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Abstract—In view of their applicability to parallel and distributed computer systems, interconnection networks have been studied

intensively by mathematicians, computer scientists, and computer designers. In this paper, we propose an asymptotically optimal

method for connecting a set of nodes into a perfect difference network (PDN) with diameter 2, so that any node is reachable from any

other node in one or two hops. The PDN interconnection scheme, which is based on the mathematical notion of perfect difference sets,

is optimal in the sense that it can accommodate an asymptotically maximal number of nodes with smallest possible node degree under

the constraint of the network diameter being 2. We present the network architecture in its basic and bipartite forms and show how the

related multidimensional PDNs can be derived. We derive the exact average internode distance and tight upper and lower bounds for

the bisection width of a PDN. We conclude that PDNs and their derivatives constitute worthy additions to the repertoire of network

designers and may offer additional design points that can be exploited by current and emerging technologies, including wireless and

optical interconnects. Performance, algorithmic, and robustness attributes of PDNs are analyzed in a companion paper.

Index Terms—Bipartite graph, bisection width, chordal ring, degree, diameter, hyperstar, interconnection network, low-diameter

network, regular network, two-hop connectivity.
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1 INTRODUCTION

A great deal of research in parallel and distributed
processing has dealt with methods of interconnecting

processors or nodes to achieve goals such as low-latency,
high-bandwidth, and/or energy-efficient communication.
Communication latency, bandwidth, or energy requirements
depend not only on the network architecture, but also on a
number of factors relating to applications and their data
exchange characteristics. Hence, the challenge in intercon-
nectionnetworkdesign is finding the rightmatchbetween the
communication needs of applications and technological
capabilities and the limitations inherent in each architecture.
This, in turn, explains the proliferation of implemented and
proposed connectivity schemes, sometimes characterized as
the sea of interconnection networks [19], [23].

At the application level, internode communication in a
parallel or distributed system may occur via shared
variables or message passing. In either case, a virtual
complete connectivity is envisaged that allows any process/
node to communicate with any other one. This connectivity
pattern is modeled by a complete graph Kn consisting of n
nodes, with every node linked to each of the other nodes by
an edge. Thus, Kn is a regular graph of node degree n� 1
which is both node and edge-symmetric (i.e., nodes/edges are
fully interchangeable via relabeling of nodes). Physically,

complete-graph connectivity is difficult to provide, due to
both the high cost of nodes with many communication
channels and lack of scalability for system growth. How-
ever, a physical Kn connectivity constitutes an ideal against
which the communication performance of other architec-
tures can be compared. This is because with Kn, no
intermediate node or routing switch is involved in data
exchanges, leading to direct conflict-free routing. The
n-node network Kn has nðn� 1Þ=2 links and a total
communication bandwidth of nðn� 1Þ=2, assuming unit-
capacity links.

At the other extreme from Kn, the simplest possible
physical connectivity pattern is that of n-node ring Rn (linear
array or line graph, Ln, resulting from the removal of one link
from Rn, is also of some interest). Here, each node has only
two communication channels: two bidirectional ports for
undirected ring or one input and one output port in the case
of directed ring. The number of links is n, as is the aggregate
network bandwidth with unit-capacity links. Data exchange
is direct only between each node and one or two
neighbor(s) and indirect in all other cases. An even-sized
ring network is an example of bipartite graph, with even and
odd-numbered nodes constituting the two parts and links
always connecting nodes that are not in the same part. The
complete graph is not bipartite, but Kn=2;n=2 can be defined
(for even n) in which a node is connected to all nodes in the
other part. This leads to 1 or 2-hop connectivity between
each pair of nodes.

Intermediate architectures between Kn and Rn can be
obtained in a variety of ways, providing tradeoffs in cost
(affected by parameters such as node degree d) and
performance (affected by network diameter D and bisection
bandwidth B, among other factors). Many of these inter-
mediate architectures can be viewed as rings to which
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bypass links or chords have been added in order to reduce the
network diameter (e.g., chordal rings [3]) or richly connected
graphs in which certain links are systematically removed
through pruning [17], [24], [26] to reduce the network cost.
Fig. 1 is an abstract view of the design space for
interconnection networks (including perfect difference net-
works, introduced later in this paper) in terms of node
degree varying from the minimum O(1) to the maximum
OðnÞ. Note that a node degree of Oðn1=2Þ, while significantly
better than OðnÞ, still does not allow us to build large
networks directly if wired connectivity is assumed. How-
ever, the situation is quite different with wireless and
optical links. Furthermore, many large networks are built
by combining smaller subnetworks or clusters in a manner
to be discussed shortly. In such cases, where even the
complete graph may be considered a viable cluster
connectivity scheme for relatively small clusters, perfect
difference networks allow us to move to somewhat larger
clusters with negligible increase in internode distances.

Three general mechanisms for obtaining a variety of
useful networks from smaller component networks are the
cross product, recursive substitution, and hierarchical composi-
tion of graphs.

