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Abstract 

In this paper, we focus on deriving low-diameter networks, 
beginning with D = 2, the next best value to that of the 
complete network, and proceeding to somewhat larger 
(constant) values leading to more economical networks. 
We show that perfect difference networks (PDNs), which 
are based on the mathematical notion of perfect difference 
sets, offer a diameter of 2 in an asymptotically optimal 
manner. In other words, PDNs allow O(d2) nodes when 
nodes are of degree d, or, equivalently, have a node 
degree that grows as the square-root of the network size. 
The symmetry and rich connectivity of PDNs lead to 
balanced communication traffic and good fault tolerance. 
Multidimensional PDNs offer a tradeoff between cost and 
performance in the sense that for any constant number q 
of dimensions, a q-dimensional PDN has diameter D = 2q 
and node degree that grows as the (2q)th root of n. 

1. Introduction 

Low latency, high bandwidth, energy efficiency, and 
robustness are some of the properties that are sought 
in networks for parallel and distributed computing. 
Given that network performance parameters depend 
not only on the network architecture but also on a 
number of factors relating to applications and their 
data exchange characteristics, the challenge in 
interconnection network design is finding the right 
match between communication needs of applications 
on one side and capabilities and limitations inherent 
in each architecture on the other. This, in turn, 
explains the proliferation of implemented and 
proposed connectivities, sometimes characterized as 
the sea of interconnection networks [Parh99]. 

Ideally, each node is directly connected to every 
other node, thus allowing one-hop communication 
between any pair of nodes. This connectivity pattern 
is modeled by the n-node complete graph Kn. 
Physically, however, complete-graph connectivity is 

difficult to provide for large systems that are of 
practical interest, due to both the high cost of nodes 
with many communication channels and lack of 
scalability for system growth. At the other extreme 
from Kn, the simplest possible physical connectivity 
pattern is that of n-node ring Rn. Here, each node has 
only two communication channels. The number of 
links is n, as is the aggregate network bandwidth with 
unit-capacity links. Data exchange is direct only 
between each node and one or two neighbor(s) and 
indirect in all other cases. The ring architecture is an 
example of bipartite graph, with even- and 
odd-numbered nodes constituting the two parts and 
links connecting nodes that are not in the same part. 
The complete graph is not bipartite, but Kn/2,n/2 can be 
defined (for even n) in which a node in one part is 
connected to all nodes in the other. This leads to 1- or 
2-hop connectivity between nodes. 

Intermediate architectures between Kn and Rn can be 
obtained in a variety of ways, providing tradeoffs in 
cost and performance. Network cost is affected, among 
other things, by the (maximum) node degree d, while 
indicators of network performance include diameter D 
and bisection bandwidth B. The degree-diameter 
product dD is sometimes used as a composite measure 
of cost-performance or cost-effectiveness. Many of 
these intermediate architectures can be viewed as 
chordal rings [Arde81], rings to which bypass links or 
chords have been added to reduce the network 
diameter, or richly connected graphs from which 
certain links are systematically removed via pruning 
[Kwai98], [Parh99a] so as to reduce the node degree 
and, thereby, network cost. Other mechanisms for 
deriving cost-effective interconnection networks from 
other networks include cross-product composition, 
recursive substitution, and hierarchical composition. 
Cross product of networks will be discussed in Section 
4 along with the notion of swapped networks as an 
example of hierarchical composition. These combining 



 

strategies lead to families of networks that are all 
based on the same component networks and thus 
share a number of common topological and 
performance parameters. 

One of the main foci of interconnection network 
research over the past two decades has been the 
exploration of the network design space, with 
particular emphasis on deriving networks with 
sublogarithmic diameters that can provide some of 
the desirable properties of the hypercube. Emphasis 
on sublogarithmic-degree networks was justified by 
considerations of VLSI area and packaging, 
including pin limitations [Parh00]. Perfect difference 
networks which form the primary focus of this paper, 
provide us with design points closer to the Kn 
extreme. They offer benefits of full connectivity at a 
much lower cost. The part of design space that falls 
between the hypercube and Kn has been of little 
interest in architectures with wired connectivity, but 
becomes more practical, and thus interesting, with 
wireless/optical links. 

