is used to establish compatibility classes. A largest,
or highest weighted, compatibility class is then chosen for the second stage where
one of the members of the class (consensus voting) or a compromise output
(mediation voting) is chosen as the output.

4.3.4 Approval Voting

In the sociopolitical context, approval voting is a scheme in which each participant
votes for a subset of candidates who meet his or her criteria for the position rather
than just picking a “best” candidate. Thus, approval voting is not at odds with
threshold or plurality voting but rather complements them; it is simply a specific
mechanism for one input to support multiple outputs. Among advantages of approval
voting, which may carry over to its use in dependable computing, is the property that
the splitting of votes among several qualified candidates does not cause a less qualified
candidate to win a plurality of the votes (run-off elections are intended to prevent this
from happening, but they do not solve the problem in all cases). Multiple approved
outcomes may be due to nonunique answer to a problem or uncertainties in the sol-
ution process. As an example of where approval voting might be useful, consider a
process control system where safe settings for a particular system variable are pro-
posed by multiple redundant versions of the control program and the final setting is
derived from among those that enjoy greatest approval.

Approval voting forces a voter to divide all possible candidates into two classes
of acceptable (supported) and unacceptable (not supported). This is inherently lim-
ited as there may be different shades of approval (some candidates may be deemed
more qualified than others). More generally, we can allow voters to provide a list
of candidates with their associated support levels. Interval voting, as a special
case of approval voting, where the approved outputs by each voter constitute an
interval of values along the real line, faces similar drawbacks in that all values
in the interval offered as an input to the voting process are deemed equally valid
outputs from a voter’s viewpoint. It is quite natural to assume that values near the
midpoint of an interval are somehow preferable to those closer to the boundaries,
but this is not taken into account in simple interval voting (more on this later).
Without this latter assumption, the output value must be chosen from a subinterval
that is the intersection of the largest number of the input intervals.
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Fig. 4.7 Example of interval voting when there are multiple, disjoint, maximally approved
subintervals. ~

Although the process described in the preceding paragraph is usually straight-
forward, there are some complications that must be dealt with. Consider, for example,
nonweighted voting with the four intervals shown in Fig. 4.7. Two disjoint subinter-
vals [a, b] and [c, d] enjoy a support level of 3 among the voters. So, it appears that
output values y; and y, have equal support and either value could be chosen as output.
However, what would be the basis of choosing one value over the other? Why would
x, be given preference over x; or vice versa? In fact, should we not discount the votes
of x, and x3, given that they essentially disagree with each other, choosing the output
from the intersection of x; and x4? But then, would not an output y;, say, that is outside
both x, and x3 be somehow of lower quality than y; or y,?

Answers to the questions posed in the preceding paragraph depend on the context
and application. For example, it may make sense to attach to the points in each inter-

val varvine annroval levels. raneine from 0O at the boundaries to 1 at the midnoint
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(see the dotted triangular shapes in Fig. 4.7). Adding up the approval levels, as
done at the top of Fig. 4.7, leads to total approval levels and one or more best
choices. Other combining rules are also possible. However, in the interest of fair-
ness, the triangular support areas for each interval may be normalized to have
unit area, thus preventing a voter from exerting undue influence by presenting a
very wide interval as its input. It may also be desirable to associate the outside of
a proposed interval with some form of negative approval, hence penalizing values
that are too far outside an interval.

4.4 VOTING FOR DATA FUSION

Data fusion refers to integrating data for the purpose of drawing correct conclusions
from imprecise, incomplete, or incompatible raw data [22, 33, 51]. The data are
often provided by sensors, with or without some kind of preprocessing (raw data
from simple sensors, or processed data from intelligent sensors). For an overview
of the field of data fusion, see Ref. [18]; it not only contains a compendium of
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the most important ideas and techniques for data fusion but also provides an exten-
sive list of Web sites, news groups, and other Internet resources.