The cross product (Cartesian productor simply product) of the
q graphs,Gi ¼ ðVi; EiÞ; 0 � i � q � 1, denoted asGq�1 �Gq�2

� . . .�G0, is a graph with nq�1 � nq�2 � . . .� n0 nodes, each
labeled with a distinct q-digit mixed-radix integer xq�1xq�2

. . .x0 in the range0 tonq�1 � nq�2 � . . .� n0 � 1, so thatnodes
x and y are connected iff their labels differ only in one digit,
say xj 6¼ yj, and xj is connected to yj in Gj [45]. The node
degree of a product graph is the sum dq�1 þ dq�2 þ . . .þ d0 of
the node degrees for the component graphs and its diameter
is the sum Dq�1 þDq�2 þ . . .þD0 of the diameters. A wide
variety of networks can be built through cross-product
composition. For instance, the q-cube (q-dimensional binary
hypercube) is K2 �K2 � . . .�K2. As a further example, the
product of two n1=2-node complete graphs is a network of
node degree 2n1=2 � 2 and diameter 2. More generally,Km �
Km � . . .�Km is referred to as q-dimensional radix-m general-
ized hypercube. It has n ¼ mq nodes, with node degree d ¼
qðm� 1Þ and diameterD ¼ q.

Multilevel hierarchical networks come in several different
flavors [25]. In all of these, h different or identical graphs

Gq�1; Gq�2; . . . ; G0 are involved, which define the connec-
tivity patterns at the h levels of the hierarchy. In the top-
down recursive substitution scheme, we start with Gq�1 and
replace each of its nodes with a graph Gq�2, forming a
supernode. Within each supernode, we use an agreed upon
scheme to connect the edges of Gq�1 to the nodes of Gq�2.
The process can be repeated with the resulting graph,
replacing each node in the composition of Gq�1 and Gq�2

with Gq�3 and so on. In the bottom-up hierarchical
composition scheme, we start with several copies of the
nucleus graph G0, which form supernodes for the next-level
graph G1. The composition of G0 and G1 then defines the
structure of supernodes within G2, and so on.

One of the main foci in research on interconnection
networks over the past two decades has been the explora-
tion of the design space depicted in Fig. 1, with particular
emphasis on deriving networks with sublogarithmic de-
grees that can provide some of the desirable properties of
the hypercube [1], [9], [18], [29], [44]. Emphasis on
sublogarithmic-degree networks was justified by VLSI area
requirements and packaging constraints, including pin
limitations; i.e., cost and realizability factors. Perfect
difference networks, which form the primary focus of this
paper, provide us with design points on the other side of
the hypercube in Fig. 1. They offer the benefits of full
connectivity at a much lower cost. The part of design space
that falls between the hypercube and Kn is of little interest
in architectures with wired connectivity [6], [46], but
becomes more practical and, thus, interesting with wireless
or optical links.

2 EVALUATION CRITERIA FOR NETWORKS

Network diameter D, defined as the longest of the
internode distances, is an important figure of merit for
networks. The diameter D indicates the worst-case number
of hops in sending a message from one node to another. The
diameter of a network ranges from the best of 1 for Kn to
the worst of n� 1 for the n-node linear array or line-graph
Ln. That the worst-case latency for messages in a network is
highly dependent on D is obvious with store-and-forward
routing. It is somewhat less clear that, even with wormhole
switching [10], [21], [22], network diameter plays a key role
in communication latency, albeit in an indirect way. This is
best understood by considering the case of short and long
messages separately. For short worms, the travel time of the
head, which is proportional to the hop distance, dominates
the overall message latency. For long messages, a significant
number of links, perhaps the entire source-to-destination
path, is occupied by the worm carrying the message. In
networks with large diameters, the worms tend to be longer
and, thus, occupy a greater portion of the aggregate
network bandwidth. This either increases the possibility
of deadlock or else forces us to use less aggressive routing
algorithms. Either alternative implies lower performance.
For a more detailed exposition of the importance of network
diameter, see [28].

Average internode distance � is defined as the average of
the lengths of the distances between all nðn� 1Þ pairs of
nodes, or perhaps between all n2 pairs of nodes when the
distance of each node to itself is also included in the
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Fig. 1. The spectrum of networks in terms of node degree. The

hypercube, with its excellent performance and logarithmic diameter, is

often used as a reference point for comparisons.



averaging. The average internode distance � is representa-
tive of average or expected communication latencies,
whereasD represents the worst case. However, for virtually
all interconnection networks of practical interest, D and �
are very closely related, so that they are practically
interchangeable for use as a figure of merit. For example,
in all node-symmetric networks and a wide variety of node-
asymmetric networks, we have D=2 � � � D [28]. For such
networks, the average internode distance� generally grows
in proportion to D, even though the relationship between
the two parameters is not strictly linear. Put another way, if
the diameter of the network is quadrupled, the average
internode distance at least doubles.

The bisection width B of a network is theminimumnumber
of links whose removal cuts the network in two parts, with
bn=2c nodes on one side of the partition and dn=2e nodes on
the other. Bisection bandwidth is defined in terms of link
bandwidths, rather than multiplicity, for networks in which
the links have varying communication capacities. A large
bisection (band)width is an indicator of large aggregate
network capacity for routing random traffic patterns between
arbitrary network nodes. For example, the hypercube with a
bisection width of n=2 can achieve a higher communication
performance for randomtraffic thana 2Dmeshwith bisection
widthn1=2. Themesh is, in turn, better than constant-bisection
networks such as rings and trees.

