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Some mathematical properties of Cayley digraphs with
applications to interconnection network design
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We consider the relationships between Cayley digraphs and their coset graphs with respect to subgroups
and obtain some general results on homomorphism and broadcasting between them. We also derive
a general factorization theorem on subgraphs of Cayley digraphs by their automorphism groups. We
discuss the applications of these results to well-known interconnection networks such as the butterfly
network, the de Bruijn network, the cube-connected cycles network and the shuffle-exchange network.
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1. Introduction

It is known that Cayley (di)graphs and coset graphs are excellent models for interconnection
networks [1–3]. Many well-known interconnection networks are Cayley (di)graphs or coset
graphs. For example, hypercube, butterfly, and cube-connected cycles networks are Cayley
graphs, while de Bruijn and shuffle-exchange networks are coset graphs [3].

As suggested by Heydemann [3], general theorems are lacking for Cayley digraphs and
more group theory has to be exploited to find their properties. In this paper, we consider the rela-
tionships between Cayley digraphs and their coset graphs with respect to subgroups and obtain
some general results on homomorphism and broadcasting between them. We also derive a
general factorization theorem on subgraphs of Cayley digraphs by their automorphism groups.
We provide several applications of these results to well-known interconnection networks such
as butterfly, de Bruijn, cube-connected cycles and shuffle-exchange networks.

Before proceeding further, we introduce some definitions and notations related to inter-
connection networks and (di)graphs, in particular, Cayley (di)graphs. For more definitions and
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Table 1. Key notation.

Unless explicitly specified, all graphs in this paper are directed graphs (digraphs)

• ≤ • Subgroup relationship BFq Butterfly network of order q
• � • Normal subgroup relationship Ck Cycle (ring network) of size k
•/• Set of (right) cosets C+

k Cycle with self-loop at each vertex
• × • Graph or set cross-product Cay( ) Cayley graph
• wr • Wreath product CCCq Cube-connected cycles of order q
• ⊕ • Graph composition Cos( ) Coset graph
•(i) The symbol • repeated i times d, d+, d− Degree, out-degree, in-degree
(•, •) Directed edge (• → •) DBq

d de Bruijn network
[•, •] Undirected edge (•−−•) E( ) Edge set of a graph
→ Mapping G, H Groups
�→ Bijection K, N Subgroups
�, �, � Graphs or digraphs Ri Orbits of a group
� Empty set S, T Generator sets, subsets of G
σ Right-rotation operator SEq

d Shuffle-exchange network
τ Communication time to neighbour U� Undirected form of � (e.g., UBFq )
1 Identity element of a group V ( ) Vertex set of a graph
A( ) Adjacency matrix of a graph Zq Cyclic group of order q

Aut( ) Automorphism Z
q

d Elementary abelian d-group of order dq

bM Broadcast time under the model M

basic results on graphs and groups we refer the reader to [4], for instance, and for interconnec-
tion networks to [5, 6]. Unless noted otherwise, all graphs in this paper are digraphs. Notation
is shown in table 1.

A digraph � = (V , E) is defined by a set V of vertices and a set E of arcs or directed edges.
The set E is a subset of elements (u, v) of V × V . If the subset E is symmetric, i.e., (u, v) ∈ E

implies (v, u) ∈ E, we identify two opposite arcs (u, v) and (v, u) by the undirected edge
[u, v]. We then obtain a graph. The out-degree (or in-degree) of a vertex u of a digraph � is
the number of arcs (u, v) (or (v, u)) of � and is denoted by d+(u) (or d−(u)). A digraph � is
said to be regular of out-degree d if d+(u) = d−(u) for every vertex u of �.

Let G be a finite group and S a subset of G. The subset S is said to be a generating set for
G, and the elements of S are called generators of G, if every element of G can be expressed
as a finite product of their powers. We also say that G is generated by S. The Cayley digraph
of the group G and the subset S, denoted by Cay(G, S), has vertices that are elements of G
and arcs that are ordered pairs (g, gs) for g ∈ G, s ∈ S. If S is a generating set of G then we
will say that Cay(G, S) is the Cayley digraph of G generated by S. If 1 /∈ S (1 is the identity
element of G) and S = S−1, then Cay(G, S) is a simple graph.

2. Some example networks

Let Zq be a cyclic group of order q and Z
q

2 the elementary abelian 2-group of order 2q for
some integer q. Now we can proceed to define four well-known interconnection networks: the
butterfly network BF, the de Bruijn network DB, the cube-connected cycles network CCC and
the shuffle-exchange network SE. These examples, and their associated formal definitions, set
the stage for our discussions in the following sections.