4.4.1 Sensor Processing and Fusion

Sensor processing is needed in environmental monitoring, intelligent manufacturing,
process control, military surveillance, medical imaging, robotics (e.g., handling of
hazardous material), and remote sensing [21]. Sensors can range from rudimentary
(metal or smoke detector, barometer) to highly complex (identifying obstacles in a
robot’s path). The goal of data fusion is to overcome one or more of the following:

inherent sensor limitations,
permanent or intermittent malfunctions,
communication-related errors or delays, and

Sl A

errors in storage and processing.

A good example of aspect 1, overcoming sensor limitations, is when one uses two
sensors to obtain target position data: one with poor elevation and azimuth precision
but with relatively accurate range (radar) and another with complementary charac-
teristics (forward-looking infrared or FLIR). Figure 4.8 depicts the greater precision
of fused data. Another example is when the coverage of a sensor (e.g., area sensed) 1s
limited and multiple sensors are needed to provide the desired coverage. Limitations
are assessed with respect to the required certainty level. A particular sensor may be
adequate for one application (uncritical situation or unsophisticated adversary) but
deemed to be limited for another (battlefield, advanced jamming methods). As for
aspect 2, sensor unavailability may result from physical faults, jamming, or overload
in the case of non-dedicated sensors. Both aspects I and 2 are usually handled
through sensor replication, whereas aspects 3 and 4 are dealt with via coding
and redundant computations.

Radar
uncertainty
---- region

1

I

FLIR -
uncertainty
region

Intersection

Fig. 4.8 Pinpointing the location of a moving object via two different sensors with
complementary characteristics.
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4.4.2 Components for Data Fusion

The sensors used in a multisensor data fusion system may be similar/competitive (e.g.,
the two eyes in a human) or diverse/complementary (e.g., visual, tactile, and auditory
sensors). If the sensor data have no common feature, fusion is difficult, if not impossible
(see the discussion of data diversity in Section 4.4.3). At the other extreme, if all features
of the multiple sensors are common, then fusion reduces to filtering out the variations in
measurement [52]. In general, multisensor data fusion may be done in a hierarchical
manner, with fused data from one level forming the raw data for the next level.

As in other technical disciplines, sensor fusion systems and various states of
processed data in them are described using special terminology [58]. At one
system boundary, sensors collect raw data, which are then subjected to preproces-
sing to yield filtered data for each sensor. Sensors can be classified based on their
decision strategies into hard- and soft-decision sensors. The former process their
incident signal data and use decision rules to declare outcomes such as target iden-
tity, whereas the latter may provide partial identity evidence upon signal detection.
Soft-decision sensors “accumulate and integrate evidence, reporting partial evidence
and associated uncertainty (via probabilities, fuzzy membership functions, confi-
dence factors, or evidential intervals)” [17]. Data provided by a sensor take varying
forms (waveform, integer designating a class, real vector, image) and usually
include information about the sensor itself: current state (e.g., pointing angle), con-
figuration, health, and so on. The optional preprocessing or filtering may be needed
to reduce the data volume to avoid overwhelming the processing part.

The data then enters the processing part, which is composed of alignment and
correlation (low-level processing), yielding calibrated data, and assessment and
detection (high-level processing), which results in the final integrated data. The
low-level processing stage consolidates the data by using spatial and temporal
references, unit conversions, pairwise association of observations (a quadratic-time pro-
cess), and position/identity determination. The high-level processing stage interprets
the output of the previous stage and makes inferences in the context of system structure
and goals (e.g., threat assessment in a battlefield). At the other end of the fusion system,
decision or actuation is based on the latter integrated data and may involve external
guidance via a human interface. This final system output may be further processed
external to the fusion system, used to directly control some system components (e.g.,
adjust or reorient sensors), or tied to other systems (e.g., warning or response units).