It is, of course, not very practical to considerD,�, or B in
isolation. The complete graph Kn is theoretically ideal
because it has the best possible parameters D ¼ � ¼ 1 and
B ¼ nðn� 1Þ=2. So, we must view network parameters in
the context of network cost. Because real network cost is
very difficult to predict and model, abstract notions of cost
have been proposed to allow more practical network
comparison methodologies. These abstract notions vary in
complexity and, thus, accuracy. Some simple cost factors
include node degree d, total number of links (which is nd=2
for a regular degree-d network), and the square of bisection
width (because the VLSI layout area is lower-bounded by
B2). More complex cost factors take the modularity of the
network, which has a bearing on partitioning and packa-
ging costs, into account as well.

Composite figures of merit, that take both topological
parameters and one or more cost factors into account, have
also been proposed. For example, the product dD (degree-
diameter product) has been widely used for comparing
networks. This measure favors networks that achieve small
diameters with low cost (node degree). According to this
measure, Kn, having degree-diameter product of n� 1, is
inferior to a 2D square torus with dD ¼ 4n1=2. The
hypercube with dD ¼ log2 n is asymptotically better than
both Kn and 2D square torus.

Based on the foregoing discussion, it is clearly desirable
to build networks of the smallest possible diameters with a
given node degree d. For decades, graph theorists have
studied the problem of synthesizing minimum-diameter
graphs with a given maximum node degree. The problem is
still open, but a number of bounds, and graphs that come
close to the optimal bounds, are known.

Consider an n-node directed graph (digraph) with nodes
of constant in-degree and out-degree d. The number of
different nodes that can be reached from a given node in D

or fewer steps is at most 1þ dþ d2 þ . . .þ dD. This
establishes an upper bound on the number of nodes for a
given diameter D or a lower bound on the diameter for a
given number n of nodes:

n � ðdDþ1 � 1Þ=ðd� 1Þ
D � logd½nðd� 1Þ þ 1� � 1:

These inequalities are known as Moore bounds. Any
digraph matching these bounds is a Moore digraph. Moore
digraphs are of interest because they exhibit the lowest
possible degree-diameter product for a given node degree d
or diameter D, when the number n of nodes is fixed.
Corresponding bounds for undirected graphs can also be
obtained [23]. According to Moore’s bound, an n-node
degree-d digraph must have a diameter that grows at least
as logd n. The variation of the optimal diameter with node
degree is depicted in Fig. 2 in terms of orders of magnitude.
We note that logarithmic diameter can be achieved with
constant node degree. As the node degree increases, the
diameter is reduced, but not substantially. When the node
degree has grown to OðlognÞ, the diameter is only divided
by log logn. To have a constant diameter, the node degree
must become Oðn"), with the constant diameter being larger
for smaller values of ".

3 PERFECT DIFFERENCE SETS

Given that the complete graph Kn (with diameter D ¼ 1) is
impractical for large n, it is quite natural to consider the best
topology for D ¼ 2, the next most desirable network
diameter. Based on Moore bounds, a degree-d digraph with
D ¼ 2 can have no more than n ¼ d2 þ dþ 1 nodes. The
corresponding upper bound n ¼ d2 þ 1 for undirected
graphs is not much different [23]. Examples of diameter-2
networks of small sizes include the Petersen and Hoffman-
Singleton networks [7]. Perfect difference sets provide the
mathematical tools for achieving this optimum number of
nodes, in an asymptotic manner, within the framework
perfect difference networks or PDNs (see Fig. 1 for the place
of PDN in the spectrum of network choices).

It should be noted that the name “hyperstar” [30], [31],
[34] was originally coined for what we call “PDN” in this
paper. The change of name to the more descriptive PDN
was triggered by our desire to avoid confusion with
networks [2] and various commercial hardware and soft-
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Fig. 2. Optimal diameter in terms of node degree (orders of magnitude

shown without constants of proportionality).



ware products that already use the name “hyperstar.” A
class of multidimensional PDNs (introduced in Section 5),
which was previously referred to as “hyperhub” [32], [33],
was renamed for the same reasons.

Perfect difference sets were first discussed by Singer in
1938 [38]. The formulation was in terms of points and lines
in a finite projective plane. The theory of finite projective
planes is highly developed [15], but these mathematical
notions are not required to understand the exposition that
follows. We first present a theorem that forms the basis of
the definition of perfect difference sets and, then, the
definition itself. All results in this section are from [38].
Additional information on difference sets can be found in
[14], [40], [43].

Theorem 1. A sufficient condition that there exist � þ 1 integers

s0; s1; . . . ; s�, having the property that their �2 þ � differences

si � sj; i 6¼ j; 0 � i; j � �, are congruent, modulo �2 þ � þ 1,

to the integers 1; 2; . . . ; �2 þ � in some order is that � be a

power of a prime.