The (wrapped, directed) butterfly network of order q, denoted BFq , has 2qq vertices that
are the elements of group G which is the wreath product (Z2 wr Zq) of Z2 and Zq , i.e.,
a particular semidirect product of Z

q

2 by Zq . The elements of G are (x, l), where l ∈ Zq

and x = x0x1 . . . xq−1, with xi ∈ Z2 for 0 ≤ i ≤ q − 1. The identity of G is (0(q), 0). The
homomorphism h from the group Zq into the automorphism group of the group Z

q

2 , used
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Figure 1. The (wrapped) butterfly network BF2, with 2-cycles in rows unwrapped to avoid clutter.

in the semidirect product above, is defined by l → {y �→ σ l(y)}, where σ(y0y1 . . . yq−1) =
(yq−1y0 . . . yq−2). Thus the product is given by

(x, l)(y, t) = (x + σ l(y), l + t) = ((x0 + yq−l)(x1 + yq−l+1) . . . (xq−1 + yq−l−1), l + t).

Let S = {(0(q), 1), (0(q−1)1, 1)}. Then, according to [3], we have BFq = Cay(G, S). Figure 1
depicts the BF2 network, with vertices (x1x0, 0) duplicated on the two sides to avoid clutter;
this also explains the designation ‘wrapped butterfly’ which is sometimes used.

The de Bruijn network, denoted DBq

d , has the vertex set Z
q

d and the arc set

{(x0x1 . . . xq−1, x1 . . . xq−1xq)|xi ∈ Zd, 0 ≤ i ≤ q}.
It is known that DBq

d is regular of out-degree d. Figure 2 depicts the DB3
2 network.

The (directed) cube-connected cycles network, denoted CCCq , is a Cayley digraph
whose vertex set, like that of BFq , is G = Z2 wr Zq but has the generator set S ′ =
{(0(q), 1), (0(q−1)1, 0)}. Thus CCCq = Cay(G, S ′). Figure 3 depicts the CCC2 network using
a layout of vertices that exposes its relationship to the butterfly network BF2 in figure 1.

Figure 2. The de Bruijn network DB3
2.
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Figure 3. The cube-connected cycles network CCC2. This is really an 8-node bidirectional cycle which is drawn in
this way to facilitate understanding of the general structure and its correspondence to the butterfly network in figure 1.

Figure 4. The shuffle-exchange network SE3
2.

The shuffle-exchange network, denoted SEq

d , has the vertex set Z
q

d and the arc set

{(x0x1 . . . xq−1, x1 . . . xq−1x0), (x0 . . . xq−2xq−1, x0 . . . xq−2(xq−1 + y))|xi ∈ Zd,

0 ≤ i ≤ q − 1, y ∈ Zd, y �= 0}.

Figure 4 depicts the shuffle-exchange network SE3
2 as an example.

3. Cayley coset graphs

Assume that � and � are two digraphs. The mapping φ of V (�) to V (�) is a homomorphism
from � to � if, for any (u, v) ∈ E(�) we have (φ(u), φ(v)) ∈ E(�). The tensor product
� × � denotes the digraph with the vertex set V (�) × V (�) and the arc set

{((x1, x2), (y1, y2))|(x1, y1) ∈ E(�), (x2, y2) ∈ E(�)}.
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Let G be a finite group and S a subset of G. Assume that K is a subgroup of G (denoted as
K ≤ G). Let G/K denote the set of the right cosets of K in G. The (right) coset graph of G
with respect to the subgroup K and subset S, denoted by Cos(G, K , S), is the digraph with
the vertex set G/K such that there exists an arc (Kg, Kg′) if and only if there exists s ∈ S and
Kgs = Kg′.

It is known [3] that the de Bruijn network DBq

2 is isomorphic to the coset graph of the butterfly
network BFq , i.e., DBq

2 = Cos(Z2 wr Zq, Zq, S), with S = {(0(q), 1), (0(q−1)1, 1)}. Similarly,
the shuffle-exchange network SEq

2 is isomorphic to the coset graph of the cube-connected
cycles network CCCq , i.e., SEq

2 = Cos(Z2 wr Zq, Zq, S
′), with S ′ = {(0(q), 1), (0(q−1)1, 0)}.

3.1 Mathematical properties

Let us assume that the group G satisfies G = NK , where N is a normal subgroup of G
(denoted by N � G), K ≤ G, and N ∩ K = 1, i.e., G is the semidirect product of N by K. Let
� = Cay(G, S), � = Cay(G/N, NS/N) and � = Cos(G, K, S), where S is a generating set
of the group G. Then any element g of G can be uniquely expressed as g = kn with n ∈ N ,
k ∈ K . Define the corresponding φ: kn �→ (Kn, Nk) of V (�) = G to V (� × �). Then it is
easily verified that φ is a bijection, and we have the following result.

THEOREM 1 The mapping φ is a homomorphism of the digraph � to the digraph � × �.