The sensor data fusion community, which has grown tremendously since the
emergence of early rudimentary systems in the late 1970s, has long sought a unified
approach [17]. This group is fragmented, with members interested in practical mili-
tary applications isolated from the more theoretically inclined nonmilitary segment.
Research in data fusion is multidisciplinary and uses techniques from signal proces-
sing, statistics, pattern recognition, and information theory, among others. A variety
of results and techniques from decision or detection theory (e.g., Bayes’ method),
estimation theory (least-squares, maximum-likelihood), association or correlation,
and uncertainty management (evidence/belief theory, Shafer-Dempster reasoning,
fuzzy calculus) provide the theoretical bases for system implementations [61].
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4.4.3 Data Fusion Examples

In this subsection, we take two example applications from the multisensor data
fusion literature and formulate them in terms of generalized voting. Our goal is to
show that some techniques from one area can be useful in the other. In addition,
we discuss an example application context where both techniques are applied in a
complementary manner.

The first example is from p. 93 of Ref. [61]. Two sensors produce ambiguity sets
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1U11U'vv'ius their attempt to 1cpuguup the class of a target. Sensor 1 buppucs the ambi-
guity set {4, 5, 12, 18}, whereas the second sensor provides {12, 21, 32, 33}. Com-
bined, the two sensors unambiguously identify the target as being in class 12. This
type of fusion is actually a special case of approval voting. Each of the channels pro-
vides as output a set of approved values (e.g., system states that are deemed safe fol-
lowing a detected fault). The approved values, with each item or each set perhaps
having an associated weight or confidence level, are combined through an approval
voting algorithm to identify the best value or set of values.

The second example is somewhat more complex and has been the subject of
extensive research in multisensor data fusion [9, 20, 21, 34]. Assume that multiple
sensors provide real-valued scalar data. A nonfaulty sensor S; provides the real-
valued output x;. With knowledge of sensor accuracy, one can define an interval
[x; — Ax;, x; + Ax;] as containing the correct or intended sensor data. The objective
is then to obtain a value or an interval of values that represents the best estimate of
the sensed quantity. Again, the multiple intervals can be viewed as sets of values
approved by the sensors, with simple or weighted voting used to fuse the data.
Faulty sensors are properly handled as their intervals likely do not overlap with
those of correct sensors (correct conclusion is reached with very high probability
even if they do).

It is interesting to note that many of the results published in the references above
can be obtained directly and simply from the approval voting interpretation. Conver-
sely, some of the bounds derived in these references on the width of the fused inter-
val can be applied to analyze the precision and fault diagnosability in other interval
voting applications.

Consider now either of the problems above in a situation where the processing
part of the sensor fusion system is also subject to unavailability or failure. This
motivates distributed multichannel processing of sensor data, with the outcome
being multiple fusion results for use or interpretation by humans or another reliable
multichannel system. In this context, voting for fault tolerance and data fusion
become indistinguishable, as it is difficult to differentiate between sensor failures
or inaccuracies and computation errors.

4.4.4 Dealing with Data Diversity

In dependable computing, data diversity refers to slightly modified data that allow
recomputation of desired results in such a way that it is unlikely for faults to
affect the recomputed results in the same way as those obtained from the original
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data, hence leading to fault tolerance or, at least, fault detection [2]. This is akin to
the situation depicted in Fig. 4.8, where multiple sensor data are of the same nature,
differing only in format and/or precision. Here, we take a more general view so as to
cover many types of data fusion. For example, high temperature and high pressure
may constitute diverse forms of data that can be used to deduce hazardous conditions
in a nuclear reactor or chemical plant. In the latter case, the data are not slightly
modified but rather take vastly different forms: 200°C and 1,000 kg/cm® are
unrelated in form or meaning, yet both may support the conclusion that a certain
hazardous condition exists.

Consider a voter with an output space of size 3: viz, no action (0), triggering an
audible alarm (1), or emergency shutdown (2). Inputs to this voter need not all be of
the same type; temperature, pressure, and other sensors can supply independent evi-
dence of the system state for use in drawing an appropriate conclusion. What is
important is to be able to translate such evidence to a level of support for each poss-
ible output. Once this has been done, the rest of the voting process can proceed with-
out regard to the type of input that was used. Figure 4.9 is a graphical depiction of
this idea with four inputs. Each input x; supports an output y; at a certain level, rep-
resented by the thickness of the line connecting them in Fig. 4.9. The total support
for each output can then be derived in exactly the same way as for nondiverse data
inputs.