Definition 1. Perfect difference set (PDS)—A set fs0; s1; . . . ; s�g
of � þ 1 integers having the property that their �2 þ � differences

si � sj; 0 � i 6¼ j � �, are congruent, modulo �2 þ � þ 1, to the

integers 1; 2; . . . ; �2 þ � in some order is a perfect difference

set of order �. Perfect difference sets are sometimes called simple

difference sets, given that they correspond to the special � ¼ 1

case of difference sets for which each of the possible differences is

formed in exactly � ways.

Note that a PDS need not contain an integer outside the

interval ½0; �2 þ �� because any integer outside the interval

can be replaced by another integer in the interval without

affecting the defining property of the PDS. The following is

easily proven.

Theorem 2. Given a PDS fs0; s1; . . . ; s�g of order �, the set

fas0 þ b; as1 þ b; . . . ; as� þ bg, where a is relatively prime to

�2 þ � þ 1, also forms a perfect difference set.

By definition, any perfect difference set contains a pair of

integers su and sv such that sv � su � 1 mod �2 þ � þ 1. By

Theorem 2 and the observation that preceded it, subtracting

su from all integers in such a PDS yields another PDS that

contains 0 and 1.

Definition 2. Normal PDS—A PDS fs0; s1; . . . ; s�g is reduced

if it contains the integers 0 and 1. A reduced PDS is in normal

form if it satisfies si < siþ1 � �2 þ �; 0 � i < �.

Definition 3. Equivalent PDSs—Two different PDSs are

equivalent iff they have the same normal form f0; 1; s2; . . . ; s�g.

Henceforth, we deal only with PDSs in normal form,

some examples of which appear in Table 1.
Several properties of PDSs are worth noting.

Property 1. Existence—Theorem 1 guarantees that a PDS exists
for any number n that is of the form �2 þ � þ 1, where � ¼ ph

and p is a prime number. It is suspected, though not yet proven
for arbitrarily large values of n, that PDSs do not exist for
other values of n [11], [13]. However, practically speaking, this
is not alarming, given that primes and their powers are quite
abundant, both in the range of practical interest for
interconnection network size and asymptotically. For example,
there are 197 primes and powers of primes under 1,000.

Property 2. Multiplicity—For some values of �, there exist more

than one PDS. For example, we have the following PDSs of

order � ¼ 3:

0; 1; 3; 9 and 0; 1; 4; 6:

It is easily verified that all numbers in the interval [1, 12]
can be formed as the mod-13 difference of numbers in each of
the two sets above:

1 � 1� 0 � 1� 0
2 � 3� 1 � 6� 4
3 � 3� 0 � 4� 1
4 � 0� 9 � 4� 0
5 � 1� 9 � 6� 1
6 � 9� 3 � 6� 0
7 � 3� 9 � 0� 6
8 � 9� 1 � 1� 6
9 � 9� 0 � 0� 4
10 � 0� 3 � 1� 4
11 � 1� 3 � 4� 6
12 � 0� 1 � 0� 1

We will see later that multiple difference sets of the same
order lead to alternate interconnection network designs.

Property 3. Generation—A PDS of order � ¼ pz, where p is a

prime number, represents a set of n points and n lines in the
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Note that the values of � shown are powers of prime numbers and n ¼ �2 þ � þ 1.



3D Euclidian space such that each point is on � þ 1 lines and
each line contains � þ 1 points. This geometric interpretation
leads to a PDS of order � ¼ pz being generated from an
irreducible degree-3 polynomial in GFðpzÞ. Details are beyond
the scope of this paper [38]. Here, we take it for granted that a
PDS of order � ¼ pz can be easily generated when required.

Property 4. Relationship with perfect partitions—PDSs are
closely related to perfect partitions, which have an even longer
history [16]. Take any PDS in normal form and find the
mod-n differences siþ1 � si between consecutive numbers in
it, including the difference s0 � s�. For example:

PDS ð� ¼ 3; n ¼ 13Þ : 0; 1; 3; 9

mod-n differences siþ1 � si : 1; 2; 6; 4:

Viewing this last sequence of integers as a circular one and

adding subsequences of length 1, 2, and 3 beginning with each

term, yields each of the sums in the interval [1, 12] exactly once.

1 ¼ 1
2 ¼ 2
3 ¼ 1þ 2
4 ¼ 4
5 ¼ 4þ 1
6 ¼ 6
7 ¼ 4þ 1þ 2
8 ¼ 2þ 6
9 ¼ 1þ 2þ 6
10 ¼ 6þ 4
11 ¼ 6þ 4þ 1
12 ¼ 2þ 6þ 4

Such a mod-n sequence, which is also known as a perfect
partition, ideal code, or ideal ring proportions, can be used
in synthesizing PDN-type structures [35], [36]. However,
PDSs provide a more straightforward and efficient tool in this
regard. Note that a PDS is transformed to a corresponding
perfect partition via modular subtraction of consecutive terms,
while the reverse transformation involves computing modular
prefix sums.

