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Abstract 

An n-node network, with nodes numbered from – n/2 to 
n/2 – 1, is a chordal ring network with the chord lengths 
1 = s0, s1, . . . , sk–1 (2 ≤ si < n/2) when each node i (– n/2 
≤ i < n/2) is connected to each of the 2k nodes i ± si mod 
n (0 ≤ i < k) via an undirected link, where “mod” 
represents symmetric residues. We study a class of chordal 
ring networks in which the chord length si is a power of 
an odd “radix” r, that is, si = ri, for r ≥ 3. We show that 
this class of chordal rings, with their nodes indexed by 
radix-r numbers using the symmetric digit set [– (r – 1)/2, 
(r – 1)/2] are easy to analyze and offer a number of 
advantages in terms of static network parameters and 
dynamic performance in many application contexts. 

1. Introduction 

Chordal rings have been studied for many years as 
the interconnection architecture for parallel and 
distributed systems [Arde81], [Berm95], [Hwan01]. 
One attractive feature of chordal rings is that they 
have Hamiltonian cycles built-in and readily visible, 
whereas for other networks, researchers go to great 
lengths to establish Hamiltonicity. Other features 
include symmetry, ease of routing, and robustness. 
Although the latter advantages are not unique to 
chordal rings, not many networks offer all these 
desirable properties simultaneously. On the negative 
side, determination of topological parameters can be 
difficult. Even for chordal rings with a single skip 
link type (degree 4), known as double-loop networks, 
the problem is nontrivial in general, and it is not yet 
completely solved [Chen05]. 

In this paper, we study a class of chordal ring 
networks in which the chord length si is a power of 
an odd “radix” r, that is, si = ri, for r ≥ 3. We show 
that this class of chordal rings, with nodes indexed 
by radix-r signed integers using the symmetric digit 
set [– (r – 1)/2, (r – 1)/2] are easy to analyze and 
offer a number of advantages. 

Following some background and basic definitions in 
Section 2, we study routing in our class of chordal 
rings, and derive their diameters, in Section 3. We deal 
with a number of other topological properties in 
Section 4 and with robustness attributes in Section 5. 
Our conclusions appear in Section 6. 

2. Basic Definitions and Properties 

An n-node network, with nodes numbered – n/2 to 
n/2 – 1, is a chordal ring network with chord lengths 
1 = s0, s1, . . . , sk–1 (si < n/2) when each node i (– n/2 
≤ i < n/2) is connected to each of the 2k nodes i ± si 
(0 ≤ i < k) via an undirected link; all node-index 
expressions in this paper are evaluated modulo n, 
using symmetric residues. Our focus will be on a class 
of chordal ring networks in which the chord length si is 
a power of an odd “radix” r, that is, si = ri, for r ≥ 3. 
We index nodes of the chordal ring CR(n; r, . . . , rk–1) 
by k-digit radix-r numbers using the symmetric digit 
set [– (r – 1)/2, (r – 1)/2]. We restrict the number of 
nodes to the maximal value rk in deriving some of our 
results. Other values of n do not create insurmountable 
difficulties, but they do lead to needless clutter in 
presenting the basic ideas.  

Figure 1 depicts a 16-node chordal ring with a single 
chord length 5, designated as CR(16; 5), where the 
first parameter is the number of nodes and the 
parameters following the semicolon are the skip 
distances besides the mandatory s0 = 1. Nodes 0 to 7 
and −8 to −1 can be numbered in the 2-digit symmetric 
radix-5 number system as 0 0 to 1 2 and −2 2 to 0 −1, 
respectively. The node label 1 2, for example, is 
indicative of a path from node 0 0 to node 7; the path 
consists of one chord of length 5 and two ring links, 
with the three traversed in any desired order (a total of 
three paths). The path thus obtained is a shortest path, 
leading to a simple and elegant shortest-path routing 
algorithm that is inherently fault-tolerant when the 
shortest path is not of length 1, and it leads to only two 
extra hops in the latter case. 



 

 
Fig. 1. The chordal ring network CR(16; 5) 

with 16 nodes and chord length 5. 
 

 
The following four properties of CR(n; r, . . . , rk–1), 
2rk–1 < n ≤ rk, are easily established. 

Property 1: When the n nodes are indexed from 
–n/2 to n/2 – 1, each node has a unique label in 
the radix-r number system with the symmetric digit 
set [– (r – 1)/2, (r – 1)/2]. 

Property 2: For n = 2q, the n links corresponding to 
each chord length ri constitute a distinct spanning 
cycle. So, the network contains k edge-disjoint 
Hamiltonian cycles. 

Property 3: For n = rk, the n links corresponding to 
each chord length ri form ri disjoint cycles, each of 
length rk–i.  

Property 4: Between two nodes with symmetric 
radix-r indices xk–1 . . . x1x0 and yk–1 . . . y1y0, there 
exists a path of length no greater than | xk–1 – yk–1 | 
+ . . . + | x1 – y1 | + | x0 – y0 |. 