Although the idea discussed above is intuitively appealing, its implementation
requires extensive evaluation and great care. The key to success in this approach
is a robust way of deducing support levels. This, along with judicious weight assign-
ment, provides a unified way of treating confidence levels derived from the data and
supplied externally.

Like all algorithm design problems, correctness and performance of voting schemes
are key properties to evaluate and ascertain for practical applications. In Section 4.5,

Y1

¥s

Y3

Fig. 4.9 Different levels of support for various outputs from diverse inputs (heavier lines
indicate greater levels of support).
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following a discussion of some inherent limitations of voting systems, we deal with a
number of relevant issues in this regard, citing examples where appropriate.

4.5.1 Impossibility Results for Voting

The process of sociopolitical voting is often taken for granted, and its theoretical
underpinning is not well appreciated. For example, it is not generally known that,
once the number of candidates exceeds two, no “best” voting scheme exists. That
is, worst-case scenarios can be constructed for any given voting scheme so as to
yield an illogical or undesirable result. For an exposition of these problems,
framed in the context of recent US and French presidential elections, see
Ref. [12]. Another highly readable account of certain problems in voting can be
found in Ref. [59].

An ideal voting scheme should reflect the will of the electorate. Suppose that
there are three candidates (c;, ¢», c3) and that each voter freely and independently
ranks them according to his or her preference (condition 1, no big brother). Further
suppose that the relative ranking of a pair of candidates should be determined strictly
by the voters’ preferences regarding the same pair, without taking information about
other candidates into account (condition 2, independence of irrelevant alternatives).
A valid voting procedure should result in each of the outcomes “c; preferred over ¢;”
and “c; preferred over ¢;” for some voting profiles (condition 3, involvement).
Finally, it is reasonable to require that the final outcome not always agree with
the preferences of a single voter or always be the opposite of someone’s preferences
(condition 4, no dictatorship or antidictatorship). Arrow’s theorem, in somewhat
generalized form, states that no voting procedure exists that satisfies conditions
1-4 above [10].

One implication of Arrow’s impossibility or incompleteness result to voting for
dependable computation and data fusion is that more sophisticated voting schemes
are needed to ensure a smaller likelihood of illogical results. Consider for example a
particular voter’s preferences among pairs of candidates: ¢; > ¢3, ¢ > €3, C3 = C1,
where ¢; > ¢; means that the voter chooses c; over ¢;. This kind of voter, with circu-
lar preferences, is referred to as a “confused voter,” because there is general expec-
tation that preferences be transitive (a person who prefers a conservative to a
moderate and a moderate to a liberal should not pick a liberal over a conservative).
Even if confused voting is deemed illogical in the context of dependable systems
(and this has not been proven yet), it is still the case that one of the more faulty hard-
ware or software units may cast a confused vote and the voting process should be
robust enough to derive a logical conclusion despite the presence of confused votes.

Assuming transitivity of preferences for now, a voting scheme known as true
majority requires each voter to submit a rank-ordered list of the candidates, say in
decreasing order of preference. The voting process then picks a candidate who
beats each opponent in pairwise competitions based on the submitted rankings.
To see that this outcome may not be the same as the outcome of ordinary majority
voting, consider an election with 3 candidates, depicted geometrically [53] in
Fig. 4.10. The integer given in each triangular region denotes the number of
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Fig. 4.10 Preferences of 7 voters in a 3-way election. A line bisecting the triangle, with ¢;
and ¢; on its two sides, divides the voters according to their preference for ¢; relative to c;.

voters who rank the three candidates in the same way. For example, the leftmost
number 2 indicates that two voters prefer ¢ to ¢3, c2 10 €y, and ¢, to ¢ (abbreviated
¢, > ¢y > c3). True majority voting results in c5 being elected, given its slim 4-to-3
edge over both ¢; and ¢,. In ordinary voting when only the first-choice candidate is
identified, the votes would be 1-3-3 for ¢y, ¢y, and c3, respectively (no majority).
Even the well-regarded Borda voting scheme, in which a first-choice candidate in
an n-way election gets n—1 points, a second-choice candidate n — 2 points
(2 points and 1 point in our 3-way voting example), and so on, with the points tallied
to determine the winner, leads to the unacceptable ordering ¢ > €3 > ¢;. The moral
of our story is that no voting scheme works as expected in all cases. The best that we
can do is to come up with a scheme that works well in the desired context and with
the semantics attached to votes in a particular application.