2. Mathematical Preliminaries 

Given that the complete graph Kn (diameter D = 1) is 
impractical for large n, it is quite natural to consider 
the best topology for D = 2, the next most desirable 
network diameter. Based on Moore bounds, a 
degree-d directed graph with D = 2 can have no 
more than d2

 + d + 1 nodes. The corresponding upper 
bound n = d2 + 1 for undirected graphs isn’t much 
different [Parh99]. Perfect difference sets provide 
the mathematical tools for achieving this optimum 
number of nodes, asymptotically, within the 
framework of perfect difference networks or PDNs. 
Figure 1 shows the place of PDN in the spectrum of 
network choices with regard to diameter. 
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Fig. 1. The spectrum of interconnection networks 
in terms of diameter for size n. 

 
Perfect difference sets were first discussed in 1938 
by J. Singer. The formulation was in terms of points 
and lines in a finite projective plane. The theory of 
finite projective planes is highly developed [Hall67], 
but these mathematical notions are not required to 
understand the exposition that follows. We first 
present a theorem that forms the basis of the 
definition of perfect difference sets, and then 
proceed with the definition itself. All of the results in 
this section are from [Sing38]. 

Theorem 1: A sufficient condition that there exist δ + 

1 integers s0, s1, . . . , sδ, having the property that their 
δ2 + δ differences si – sj, 0 ≤ i ≠ j ≤ δ, are congruent, 
modulo δ2 + δ + 1, to the integers 1, 2, . . . , δ2 + δ in 
some order is that δ be a power of a prime. ■ 

Definition 1: Perfect difference set (PDS) – A set {s0, 
s1, . . . , sδ} of δ + 1 integers having the property that 
their δ2 + δ differences si – sj, 0 ≤ i ≠ j ≤ δ, are 
congruent, modulo δ2 + δ + 1, to the integers 1, 2, . . . , 
δ2 + δ in some order is a perfect difference set of order 
δ. Perfect difference sets are sometimes called simple 
difference sets, given that they correspond to the 
special λ = 1 case of difference sets for which each of 
the possible differences is formed in exactly λ ways. ■ 

Note that a PDS need not contain an integer outside 
the interval [0, δ2 + δ], because any integer outside the 
interval can be replaced by another integer in the 
interval without affecting the defining property of the 
PDS. The following is easily proven. 

Theorem 2: Given a PDS {s0, s1, . . . , sδ} of order δ, 
the set {as0 + b, as1 + b, . . . , asδ + b}, where a is 
relatively prime to δ2 + δ + 1, also forms a perfect 
difference set. ■ 

By definition, any perfect difference set contains a pair 
of integers su and sv such that sv – su ≡ 1 mod δ2 + δ + 1. 
By theorem 2, and the observation that preceded it, 
subtracting su from all integers in such a PDS yields 
another PDS that contains 0 and 1. 

Definition 2: Normal PDS – A PDS {s0, s1, . . . , sδ} is 
reduced if it contains the integers 0 and 1. A reduced 
PDS is in normal form if it satisfies si < si+1 ≤ δ2 + δ,    
0 ≤ i < δ. ■ 

Definition 3: Equivalent PDSs – Two different PDSs 
are equivalent iff they have the same normal form      
{0, 1, s2, . . . , sδ}. ■ 

Henceforth, we deal only with normal-form PDSs, 
some examples of which appear in Table 1. Several 
important properties of PDSs are noted in the 
following paragraphs.  

Theorem 1 guarantees that a PDS exists for any n of 
the form δ2 + δ + 1, where δ = ph for a prime number p. 
It is suspected, though not yet proven for arbitrarily 
large n, that PDSs do not exist for other values of n 
[Guy94]. However, practically speaking, this is not 
alarming, given that primes and their powers are quite 
abundant, both in the range of practical interest and 
asymptotically; e.g., there are 197 primes and powers 
of primes under 1000. 

For some values of δ, there exist more than one PDS. 
For example, we have the following PDSs of order 3: 
{0, 1, 3, 9} and {0, 1, 4, 6}. It is easily verified that all 
numbers in the interval [1, 12] can be formed as 



 

mod-13 difference of numbers in each of the sets 
above. Multiple difference sets of the same order 
lead to alternate interconnection network designs. 