3. Routing and Diameter 

Because of node symmetry, we only need to devise a 
method to route a message from node 0 to node x = 
xk–1 . . . x1x0. To route from an arbitrary node u to 
another node v, we represent the smaller (in 
magnitude) of v – u and u – v as x = xk–1 . . . x1x0 and 
use a set of links as if routing from node 0 to node x. 
The following property indicates that shortest-path 
routing to node x of CR(n; r, . . . , rk–1) can be 
achieved by using xk–1 . . . x1x0 as a routing tag. 

Property 5: To route from node 0 to node x = xk–1 . . . 
x1x0 along a shortest path, simply attach x to the 
message as a routing tag tk–1 . . . t1t0. In each hop, 

from an intermediate node v, pick any nonzero digit in 
the routing tag t. Let this nonzero digit be ti. If ti > 0, 
route to node v + ri and decrement ti. If ti < 0, route to 
node v – ri and increment ti. If every digit is 0, the 
message is at its destination. 

Note that greedy routing is a special case of the 
algorithm described in Property 5 and corresponds to 
picking the leftmost nonzero ti (longest skip that does 
not lead past the destination) in each hop. As a 
corollary, greedy routing also leads to the selection of 
a shortest path. 

Based on Property 5, the diameter of CR(n; r, . . . , rk–1) 
is equal to the weight, or sum of absolute values of 
digits, in a node index with maximum weight. One 
such maximum-weight node index is of the form 
xk–1aa . . . a, where a = (r – 1)/2 and xk–1 has the 
smallest possible (most negative) value of – (n – rk–1) 

/ (2rk–1) . This leads to the following result. 

Property 6: The diameter of CR(n; r, . . . , rk–1) is D = 
(k – 1)(r – 1)/2 + (n – rk–1) / (2rk–1) . In the special 
case of n = rk, the formula reduces to D = k(r – 1)/2 = 
(r – 1)(logr n)/2. 

Figure 2 depicts a representation of the chordal ring 
network CR(16; 5) of Fig. 1 as a subset of points on 
the infinite grid G16,5 [Chen05]. The parallelogram 
shown in Fig. 2, or its “digitized” version, tessellates 
the plane and allows the visualization and derivation 
of network diameter as the Manhattan or grid distance 
from a node inside the parallelogram to the closest of 
its four corners, with the interior node chosen to 
maximize this distance. 

 
Fig. 2. Part of the infinite grid G16,5 associated 

with the chordal ring CR(16; 5). 
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Of practical interest is the choice of the odd radix r 
that would minimize the diameter. To obtain this 
optimal radix, we write the diameter in the 
approximate form D ≅ (r – 1)(ln n / ln r)/2 for all n 
(the formula is exact only for n = rk). Differentiating 
D with respect to r and equating the result with 0 
yields the optimality condition ln r = (r – 1)/r. This 
is satisfied, approximately, for r = 3. With this 
optimal choice, d ≅ 1.26 log2 n and D ≅ 0.63 log2 n. 
We see that a diameter which is better than the 
diameter of an n-node hypercube is achieved, but at 
a greater cost in terms of node degree. More on this 
comparison will be offered later. 

The optimality of r = 3 is not surprising. The idea for 
these networks came to the author as he was looking 
at a mathematical puzzle dealing with weighing. 
Suppose that you have a balance and want to choose 
an optimal set of 4 fixed weights that would allow 
you the widest possible range of measurement in 
increments of 1 gram. The solution is 1, 2, 4, 8 
(offering a range of 1-15 grams), if weights must be 
placed on one side and the material or items to be 
weighed on the other. If, however, fixed weights can 
go on both sides, the optimal becomes 1, 3, 9, 27, 
offering a much wider range of weights (1-40 grams). 
The placement of fixed weights for any desired 
weight x is derived from the symmetric radix-3 
representation of x using the digit set {−1, 0, 1}; for 
example, x = 14 = (1 −1 −1 −1)three requires that the 
27-gram weight go on one side and the three others 
on the side of the material/items being weighed. The 
corresponding notion in chordal rings is traversing 
some links backwards along the shortest path.  

4. Other Topological Properties 

One of the important topological parameters of a 
network is its average internode distance, because it 
determines the expected performance in routing 
under light traffic conditions. Given that the number 
of steps in the shortest path from node 0 to node x 
equals the weight of x as a symmetric radix-r 
number, the following result follows by finding the 
average radix-r symmetric digit value and 
multiplying it by k. 

Property 7: The average internode distance ∆ of 
CR(n; r, . . . , rk–1), with n = rk nodes, is k[1 + 2 + . . . 
+ (r – 1) / 2]/r = kr / 2 – k / (2r) = (1 + 1 / r) D / 2, which 
is slightly more than half the diameter. 

Another important topological property is the 
bisection width B, an indicator of communication 
performance under heavy random traffic. The 
parameter B is quite difficult to obtain for an 
arbitrary interconnection network. The upper bound 

B ≤ 2(rk – 1) / (r – 1) on the bisection width is easily 
established by noting that it corresponds to cuts on the 
diametrically opposite sides of a ring drawing of the 
network (see, e.g., Fig. 1). The lower bound (n – 1 / n) 
r/(r – 1) can be established by embedding the complete 
graph Kn into our network and noting the maximum 
congestion of the embedding based on a balanced 
distribution of paths, that is, dividing the n(n – 1) / 2 
paths of average length ∆ = (k / 2)(r – 1 / r) over the kn 
available links equally. 