To see the relevance of the example in Fig. 4. 10 to voting in dependable comput-
ing or data fusion, consider the three candidates to be three different conclusions
based on input data (e.g., that a radar object is a civilian airliner, a bomber, or
a fighter jet) and the various orderings represent the conclusions of seven program
versions or smart sensors about the target.

4.5.2 Correctness Concerns

There are two types of correctness concerns for voting schemes. The first one, which
we will basically ignore here, is the issue of correctly implementing a chosen voting
scheme in hardware or software. As voting schemes become more complicated to
deal with more complex input objects or to achieve greater performance, it is
entirely possible to have residual design errors in their implementations. We
ignore this class of correctness concerns here because they are not unique to
voting schemes. Application of sound hardware /software design methodologies 18
as important here as it is in the design of any complex system.
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More relevant to our discussion is the notion of correct deduction of an output
from the input information supplied to the voter. In other words, the output
should be chosen so that it is the most likely correct output based on the input infor-
mation and other auxiliary data. In the literature, this has been referred to as
maximum-likelihood voting. Of course, there are situations where we do not
choose the maximum-likelihood output due to safety concerns. For example, if
out of many sensors measuring a critical parameter of a nuclear reactor only a
couple indicate a dangerous condition, we may decide to override the output that
is most likely to be correct [8]. Concerns for safety can be separately incorporated
into the voting process, so let us focus on the maximum-likelihood voting strategy.

One may think of the inputs to a maximum-likelihood voter as comprising a
syndrome, which includes the inputs originally presented by multiple data sources
as well as other information such as outcomes of acceptance tests, results of pairwise
comparisons, and the like [13]. Additionally, the voter may have information, in the
form of probability distributions, about the likelihood of correct results or of various
incorrect results from each source and the a priori distribution of valid results in the
output space. The computation for a maximum-likelihood voter is generally quite
complex as it entails determining the probabilities of correctness for each possible
output. When the output space is small [36], this might be feasible, given the
high computational power of modern microprocessors or the capabilities of hard-
ware devices (custom ICs or FPGAs). For large output spaces, a brute-force
approach is impractical, and theoretical results are needed to reduce the search
space.

One such result pertains to the case when the inputs x; to the voting process are
integer valued and are thus considered exact. In other words, all correct data sources
will present precisely the same value to the voter. In this case, under some fairly
reasonable conditions, the search for an optimal (maximum-likelihood) result can
be limited to at most n + 1 values: the n values from the data sources and one repre-
sentative value from among those not offered by any source [8]. Consider for
example an output space with five possible values and seven data sources producing
two of these values, as depicted in Fig. 4.11. In many cases, y; will be chosen as the
maximum-likelihood output. This is the case, for example, when data sources have
similar error characteristics and the a priori output distribution is uniform. On the
other hand, if output y, has a much higher a priori probability and/or data sources
are more prone to producing an erroneous y; than an erroneous y,, then y, might

Four votes _@ 0O
for output y,

@‘\Three votes
No vote for /'O

for output
this and two Putye

other outputs ©

Fig. 4.11 Example output space in maximum-likelihood voting.
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become the maximum-likelihood result. In this example, only one of the three poss-
ible outputs with no vote (the one with maximum a priori probability of being
correct) need be considered, if at all, in the selection process.