A PDS of order δ = ph, where p is a prime number, 
represents a set of n points and n lines in the 3D 
Euclidian space such that each point is on δ + 1 lines 
and each line contains δ + 1 points. This geometric 
interpretation leads to a PDS of order δ = ph being 
generated from an irreducible degree-3 polynomial 
in GF(ph); for details, see [Sing38]. 

 
Table 1. Perfect difference sets of orders up to 16. 

Note that the values of δ shown are powers of prime 
numbers and n = δ2 + δ + 1. 

 
δ n Example PDS of order δ in normal form 

2 7 0, 1, 3 
3 13 0, 1, 3, 9 
4 21 0, 1, 4, 14, 16 
5 31 0, 1, 3, 8, 12, 18 
7 57 0, 1, 3, 13, 32, 36, 43, 52 
8 73 0, 1, 3, 7, 15, 31, 36, 54, 63 
9 91 0, 1, 3, 9, 27, 49, 56, 61, 77, 81 
11 133 0, 1, 3, 12, 20, 34, 38, 81, 88, 94, 104, 109 
13 183 0, 1, 3, 16, 23, 28, 42, 76, 82, 86, 119, 137, 154, 175 
16 273 0,1,3,7,15,31,63,90,116,127,136,181,194,204,233,238,255 

 
Besides the design of interconnection networks, 
discussed here, perfect difference sets have many 
other applications in error control coding, block 
designs (which are related to orthogonal Latin 
squares), and signal encoding to ensure negligible 
autocorrelation. These applications may be 
characterized by their need for provision of distance, 
variety, and/or orthogonality, or for avoiding 
coincidence, all of which are facilitated by unique 
differences offered by a PDS. 

3. Perfect Difference Networks 

Consider the normal-form PDS {0, 1, s2, . . . , sδ} of 
order δ. We can construct a direct interconnection 
network with n = δ2 + δ + 1 nodes based on this PDS 
as follows [Rako98], [Rako98a], [Rako01], [Parh03].  

Definition 4: Perfect difference network (PDN) 
based on the PDS {0, 1, s2, . . . , sδ} – There are n = 
δ2 + δ + 1 nodes, numbered 0 to n – 1. Node i is 
connected via directed links to nodes i ± 1 and i ± si 
(mod n), for 2 ≤ i ≤ δ. Because all index expressions 
in this paper are evaluated modulo n, henceforth we 
will delete the qualifier “mod n.” The preceding 
connectivity leads to a chordal ring of in- and 
out-degree d = 2δ and diameter D = 2. Because for 
each link from node i to node j, the reverse link (j, i) 
also exists, the network corresponds to an undirected 
graph (see Figs. 2-3 for examples depicting the first 
two entries of Table 1). ■ 
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Fig. 2. PDN with n = 7 nodes based on the 

perfect difference set {0, 1, 3}. 

 
Fig. 3. PDN with n = 13 nodes based on the 

perfect difference set {0, 1, 3, 9}. 
 

Every normal-form PDS contains 1 as a member. 
Therefore, PDNs based on normal-form PDSs are 
chordal rings. In the terminology of chordal rings, the 
links connecting consecutive nodes i and i + 1 are ring 
links, while those that connect nonconsecutive nodes i 
and i + si, 2 ≤ i ≤ δ, are skip links or chords. The link 
connecting nodes i and i + si is referred to as the 
forward skip link of node i and backward skip link of 
node i + si. Similarly, the ring link between nodes i and 
i + 1 is a forward (backward) ring link for i (i + 1). 

There is an alternate way in which we can define an 
interconnection structure based on the normal-form 
PDS {0, 1, s2, . . . , sδ} of order δ [Rako00]. This 
scheme was briefly discussed in [Beut98], but the 
filing of the patent in [Rako98] and the second 
author’s prior work leading to it predate [Beut98]. 