We conclude this section by referring to some applica-
tions. A PDS allows us to express a large set of integers via a
set of much smaller size, in a simple and highly regular
fashion. When used in the design of interconnection
networks, this property translates to reduced number of
links and switching elements or to more efficient use of
bandwidth. In free-space optical communication, where
physical links do not exist, use of PDS alleviates the
precision requirements on positioning and reflecting ele-
ments or, alternatively, accommodates more channel with
the prevailing physical tolerances. Aside from enabling
useful interconnection structures and networks, as dis-
cussed here and in Section 4, perfect difference sets can be
applied to a variety of other design problems. Examples
include highly efficient error control codes [20], [37], block
designs, which are related to orthogonal Latin squares and
find applications in scheduling and design of experiments
[4], and signal encoding to ensure negligible autocorrelation
and cross-correlation for ease of decoding and separation
[39], [41], [42]. These applications may be characterized by
their need for provision of distance, variety, and/or

orthogonality, or for avoiding coincidence, all of which
are facilitated by unique differences in a PDS.

4 PERFECT DIFFERENCE NETWORKS

Consider the normal-form PDS f0; 1; s2; . . . ; s�g of order �.
We can construct a direct interconnection network with n ¼
�2 þ � þ 1 nodes based on this PDS as follows:

Definition 4. Perfect difference network (PDN) based on the

PDS f0; 1; s2; . . . ; s�g—There are n ¼ �2 þ � þ 1 nodes,

numbered 0 to n� 1. Node i is connected via directed links

to nodes i� 1 and i� sj ðmod nÞ, for 2 � j � �. Given that

all index expressions in this paper are evaluated modulo n,

henceforth, we will delete the qualifier “mod n” in our

presentation. The preceding connectivity leads to a chordal

ring of in and out-degree d ¼ 2� and diameter D ¼ 2 (this is

justified later). Because, for each link from node i to node j, the

reverse link from node j to node i also exists, the network can

be drawn as an undirected graph.

An example PDN for n ¼ 7, based on the PDS f0; 1; 3g, is
depicted in Fig. 3.

Every normal-form PDS contains 1 as a member. There-
fore, PDNs based on normal-form PDSs are special types of
chordal rings. In the terminology of chordal rings, the links
connecting consecutive nodes i and iþ 1 are ring links,
while those that connect nonconsecutive nodes i and
iþ sj; 2 � j � �, are skip links or chords. The link connecting
nodes i and iþ sj is a forward skip link of node i and a
backward skip link of node iþ sj. Similarly, the ring link
connecting nodes i and iþ 1 is a forward ring link for i and
backward ring link for iþ 1.

As seen in Fig. 3, any two nodes in a PDN are either
connected by a link directly or via a path of length 2
through an intermediate node. This property is elaborated
upon in Fig. 4, where a shortest path from node 0 to each of
the other nodes is highlighted and labeled with the
associated difference si � sj. Given the node symmetry of
the network, shortest paths between other pairs of nodes
are obtained by simply adding the index of the source node
to all path labels seen in Fig. 4. As usual, the addition is
modulo n.
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the perfect difference set f0; 1; 3g.



There is an alternate way in which we can formulate an
interconnection structure based on the normal-form PDS
f0; 1; s2; . . . ; s�g of order � [33]. This alternate scheme was
briefly discussed in [5], but the filing of the patent in [30]
and the second author’s prior work that led to the patent
predate [5]. The second author’s prior work in this area, and
the ensuing patents, are based on the following.

Definition 5. Bipartite PDN based on the PDS f0; 1; s2; . . . ;
s�g—There aren ¼ �2 þ � þ 1 host nodes, numbered 0 ton� 1,
and similarly numbered switch nodes. Each host node i is
connected via a pair of directed links to each of the switch nodes i,
iþ 1, and iþ sj, for 2 � j � �. The preceding connectivity
leads to a bipartite network, with host and switch nodes
constituting the two parts. Both nodes and switches have in
and out-degrees � þ 1. The host-to-host network diameter is
D ¼ 2. All host-to-host shortest paths are of length 2, leading to
the average interhost distance � ¼ 2. Again, the bipartite
network can be drawn as an undirected graph.

An example bipartite PDN for n ¼ 7, based on the PDS
f0; 1; 3g, is depicted in Fig. 5. An alternate drawing, with
shortest paths from host node 0 highlighted, is shown in

Fig. 6. One advantage of a bipartite PDN over a basic PDN
is that its node degree is reduced from 2� to � þ 1 through
the use of n switches, with each switch being a ð� þ 1Þ �
ð� þ 1Þ communication node with full-crossbar or partial
connection capability. The bipartite PDN can be viewed as
simply a method for implementing the basic PDN. This is
easily understood by drawing boxes around similarly
numbered host and switch nodes in Fig. 5 and considering
each such pair a node of degree 2� within a basic PDN.

It is also possible to interpret the bipartite PDN as a
2n-node, degree-ð� þ 1Þ network by simply viewing all
nodes in Fig. 5 as host nodes. The resulting network has a
diameter of 3. This is easily seen as follows: The host nodes
replacing the original switch nodes are denoted by primed
indices. Each such primed node is directly connected to
several unprimed nodes and any pair of unprimed nodes
are connected by a shortest path of length no greater than 2.
For example, node 0 in Fig. 5 is not connected to node 20 by
any path of length shorter than 3, but there are several paths
of the latter kind: 0 10 1 20; 0 30 2 20; 0 00 6 20. These paths are
node- and edge-disjoint. In general, there would exist � þ 1
such paths through all switches connected to the source
node, given that the interswitch diameter is also 2.