Maximum-likelihood output selection is somewhat more complicated when
correct values differ slightly from each other (inexact voting). The process to be
used in this case depends on how far a “correct” result can stray from the ideal
value. Furthermore, straying from the ideal value can be treated as uniform (much
like intervals denoting a set of equally likely values in interval voting) or can be
associated with a probability distribution that makes larger deviations less likely.
Even in the simple uniform case, if a correct value can differ from the ideal
value by [ ticks, where one tick is the resolution of number representation, some
(2l + Dn + 1 different values may have to be considered to deduce the maxi-
mum-likelihood output. This is because each of the n inputs has / potential values
for the output on each side and because one value not produced by any of the
voters must also be considered [8].

4.5.3 Performance Considerations

Performance parameters of interest in assessing voting schemes include latency and
throughput. Even though low latency generally implies high throughput, the converse
is not true, especially for hardware implementation of voting, which can be easily
pipelined (see Fig. 4.1). Latency is defined as the length of the time interval between
the availability of the last input and the production of the voter output. As such, any
preprocessing that can be performed on early inputs to speed up the process after the
receipt of the final input is not included in the latency, provided that such is performed
concurrently and does not slow down the process of input generation or reception.
Throughput is defined as the number of adjudications per unit time and is dictated
primarily by application requirements and the frequency of voting.

~Besides the latency of the voting operation itself, voting introduces additional
delays in the form of data communication and synchronization. The latency of the
voter is measured from the time it receives its last input. However, if this input
must be communicated to the voter from a distant node within a distributed
system, the data communication latency must somehow be figured in. Additionally,
if multiple data sources must await the voting outcome before they are allowed to
continue, the corresponding barrier synchronization latency must also be included.
Thus, the voting latency must be viewed as having three components: latency of the
voting algorithm, added delays for data transmission to and from the voter, and syn-
chronization overhead.

Voting latency depends on the algorithm utilized and on the particular inputs pre-
sented to the algorithm. For most voting algorithms of practical interest, the voting
latency is not significant. Even when voting requires interactive convergence, as
in Refs. [4] and [24], it is not the computational part of the algorithm but rather
the multiple rounds of communication that is the dominant factor. Despite the
observation above, it is still the case that some steps can be taken to minimize the
computational complexity. Examples include decomposition of voting schemes
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into a hierarchy of simpler schemes [31] and choice of integers and rational numbers
for the input votes and the voting threshold, respectively [37].

The communication overhead of voting is a significant factor when software
yoting is used in a distributed environment. Here, some reduction in load is possible
by optimizing the voting scheme for the most probable cases, thus paying a heavy
communication penalty only if necessary in rare cases. For example, in n-way
exact voting by n sites, each site can broadcast (1/n)th of the result bits to all
sites that assemble the pieces, compare the assembled word with their own results,
and broadcast agreement bits to all other sites. If majority agreement exists (the
usual case), then the broadcast pieces represent the correct majority, assuming per-
fect communication. Only when majority agreement does not exist will each site
have to broadcast its complete result in a second round. When the error probability
is not very small, encoding the result in an error-correcting code and sending (1 /n)th
of the codeword reduces the chance of complete transmission, possibly leading to
higher communication efficiency [62].

Hardware voters generally work in synchrony, expecting the inputs at exactly the
same time, to avoid excessive circuit complexity due to the need for buffering and
matching of inputs. For software voters, however, the simplicity advantage of syn-
chronous operation is often overshadowed by its severe performance penalty. It is
quite advantageous to allow speculative computation to proceed while a previous
set of results is being voted on. The results of such speculative executions are com-
mitted to permanent memory only upon the completion of voting and dissemination
of its relevant outcomes. In some cases, it might be possible to strike a balance
between the overhead of tight synchronization and the algorithmic complexity of
fully asynchronous operation via an intermediate approach [54].

4.6 UNIFYING CONCEPTS

In Section 4.6, we point to similarities between the concepts applied to data fusion
and those used in dependable computation, propose a unified terminology, and show
how both fields can benefit from more interaction with each other [43]. Formulation
of these approaches to data quality enhancement as generalized voting schemes
constitutes a step in this direction.