Definition 5: Bipartite PDN based on the PDS {0, 1, 
s2, . . . , sδ} – There are n = δ2 + δ + 1 host nodes, 
numbered 0 to n – 1, and similarly numbered switch 
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nodes. Each host node i is connected via a pair of 
directed links to each of the switch nodes i + 1 and i 
+ si, for 2 ≤ i ≤ δ. The preceding connectivity leads 
to a bipartite network, with host and switch nodes 
constituting the two parts. Both nodes and switches 
have in- and out-degrees δ + 1. The host-to-host 
diameter of the network is D = 2. All host-to-host 
shortest paths are of length 2, leading to the average 
interhost distance ∆ = 2. Again, the bipartite network 
can be drawn as an undirected graph. ■ 

An example bipartite PDN for n = 7, based on the 
PDS {0, 1, 3}, is depicted in Fig. 4. One advantage 
of a bipartite PDN over a basic PDN is that its node 
degree is reduced from 2δ to δ + 1 through the use of 
n switches, with each switch being a (δ + 1) × (δ + 1) 
communication node with full-crossbar or partial 
connection capability. The bipartite PDN can be 
viewed as simply a method for implementing the 
basic PDN. This is easily understood by drawing 
boxes around similarly numbered host and switch 
nodes in Fig. 4 to form the nodes of a basic PDN. 
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Fig. 4. Bipartite PDN with 7 hosts (squares) and 7 switches 

(circles), based on the PDS {0, 1, 3}. 
 

It is also possible to interpret the bipartite PDN as a 
2n-node, degree-(δ + 1) network by simply viewing 
all nodes in Fig. 4 as host nodes. The resulting 
network has a diameter of 3. This is easily seen as 
follows. The host nodes replacing the original switch 
nodes are denoted by primed indices. Each such 
primed node is directly connected to several 
unprimed nodes and any pair of unprimed nodes are 
connected by a shortest path of length no greater 
than 2. As an example, node 0 in Fig. 4 is not 
connected to node 2′ by any path of length 2 or less, 
but there are several paths of length 3: 0 1′ 1 2′, 0 3′ 
2 2′, 0 0′ 6 2′. These paths are node- and 
edge-disjoint. In general, there would be δ + 1 such 
paths through all switches connected to the source 
node, given that the interswitch diameter is also 2. 

4. PDN-Based Composite Networks 

The perfect difference network, with its O(n1/2) node 
degree and small constant diameter, in both its basic 
and bipartite forms, falls between the hypercube and 
complete graph in the design space of Fig. 1, offering 
performance close to the latter, at a much lower cost. If 
further cost reduction is desired, networks of smaller 
node degrees can be built based on the PDN concept. 
These networks fall in the space between hypercube 
and PDN in Fig. 1, offering somewhat lower 
performance than the latter at reduced cost, thus 
allowing cost-performance tradeoffs in numerous 
configurations. A wide variety of networks can be 
obtained through cross-product composition. For 
example, the q-cube (q-dimensional binary hypercube) 
is K2 × K2 × . . . × K2. We thus define multidimensional 
PDN as the cross product of several component PDNs. 

Definition 6: Product graph – The (cross) product of q 
graphs, Gi = (Vi, Ei), 0 ≤ i ≤ q – 1, denoted as G = Gq–1 
× Gq–2 × ... × G0, is a graph with n = nq–1 × nq–2 × ... × n0 
nodes, each labeled with a distinct q-digit mixed-radix 
integer xq–1xq–2 . . . x0 in the range 0 to n – 1, so that 
nodes x and y are connected iff their labels differ in 
one and only one digit, say xj ≠ yj, and xj is connected 
to yj in Gj [Yous95]. ■ 

Theorem 3: Topological properties of product 
networks – The node degree, average internode 
distance, and diameter of G = Gq–1 × Gq–2 × . . . × G0 
are the sums of the respective parameters for the q 
component networks [Yous95]. ■ 

Definition 7: Multidimensional PDN – Consider the q 
PDNs H0, H1, . . . , Hq–1 based on their respective PDSs 
of orders δ0, δ1, . . . , δq–1. The product network Hq–1 × 
Hq–2 × . . . × H0 is a qD, or q-dimensional, PDN. Nodes 
of a qD PDN are labeled by q-tuples (xq–1xq–2 . . . x0), 
where xi belongs to the node set of Hi, 0 ≤ i < q. When 
the q component PDNs Hi are identical, the resulting 
network Hq is a PDN-based power network. ■ 