5 MULTIDIMENSIONAL PDNS

The perfect difference network, with its Oðn1=2Þ node degree
in both its basic and bipartite forms, falls between the
hypercube and complete graph in the design space of Fig. 1,
offering performance close to the latter, at a much lower
cost. If further cost reduction is desired, networks of smaller
node degrees can be built based on the PDN concept. These
networks fall in the space between hypercube and PDN in
Fig. 1, offering somewhat lower performance than the latter
at reduced cost, thus allowing cost-performance tradeoffs in
numerous configurations.
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Fig. 4. The perfect difference network of Fig. 3, with shortest paths from

node 0 to all others highlighted and labeled with corresponding

differences.

Fig. 5. Bipartite version of PDN with seven hosts (squares) and seven

switches (circles), based on the perfect difference set f0; 1; 3g.

Fig. 6. Alternate view of bipartite PDN of Fig. 5, with paths from node 0

to all other nodes highlighted on the right.



A key mechanism for such trade offs is the multi-
dimensional PDN, defined later in this section. However,
before introducing this class of networks, it is instructive,
both for further understanding of basic PDNs of Section 4
and for visualizing their properties with regard to compu-
tation and communication, to introduce a 2D representation
which we refer to as PDN fabrics. Fig. 7 is the 2D fabrics
corresponding to the 7-node PDN of Fig. 3.

Definition 6. PDN fabrics—Consider an n-node PDNH. Draw
the n nodes of H in a horizontal arrangement and replicate the
row arrangement r times in the vertical direction. Instead of
connecting the row nodes to each other according to the
connectivity rules of H, connect each node to its counterparts
and its “neighbors” in the preceding and succeeding rows,
wrapping around as needed (see Fig. 7). Just as the number r of
rows is arbitrary, the columns too can be replicated to the right
and to the left, as desired, by simply repeating the same pattern
and node numbering, with the wraparound links becoming
regular ones.

It is easily seen that the node degree in the PDN fabrics is
2dþ 2 ¼ 4� þ 2, where the original PDN H has node degree
d ¼ 2� and n ¼ �2 þ � þ 1 nodes. Note that the PDN fabrics
of Definition 6 is a bipartite network, with even and odd-
numbered rows constituting the two parts. PDN fabrics can
be considered as corresponding to an nr-node network
(n columns, r rows). It can also be viewed as an unfolding of
a simple PDN interconnection pattern that helps us see
different internode paths which now become paths between
nodes in different rows. This is helpful because it can be
used for visualization of the time dimension in space.

Definition 7. PDN fabrics network—An r-row, n-column

segment of the 2D PDN fabrics (as in Fig. 7), with wraparound

connections betweennodes at the two extremes of the same rowor

column is a PDN fabrics network.

Definition 8. Multidimensional PDN—Consider the q PDNs
H0; H1; . . . ; Hq�1 based on their respective PDSs of orders
�0; �1; . . . ; �q�1. The product networkHq�1 �Hq�2 � . . .�H0

is a qD, or q-dimensional, PDN. Nodes of a qD PDN are
labeled by q-tuples ðxq�1xq�2 . . .x0Þ, where xi belongs to the
node set ofHi; 0 � i < q. When the q component PDNsHi are
identical, the resulting network Hq is a PDN-based power
network.

For concreteness, we limit our subsequent discussion to
2D PDN-based power network H2, depicted in Fig. 8. The
statements that follow are easily generalizable to higher
dimensions and nonidentical component PDNs.

To avoid clutter, the node interconnections within rows
and columns are not shown in Fig. 8. Nodes in each row i
(column j) are linked together exactly at those in an n-node
PDN. Therefore, the total number of links in Fig. 8 is a factor
of 2n greater than the number of links in the n-node PDN
used as its basis. Hence, we can say that increasing the
number of nodes by a factor of n using multidimensional
PDN has led to a factor OðnÞ increase in the total number of
links. By contrast, had we opted for an Oðn2Þ-node PDN, its
Oðn3Þ links would have been a factor of Oðn3=2Þ higher that
the corresponding number for an n-node PDN.

Based on the properties of product graphs, the diameter of
H2 is 4 and its node degree is 4�, where � is the order of the
PDS defining H. If each row/column PDN has n nodes, the
2D PDN power network will have N ¼ n2 nodes of degree
Oðn1=2Þ. Thus, node degree ofH2 grows as the fourth root of
its size N . For example, a PDN with roughly 106 nodes
requires node degree of about 2,000, whereas a 2D PDN
power network of the same size can be built of nodes with
degrees that are about 16 times smaller. An immediate
consequence of this slower growth of node degree is thatH2

has a much more favorable degree-diameter product than a
simplePDNof comparable size (see Table 2).Asymptotically,
the dD factors are 16� for H2 versus 4ð�2 þ � þ 1Þ for the
equivalentH 0, with the former being better except for � ¼ 2.