Property 8: The bisection width B of the chordal ring 
CR(n; r, . . . , rk–1), with n = rk nodes, is between the 
lower bound (n – 1 / n)/(r – 1 / r) and the upper bound 
2(n – 1) / (r – 1). In particular, for any fixed radix r, we 
have B = O(n), with the coefficient of the leading term 
being in the approximate range of [1 / r, 2 / r]. 

So, based on Property 8, we know the bisection width 
of CR(rk; r, . . . , rk–1) to within a factor of about 2. For 
radix r = 3 that minimizes the diameter, the bisection 
width B, which is in the approximate range [3n / 8, n], 
can be seen to be quite comparable to that of an n-node 
hypercube. For r = 5, as derived in the following 
paragraph, the approximate range of B is [5n / 24, n / 2], 
somewhat lower, but still not far from that of a 
hypercube of comparable size (having B = n/2). 

One way to take the network cost into account in 
determining the best radix is to minimize the 
degree-diameter product dD = (r – 1)(ln2 n / ln2 r). 
Differentiating dD with respect to r and equating the 
result with 0 yields the condition ln r = 2(r – 1) / r. This 
condition is satisfied, approximately, for r = 5. With 
this optimal choice, we have d = D ≅ 0.86 log2

 n and 
dD ≅ 0.74(log2

 n)2. These compare favorably with the 
respective parameters of the n-node hypercube. 

Chordal rings CR(n; r, . . . , rk–1), based on our radix-r 
construction, are efficient with regard to VLSI layout. 
In fact, the example in Fig. 2 indicates that the VLSI 
layouts of these networks are quite similar to those of 
kD tori. The same number of wraparound links are 
needed as in tori, although the rules for the 
connectivity of the wraparound links are different. 
This difference, however, does not affect the area 
requirement. The same folding techniques can also be 
used to remove the need for long wires between 
neighboring nodes in VLSI layout.  

5. Algorithms and Fault Tolerance 

Inspection of Fig. 2 indicates that there are often 
multiple node- and edge-disjoint shortest paths 
between a given pair of nodes in CR(n; r, . . . , rk–1). 
For example, from node 0 to node 7, with the node 
index 1 2), we have the paths 5 + 1 + 1 (through 
intermediate nodes 5 and 6) and 1 + 1 + 5 (via 1 and 2). 



 

Of course, network robustness does not require that 
alternate shortest paths exist in all cases. It suffices 
that in the unlikely event of failures, some near- 
shortest path be available between any pair of nodes. 
Our chordal rings are robust in this latter sense. 

Using a proof method similar to that used in 
establishing the connectivity and fault diameter of  
k-ary n-cubes [Day97], or r-ary k-cubes with our 
notation, we can derive the corresponding results for 
our chordal ring networks. These are stated as 
Properties 9 and 10 below. 

Property 9: An arbitrary pair of nodes, u and v, in 
CR(rk; r, . . . , rk–1) are connected by 2k node/edge- 
disjoint paths, giving our chordal rings the 
maximum possible connectivity of 2k. 

We conjecture that a fairly small upper bound on the 
difference between the length of the longest of these 
alternate paths and the shortest path between the 
same two nodes can be derived, but have been 
unable to establish this bound thus far. 

Property 10: The fault diameter of the chordal ring 
CR(rk; r, . . . , rk–1), that is, the diameter of the 
surviving part of the network with 2k – 1 worst-case 
faults (guaranteed to leave the network connected), 
is no greater than D + 1.  

A fault-tolerant routing algorithm for the chordal 
ring CR(n; r, . . . , r k–1) can be readily devised. 
Figure 3 illustrates the availability of several shortest 
paths between some pairs of nodes that can be 
exploited for efficient fault-tolerant routing. Details 
of three versions of our algorithm (assuming global 
knowledge about faults and their locations, global 
knowledge about number of faults but not their 
locations, and only local knowledge) will be 
reported in the near future. 

 
Fig. 3. A graphical depiction of some shortest paths from 
node 0 to other nodes in CR(16; 5). Solid and dotted lines 

represent chords and ring links, respectively. 

6. Conclusion 

We have introduced a class of chordal ring networks 
and showed them to possess interesting properties with 
respect to static parameters and dynamic performance 
under fault-free and faulty conditions. Further research 
is needed to generalize some of our results that pertain 
only to particular network sizes to arbitrary n in an 
attempt to improve system scalability. Determining the 
exact bisection width, obtaining additional results on 
fault tolerance (including proving or disproving some 
of our conjectures), and devising emulation schemes 
for other networks are also desirable. Constructing 
periodically regular chordal rings [Parh99], in which 
any node v has only one chord of length rk–1 – v mod (k–1), 
is also of some interest in order to reduce node degree 
while preserving some of the desirable topological and 
algorithmic properties. 
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