For concreteness, we limit our discussion to 2D 
PDN-based power network H2, depicted in Fig. 5, 
where node connections within rows or columns are 
removed to avoid clutter. The statements that follow 
are easily generalizable to higher dimensions and 
nonidentical component PDNs. Nodes in row i 
(column j) of H2 are linked exactly as in an n-node 
PDN. Therefore, the total number of links in Fig. 5 is a 
factor of 2n greater than the number of links in its 
n-node basis PDN. Hence, increasing the number of 
nodes by a factor of n using 2D PDN has led to a 
factor O(n) increase in link multiplicity. By contrast, 
had we opted for an O(n2)-node PDN, its O(n3) links 
would have been a factor of O(n3/2) higher that the 
corresponding number for an n-node PDN.  
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Fig. 5. The structure of the 2D PDN power network H2. 

 
Based on the properties of product graphs, the 
diameter of H2 is 4 and its node degree is 4δ, where 
δ is the order of the PDS defining H. If each 
row/column PDN has n nodes, the 2D PDN power 
network will have N = n2 nodes of degree O(n1/2). 
Thus, node degree of H2 grows as the fourth root of 
its size N. For example, a PDN with roughly 106 
nodes requires node degree of about 2000, whereas a 
2D PDN power network of the same size can be 
built of nodes with degrees that are about 16 times 
smaller. A consequence of this slower growth of 
node degree is that H2 has a much more favorable 
degree-diameter product than a simple PDN of 
comparable size. Asymptotically, the dD factors are 
16δ for H2 versus 4(δ2 + δ + 1) for the equivalent H′, 
with the former being better except for δ = 2. 

Because H2 is a power network, all algorithmic 
properties of power networks are applicable to it. 
For example, routing in H2 can be accomplished via 
generalized “row/column” routing where a message 
is first routed in the “row” PDN and then in the 
“column” PDN, or vice versa. Broadcasting is done 
similarly. Any sorting algorithm for a square mesh 
that uses row and column sorts as its basic steps can 
be adapted to H2 by emulating a linear-array sorting 
algorithm on the row and column PDNs. Hence, 
derivation of efficient algorithms for PDNs leads 
directly to a number of corresponding algorithms for 
H2 with no additional effort. 

A way of building composite networks with more 
favorable properties based on the PDN concept is via 
the “swap” connectivity [Yeh96], [Parh05].  

Definition 8: Swapped networks – The swapped 
network Gswapped, based on the n-node nucleus graph 
G, is a graph with n copies of G numbered 0 to n – 1, 
so that nodes i in copy j is connected to node j of 
copy i for all i ≠ j and 0 ≤ i, j ≤ n – 1 [Yeh96]. ■ 

Theorem 4: Properties of swapped networks [Yeh96] – 
If G has node degree d and diameter D, the node 
degree and diameter of Gswapped are d + 1 and 2D + 1. ■ 

Consider a swapped network based on an n-node PDN. 
This network has n2 nodes of degree 2δ + 1, with a 
network diameter of 5. The bisection width of this 
swapped network is upper bounded by n2/4 (collapsing 
the clusters produces a Kn network) and is thus 
considerably smaller than that of a similar size PDN 
which has a bisection width of order n3 [Parh03]. 
Routing, broadcasting, or total-exchange algorithms 
are quite simple for this network but under heavy 
traffic, the communication performance is likely to be 
lower than that of a PDN due to the smaller bisection.  

5. Algorithms and Fault Tolerance 

Efficiency of certain key communication algorithms 
play an important role in the usefulness of any network. 
The most important among these are point-to-point 
communication (one node sending a message to 
another node), one-to-all broadcasting (a source node 
sending a message to every other node), all-to-all 
broadcasting, and total exchange (every node sending 
a unique message to every other node). 