4.6.1 Toward a Common Terminology

Traditionally, researchers in multisensor data fusion have assumed that the com-
munication, storage, and processing subsystems are highly reliable and have focused
only on algorithms for integrating data from homogeneous or heterogeneous collec-
tions of potentially faulty /inaccurate sensors. On the other hand, researchers dealing
with redundant or replicated computations have, for the most part, assumed that the
input data is perfect and that the only sources of errors or inaccuracies are faults in
the data communication, storage, and processing subsystems and perhaps the
numerical characteristic of the algorithms being used (e.g., with regard to the
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accumulation of round-off errors). Despite this separation, the two fields have many
problems and techniques in common. The main goal in each is to proceed from raw,
suspect, or low-quality data to integrated, trustworthy, or high-quality data on which
important decisions can be based.

Figure 4.12 highlights the similarities between multichannel computation and
sensor fusion, proposing a common terminology applicable to both fields. Some
of the correspondences between sensors and computation channels (raw and suspect
data, preprocessing and acceptance testing, filtering and reasonableness checks,
integrated and trustworthy data, decision and output) are self-explanatory. The
human interface, which is absent from the dependable computing track, has been
added to account for the fact that advanced voting techniques often involve adjus-
table parameters, perhaps necessitating human intervention.

From the viewpoint of unifying the two areas, the most important system com-
ponents in Fig. 4.12 are the boxes labeled “Correlator” and “Voter” in the unified ter-
minology. The concept of correlation comes from the data fusion side, but it has been
used in limited forms by the dependable computing community when results of com-
putation channels are cross-compared as a way of weeding out obviously wrong data
or for producing a syndrome to help with the subsequent decision process. The term
“adjudication” was introduced by fault-tolerant computing researchers to avoid the
restrictive meaning often associated with “voting.” Others prefer to use “generalized
voting.” We simply use “voter” because our view of voting, as introduced in Section
4.2 .3, is indeed much more general than commonly considered. Because the correlator
box assists the voter in deriving its conclusions, it is quite possible to merge the two
into a still more general voting unit, as depicted in Fig. 4.12 in the form of a dotted
circle. This reduces the number of different blocks to three: data modules, evaluators
or testers, and the voter.

Researchers in both multisensor data fusion and reliable multichannel compu-
tation are becoming increasingly aware of the need for unifying theories.

Terminology for data attributes Terminology for system parts
Data Fusion Unified Dependabitity Data Fusion  Unified Dependability
Computation
Sensor  Data source channel
Raw Low-quality = Suspect
Acceptance
-~ Preprocessor  Evaluator tester
Filtered Evaluated Reasonable
Aligner/ Cross-
Correlator ~ Correlator  comparator
Calibrated  Correlated Compatible -
v Assessor/ Voter/
Detector Voter Adjudicator
Integrated  High-quality Trustworthy ==~~~
Decider/ )
Actuator Data sink Output
Human Human
interface interface N/A

Fig. 4.12 Unified view of voting for data fusion and dependable computation.
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For example, it has been observed that “while the term data fusion is widely used, its
meaning is subject to varying interpretations,” but “data fusion has a common basis
in theory, which is independent of application” [61]. Similarly, the need for a gen-
eralized formulation of voting to cover the wide variety of methods in current use
was noted long ago in the reliable computing community [32].

4.6.2 A Data-Centered Methodology

In Section 4.6.2, we briefly discuss a data-centered or data-driven methodology that
can be used as a framework for dealing with both multisensor data fusion and
reliable multichannel computation in forms that are more general than Fig. 4.12.
The methodology, which uses both voting and acceptance testing (evaluation), fos-
ters a unified treatment of data errors, inaccuracies, and tardiness regardless of
causes (data generation, collection, transmission, storage, manipulation, interpret-
ation) and explicates the optimal allocation of resources for dealing with various
error sources. It also allows the designer to view varied redundancy features or tech-
niques, from data and design diversity to retry and replication, as instances of a gen-
eral data quality enhancement process, thus facilitating comparisons and design
tradeoffs. The desirability of associating a confidence level with each data item
has been noted in both the dependable computing and data fusion communities
[39, 49]. Although obtaining or assigning confidence levels is nontrivial, this
difficulty should not discourage us from seeking appropriate methodologies.