BecauseH2 is a power network, all algorithmic properties
of power networks are applicable to it. For example, routing
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Fig. 7. Two-dimensional PDN fabrics, emphasizing the dual roles of

nodes for initiating and facilitating internode communications.

Fig. 8. The structure of the 2D PDN power network H2.



in H2 can be accomplished via generalized “row/column”
routing,where amessage is first routed in the“row”PDNand
then in the “column” PDN, or vice versa. Similarly, broad-
casting is done in two steps of row (column) broadcast
followed by column (row) broadcast. Any sorting algorithm
for a square mesh that uses row and column sorts as its basic
components canbe adapted toH2 by emulating a linear-array
sorting algorithm on the row and column PDNs. Hence,
many algorithms developed for basic PDN lead directly to a
number of corresponding algorithms for H2 with little or no
additional effort. Some examples are provided in a compa-
nion paper [27] that deals with the performance, algorithmic,
and robustness attributes of PDNs.

6 TOPOLOGICAL PROPERTIES

In addition to the network diameter, which is 2 in the case
of basic PDNs, various other topological properties have a
bearing on the performance of an interconnection network.
In this section, we discuss two such properties: the average
internode distance and the bisection width.

Theorem 3. The average internode distance of a PDN of order �
is � ¼ 2�2=n.

Proof. Each node has distance of 0 to itself, 1 to its
2� neighbors, and 2 to the other �2 � � nodes. Hence,
� ¼ ½2� þ 2ð�2 � �Þ�=n ¼ 2�2=n. If we did not count the
distance of a node to itself, the average internode
distance would become 2�2=ðn� 1Þ ¼ 2�=ð� þ 1Þ. How-
ever, the former result is somewhat more useful in that it
makes it possible to find the average internode distance
of a qD PDN by simply adding the � parameters of the
component networks. tu

Theorem 4. For an element si of a specific PDS of order �, define
s0i as si if si < n=2 and as n� si if si > n=2. The bisection
width of a PDN based on this specific PDS is upper bounded
by minð2S0

all; nModd � Sodd þ SevenÞ, where Modd is the
number of odd elements in the PDS, Seven and Sodd represent
the sum of all PDS elements that are even and odd,
respectively, and S0

all is the sum of all s0i values for the PDS.

Proof. An upper bound for bisection width is established by
showing a specific bisection cut that requires removing
that many links. Putting even and odd-numbered nodes
on opposite sides and severing all the links between
them is one way to find such an upper bound. Consider

the links from node i to nodes iþ sj; 1 � j � � (connec-
tions from i to i� sj will be counted from the other end,
so we do not include them here). For sj even, the link
goes from one side to the other side iff it wraps around
and the odd number n is subtracted from the true sum
iþ sj, which has the same parity as i. For each even skip
distance sj, there are sj such links that go from one side
to the other. For sj odd, on the other hand, the link from i
to iþ sj goes to the other side only if there is no
wraparound. For each odd skip distance sj, there are
n� sj such links. Thus, the total number of links going
between odd and even nodes is

X

odd skips

ðn� sjÞ þ
X

even skips

sj ¼ nModd � Sodd þ Seven:

Now, consider putting nodes 0 through ðn� 1Þ=2 on one
side and nodes ðnþ 1Þ=2 through n� 1 on the other and
severing all the links between the two sides. It is easy to
see from a chordal-ring drawing of our PDN (as in Fig. 3)
that S0

all links must be cut on each side of the ring to
isolate the two parts. This is because sj nodes immedi-
ately before the cut have their sj-type skip links cross to
the other side for each sj < n=2 and n� si nodes
immediately after the cut have their sj-type skip links
cross to the other side for each sj > n=2. tu

Theorem 5. A lower bound on the bisection width of PDN is
dð� þ 1Þðnþ 1Þ=4e. Together with the upper bound of
Theorem 4, this implies that the bisection width of PDN is
�ðn1:5Þ, which is intermediate between the �ðnÞ bisection of
the hypercube and the �ðn2Þ bisection of Kn.

Proof. That the bisection width is Oðn1:5Þ is obvious by
noting that each component of the upper bound derived
in Theorem 4 is Oðn1:5Þ. To complete the proof that the
bisection width is �ðn1:5Þ, we must demonstrate that the
bisection width is �ðn1:5Þ; that is, it must grow at least in
proportion to n1:5. One way of establishing a lower
bound on the bisection width of a network is to
demonstrate that nðn� 1Þ=2 routing paths between all
pairs of nodes can be constructed such that c or fewer of
these paths pass through any given link [19]; we say that
congestion of the constructed routing scheme is c. Then,
in view of the fact that for odd n; ððn� 1Þ=2Þððnþ 1Þ=2Þ
different routing paths among the nðn� 1Þ=2 constructed
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TABLE 2
Degree-Diameter Product for H2 Compared to a PDN H 0 of Comparable Size (Closest Possible Size to n2 Nodes)



above must cross each bisection of an n-node network,
any bisection of our PDN must cut at least ðn2 � 1Þ=ð4cÞ
different links. To determine the value of c, we note that,
in routing from a given node to all other nodes via
shortest paths of length 1 or 2, each backward link of the
source node is used once, each forward link is used
� times, and each backward link of its neighbors is used
at most once. This makes congestion on all links equal to
�, given that each node is a forward neighbor of exactly
� other nodes and the backward link leading back to the
intermediate node is never used. The conclusion that the
bisection width is lower bounded by dð� þ 1Þðnþ 1Þ=4e is
immediate because