Algorithm 1: Routing in a PDN – Routing from 
source node x to destination node y in H is tantamount 
to determining an intermediate node k such that k – x = 
si and k – y = sj, for some pair of elements si and sj in 
the PDS on which H is based. The problem thus 
reduces to the determination of si, viz. the first link to 
be traversed on route to node y, since both k and sj are 
then uniquely determined. The value of si can be 
obtained based on table lookup or by means of 
calculations relating to the mathematical notion of 
finite projective planes [Sing38]. ■ 

Algorithm 2: Broadcasting in a PDN – Broadcasting 
in H is a 2-phase process, given that the network 
diameter is 2. In the first phase, the initiating node x 
sends the broadcast message to node x + si for each 
nonzero member si of the PDS on which H is based. At 
the end of this phase, which involves δ message 
transmissions, δ + 1 nodes are aware of the broadcast 
message. In the second phase, each node y that already 
has the broadcast message (including the initiator) 
sends the message to nodes y – sj, except for the node 
from which the broadcast message was received. In 
this step, x sends δ messages, while each of the δ 
intermediate sources sends δ – 1 messages, for a total 
of δ2 messages. Broadcasting is thus completed in the 
minimum possible number δ2 + δ of message 
transmissions. With the single-port communication 
model, where a node can send but one message in each 
time step, the total broadcast time is 2δ steps. All-port 



 

communication, on the other hand, leads to 2 time 
steps for broadcasting; this model is less realistic for 
networks with large node degrees and will not be 
considered further in this paper. ■ 

Algorithm 3: All-to-all broadcasting in a PDN – 
All-to-all broadcasting involves each node sending a 
message to all other nodes in the network; hence, n 
distinct messages must be sent, with each one going 
to n – 1 destinations. Each node follows Algorithm 2, 
with single-port communication, independently. First, 
the broadcast message of a node x is sent to all its 
neighbors x + si in δ steps. These messages do not 
conflict with each other because the neighbors u + si 
and v + si for distinct nodes u and v are distinct. At 
the end of this phase, each node has already received 
δ of the expected δ2 + δ broadcast messages. A node 
y now sends its own message to all nodes y – sj, and 
each of its received δ messages to the same nodes, 
except the one from which the message originated. 
These steps require δ + δ(δ – 1) = δ2 transmissions; 
again, there is no conflict. All-to-all broadcasting is 
thus completed in δ2

 + δ = n – 1 transmission steps, 
which is the minimum possible. ■ 

Algorithm 4: Total exchange in a PDN – Total 
exchange (also known as gossiping or all-to-all 
personalized communication) involves each node 
sending a distinct message to each of the other nodes 
in the network; hence, n(n – 1) distinct messages 
must be transmitted, with each one having a single 
destination. Distinct messages must go from each 
node x to all nodes x + si – sj. As si and sj assume all 
values in the PDS, all distinct nodes are covered. In 
phase 1, requiring δ message transmissions, each 
node sends its messages to nodes x + si; i.e., nodes 
that can be reached with sj = 0. In the second phase, 
again involving δ message transmissions, nodes x – 
sj are addressed. The remaining δ(δ – 1) destinations 
for each source must be reached in 2 steps. All nodes 
step through possible si and sj (si ≠ sj) values in 
unison, with node x sending a message to node x + si, 
requesting that it be forwarded to node x + si – sj. 
This process needs 2δ(δ – 1) message transmissions 
and involves no conflict. The algorithm requires 2δ2 
message transmissions in all, which is optimal in 
view of each node sending n – 1 messages and each 
message traveling the average internode distance of 
2δ2/(n – 1) hops. The preceding algorithm and 
analysis assume that a node can send or receive a 
message in each time step, but not both at the same 
time. If simultaneous transmission and reception of 
messages is possible within a node, then the 2δ(δ – 1) 
steps above can be reduced to δ(δ – 1) + 1 through 
pipelining, leading to a total exchange time of δ2 + δ 
+ 1 = n steps which is very nearly the best possible. 
It is easily proven that in the course of this algorithm, 

all PDN links carry the same number of messages; 
hence, message traffic is fully balanced. ■ 

Like the communication processes described in 
Algorithms 1-4, one can develop algorithms for 
common parallel computations that involve both data 
transfer steps and local node operations. An alternative 
to developing parallel algorithms from scratch is to 
show that a new connectivity is capable of emulating a 
well-known architecture efficiently, thus allowing 
available algorithms to run on the new architecture in a 
step-by-step emulation mode. The following result 
shows that PDN can emulate a complete network with 
asymptotically optimal slowdown. 