The aforementioned data-driven methodology, originally proposed for redun-
dancy evaluation and optimization in software-based multichannel computations
[47], focuses on data correctness and accuracy rather than on the reliable operation
of modules producing or handling the data. Note that the symmetric way in which
data sources are depicted in Fig. 4.12 is neither necessary nor even desirable in
all cases, neither is the restriction that a single voter be used on the path from
data inputs to output. In fact, varying characteristics of data sources and the amen-
ability of some types of results to fast and efficient acceptance testing, makes a hier-
archical or clustered approach much more efficient. In ongoing research, we are
using DD-MTV (data-driven module/test/voter) graphs as tools for describing
and modeling various software fault tolerance architectures. Figure 4.13 depicts
an architecture with two voting levels as an alternative to straight n-version pro-
gramming whereby n independently developed software modules provide results
to an n-way majority voter (one version has been removed and replaced by the
test T). Combining n-version programming with acceptance testing has been pro-
posed by several researchers, but the study of asymmetric configurations such as
the one shown in Fig. 4.13 is fairly recent [47].

Because inputs to the second voter V, in Fig. 4.13 have different reliabilities even
when all data sources are identical, weighted voting must be used to optimize the
overall reliability. For the same reason, the weight attached to the leftmost input
of V,, coming from the test module T, must depend on the test outcome and on
the level of disagreement present among the inputs to V. In the simplest case, out-
puts of data sources may begin with dependability-tags (d-tags) of 1. Voter V,
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Fig. 4.13 DD-MTV graph showing an asymmetric treatment of n — 1 data sources.

attaches a d-tag equal to the count of supporting inputs to its output which is then
forwarded to T. Finally, T adjusts the d-tag depending on the test’s outcome.
Such adjustments are done via d-raising and d-lowering functions that can be var-
iously defined.

Variations of the simple scheme described above can be used to optimize the
overall system reliability. Examples include different d-tag assignment schemes
for weighted voters and alternate vote augmentation or reduction policies associated
with pass or fail (or graduated) test outcomes. However, even the simple strategy
reflected in the DD-MTV graph of the example above has produced interesting
results regarding general combinations of data sources and evaluative testing that
are quite counterintuitive. This has led to a better understanding of such architec-
tures and facilitated the search for optimal configurations.

4.7 CONCLUSION

We have reviewed multisensor data fusion and reliable multichannel computation,
pointing out their similarities as well as the benefits of a unified approach to their
treatment. The unified approach involves a common terminology for referring to
system components and data states or attributes, along with a methodology that
allows data of varying qualities and formats to be integrated. Through several
examples from data fusion and dependable computing applications, we have
shown that (generalized) weighted voting, with an appropriate formulation of “sup-
port” and suitable assignment and dynamic manipulation of weights, can serve as a
powerful tool in both domains. Threshold, plurality, and approval voting each has a
place in a system designer’s toolbox. The choice of a voting method is dictated by
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(probabilistic) correctness attributes, as well as cost-performance tradeoffs. We have
also shown that there is more to voting than the simple majority /plurality viewpoint
heretofore dominating the literature in dependable computing and that voting
methods are inherently limited.

One of our important conclusions is that considering voting as data fusion, and
drawing from both mathematical studies of the anomalies in voting as well as
sensor fusion work in signal processing, can be beneficial to further development
in the field of dependable computing. A key to continued progress in this direction
is integration of research results from many different disciplines into the unified
model presented here. Aspects of the integration include drawing from well-
established and emerging formalisms such as metrology [30], rough set theory
[48], and fuzzy control and arithmetic [23, 63]. These, and other disciplines, that
involve decision processes with uncertainties in data, must be carefully studied in
search of insights and techniques that can be applied to data fusion and dependable
computation. In parallel and distributed systems, voting decisions must be distribu-
ted so as to provide greater robustness and performance. With distributed compu-
tation, sensing, and voting, the possibility of malicious or Byzantine faults, in the
form of malfunctioning sensors or node that send conflicting information to other
nodes, must be given serious consideration [1 1].
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