ðn2 � 1Þ=ð4cÞ ¼ ðn� 1Þðnþ 1Þ=ð4�Þ ¼ ð�2 þ �Þðnþ 1Þ=ð4�Þ:
ut

Table 3 shows the bounds of Theorems 4 and 5 for the
PDNs defined in Table 1. The exact bisection width of an
arbitrary PDN is not yet known. Note that calculation of
bisection width for an arbitrary graph is an NP-complete
problem [12] and it remains so even for the class of regular
graphs [8]. This explains the dearth of results on network
bisection width.

7 CONCLUSION

We have introduced perfect difference networks and the
mathematical underpinnings that make them desirable as
robust, high-performance interconnection networks for
parallel and distributed computation. Although other
interconnection networks with topological and performance
parameters similar to PDNs exist, we view these networks
as worthy additions to the repertoire of computer system
designers. Alternative network topologies offer additional
design points that can be exploited to accommodate the
needs of current and emerging technologies. Further study
is needed to resolve some open questions and to derive
cost/performance comparisons for PDNs and their deriva-
tives. We offer some results along these lines in a
companion paper that deals with routing problems, algo-
rithm design issues, and robustness attributes of PDNs [27].

Basic PDNs have a diameter of 2 and a node degree of
approximately 2n1=2, which place them close to complete
networks in terms of routing performance and much lower

with respect to implementation cost. Not surprisingly, the
exact average internode distance of an n-node PDN based
on a PDS of order � is 2� 2ð� þ 1Þ=n; that is, very close to 2.
We have been unable to find the exact bisection width of a
PDN but derived fairly tight bounds for it and, as a result,
established that the bisection width is �ðn1:5Þ.

Although PDNs are interesting and important as
asymptotically optimal diameter-2 interconnection net-
works, it is much more likely that hybrid or composite
networks involving PDNs as component structures will
prove useful for practical applications. Here, we have
introduced multidimensional PDNs as specific examples of
such networks, but many other hybrid or composite
structures are possible. For example, clustered PDNs based
on swapped-network connectivity [44] merit attention. Such
a swapped network consists of n PDNs, each of which is of
size n, with node i in PDN j connected to node j in PDN i.
The unused intercluster links of nodes ði; iÞ can be assigned
for input/output. This leads to a node degree of 2� þ 1.
Network diameter is 5, compared to 4 for 2D PDNs, but this
might be a worthwhile trade off given that node degree of
the former is nearly half that of the latter. Like 2D PDNs, the
node degree in these networks grows as the fourth root of
the network size, leading to better scalability compared to
basic or bipartite PDNs.

We previously noted that our focus in this paper is on
simple difference sets that allow each value in ½1; n� 1� to
be derived as a difference si � sj in one, and only one, way.
Clearly, nonsimple difference sets offer additional advan-
tages with regard to fault tolerance, given multiple ways in
which each value can be formed as a difference. However,
these advantages come at the cost of a higher node degree.
Possible generalizations of the perfect difference concept
may lead to more efficient interconnection networks. For
example, given our interest in 2-hop routing, we do not
need to restrict ourselves to differences; sums can also be
used. A natural question then is whether the use of
difference/sum sets can lead to smaller sets (lower node
degrees) or larger networks with the same node cost.
Taking n ¼ 15 as an example, we note that the set f0; 2; 5; 6g
leads to the mod-15 sums f2; 5; 6; 7; 8; 11g and mod-15
differences f13; 10; 9; 2; 12; 11; 5; 3; 14; 6; 4; 1g, which to-
gether cover all integers in [1, 14]. The set f0; 2; 5; 6g is not
a perfect difference/sum set and, in fact, such a set might
not exist. However, the concept may still warrant further
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TABLE 3
Lower and Upper Bounds for the Bisection Width of Some PDNs Derived from Theorems 4 and 5

(Associated PDSs Appear in Table 1)



investigation. Similarly, sets that yield each value as the
sum of a small subset of size k lead to networks with
diameter k. Many other variations are also possible.

One direction for future research (suggested by one of

the reviewers of this paper) is to pursue the use of perfect

difference sets and other results from number theory in the

design of networks that are closer to being strictly, rather

than asymptotically, optimal. The node degree 2� of PDNs

is almost a factor of 2 above the optimal node degree

suggested by Moore’s bound. One may thus pursue the

derivation of networks with roughly �2 nodes whose node

degree is � þ " for a suitably small constant. It is the authors’

belief that the introduction of PDNs based on perfect

difference sets does not constitute the end of using number

theory in deriving interesting interconnection networks but

merely a beginning.
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