Theorem 5: A PDN of order δ can emulate a complete 
network of the same size with a slowdown factor of at 
most 2δ + 2. This emulation is asymptotically optimal. 

Proof: As a result of our ability to construct a set of 
n(n – 1)/2 paths between all pairs of nodes such that no 
more than δ + 1 paths pass through any one link, the 
bisection width of an n-node PDN is shown to be of 
order n3/2. We say that the congestion of this routing 
scheme is c = δ + 1. If we use these routing paths for 
communication between nodes in our PDN, any 
communication step in the associated complete graph 
will be slowed down by a factor no greater than δ + 1 
due to link congestion and by a factor of at most 2 due 
to routing distance increasing from 1 to 2. Asymptotic 
optimality of this emulation is a direct consequence of 
the bisection widths of the complete graph and PDN 
being of orders n2 and n3/2, respectively. ■ 

Any computer system utilizing a large number of 
nodes and links must be robust if the failure of a very 
small subset of the many components is not to lead to 
total system crash. One aspect of network robustness is 
its survivability, which requires lack of vulnerable 
spots along with ability to withstand limited failures or 
attacks [Hobb91]. Intuitively, lack of vulnerable spots 
is synonymous with “blandness” which means that 
careful study of the network will not reveal parts that 
are particularly attractive as targets of a malicious 
attack. Ability to withstand limited attacks implies 
richness of connectivity so that disrupting certain 
nodes and/or links will not disconnect the network. 
PDNs are certainly both bland and richly connected. 

Another aspect of robustness is the amount by which 
the shortest path between two nodes increases in 
length when node and/or link failures occur. Consider, 
for example, the effects of removing a single link of a 
PDN. Does this action increase the shortest distance 
between any pair of nodes? Unfortunately, it does. 
Note that whenever the shortest distance between a 
pair of nodes is 2, there are two link-disjoint shortest 
paths so that the removal of a single link never 



 

increases the length of the shortest path. When the 
two nodes are directly connected, however, removal 
of the link connecting them may increase the length 
of the shortest path to 3. One way around this 
problem is using a 0-free PDS, defined as one that 
does not contain 0. Such a PDS guarantees the 
existence of two node- and link-disjoint paths of 
length 2 between any pair of nodes in the associated 
PDN. A canonical 0-free PDS can be obtained by 
adding 1 to all elements of a canonical PDS. The 
0-free version of the PDN in Fig. 2 turns into the 
complete graph K7, but generally, the node degree 
increases from 2δ to 2δ + 2, which is still O(n1/2). 

6. Conclusion 

We have introduced PDNs and the mathematical 
underpinnings that make them desirable as robust, 
high-performance communication and parallel 
processing networks. Some topological properties of 
PDNs were discussed and various routing algorithms 
for them were presented. It was shown that an 
n-node PDN can emulate the complete network Kn 
with optimal slowdown and balanced message traffic. 
Although other interconnection architectures with 
topological and performance characteristics similar 
to PDNs exist, we view PDNs as worthy additions to 
the repertoire of computer system designers. 
Alternative network topologies offer additional 
design points that can be exploited to accommodate 
the needs of new and emerging technologies. Further 
study is needed to resolve some open questions and 
to derive cost/performance comparisons for PDNs. 

Whereas PDNs are interesting and important as 
asymptotically optimal diameter-2 interconnection 
structures, it is much more likely that hybrid or 
composite networks involving PDNs as component 
structures prove useful for practical applications. We 
introduced multidimensional and swapped PDNs as 
examples that lead to constant-diameter networks 
with lower cost and performance than pure PDNs. 
Various hierarchical or multilevel combinations of 
PDNs with other networks are also possible. 

Possible generalizations of the perfect difference 
concept may lead to more efficient networks. For 
example, given an interest in 2-hop routing, we do 
not need to restrict ourselves to differences; sums 
can also be used. A natural question then is whether 
the use of difference/sum sets can lead to smaller 
sets (lower degree) or larger networks with the same 
node cost. As an example, the set {0, 2, 5, 6} leads 
to the mod-15 sums and differences {2, 5, 6, 7, 8, 11} 
and {1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14}, which 
together cover all integers in [1, 14]. 
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