Proof Consider the diagram,

kn
φ−−→ (Kn, Nk)

↓ ↓
kns

φ−−→ (Kn1, Nk1)

where kns = k1n1, k1 ∈ K , n1 ∈ N , s ∈ S and (kn, kns) is any arc of the digraph �. Thus by
virtue of N � G, we obtain Kn1 = Kk1n1 = Kkns = Kns and Nk1 = Nk1n1 = Nkns = Nks.
Therefore ((Kn, Nk), (Kn1, Nk1)) is an arc of the digraph � × � and φ is a homomorphism
of � to � × �. �

As applications of theorem 1, we consider the following two examples.

Example 1 We relate the butterfly network BFq to the de Bruijn network DBq

2 . Let
N = Z

q

2 and K = Zq . Then G = Z2 wr Zq is a semidirect product of N by K. Assuming
S = {(0(q), 1), (0(q−1)1, 1)}, we have � = Cay(G, S) = BFq, � = Cay(G/N, NS/N) = Cq ,
where Cq is a directed cycle of order q, and � = Cos(G, K, S) = DBq

2 . Thus we have a
homomorphism φ from BFq to DBq

2 × Cq . In fact, it is easily shown that φ is an isomorphism
and BFq = DBq

2 × Cq .

Example 2 We relate the cube-connected cycles CCCq and the shuffle-exchange
network SEq

2 . Assume N = Z
q

2 , K = Zq and G = Z2 wr Zq , as in example 1.
Let S ′ = {(0(q), 1), (0(q−1)1, 0)}. Then � = Cay(G, S ′) = CCCq, � = Cay(G/N, NS′/N) =
C+

q , where C+
q is a directed cycle of order q with a loop at every vertex, and � =

Cos(G, K, S ′) = SEq

2 . In this way, we obtain a homomorphism φ of CCCq to SEq

2 × C+
q .

The diameter of a digraph is the maximum of (directed) distances between any two vertices.
Based on the above, we note that using Cayley digraphs on groups that are semidirect products
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leads to a general method of constructing interconnection networks in the form of Cayley
digraphs with small degrees and diameters.

(1) Pick a group N such that the diameter of the Cayley digraph Cay(N , T ) is small for any
generating set T.

(2) Choose a subgroup K of the automorphism group of N and construct the semidirect product
G = NK .

(3) Choose a small generating set S of the group G and construct the Cayley digraph
Cay(G, S).

The butterfly network BFq and the cube-connected cycles CCCq are two examples con-
structed in this manner. Following this method, we can derive many other new interconnection
networks with small degrees and diameters.

3.2 Application to broadcasting

We now consider the broadcasting problem for interconnection networks. Broadcasting, a
communication operation whereby a message is sent from one processor to all others, is a
basic building block in the synthesis of parallel algorithms. The time τ to send a message
from a processor to a neighbouring one depends on the communication model assumed, with
linear- and constant-time models being the two main choices. We assume the constant-time
model, wherein communication between adjacent processors needs one time unit.

In addition to communication delay, other assumptions relating to the communication mode
are needed. We assume that messages are sent in store-and-forward mode where a processor
cannot use the contents of a message, or send it on to another processor, until it has been
received in its entirety. Given a connected graph G (representing an interconnection network)
and a message originator u, the broadcast time bM(u) of the vertex u is the minimum time
required to complete broadcasting from vertex u under the model M. The broadcast time
bM(G) of G under M is defined as the maximum broadcast time of any vertex u in G, i.e.
bM(G) = max{bM(u)|u ∈ V (G)}. For more details, we refer the reader to [7].

Now let G be a finite group andK ≤ G.Assume that� = Cay(G, S) and� = Cos(G, K, S)

for some generating set S of G. For a communication model M, let bM(�K) be the minimum
time required to complete broadcasting in the vertices of K from the identity element 1 (which
is the message originator). Our main result in this subsection is as follows.

THEOREM 2 bM(�) ≤ bM(�) + bM(�K).

Proof Let the message originator be the identity element 1. We first broadcast the message
to all vertices of subgroup K of group G under the model M. The minimum time required to
complete broadcasting in the vertices of K is bM(�K). Consider now two cosets K and Ks of K
in G for some s ∈ S \ K . Then (k, ks) is an arc of the graph � for any k ∈ K . For two different
elements k and k1 of K and s ∈ S \ K , (k, ks) and (k1, k1s) are parallel arcs of �. Hence the
message can be forwarded from K to all vertices of Ks in only one step. Let Ku be any coset of
K in G. Then, given that S is a generating set of G, we can assume that Ku = Ks1s2 . . . st for
s1, s2, . . . , st ∈ S. Thus the message can be sent from K to all vertices of Ku in only t steps.
The fact that t ≤ bM(�) leads to the desired conclusion bM(�) ≤ bM(�) + bM(�K). �

As applications of theorem 2, we revisit examples 1 and 2.

Example 3 Consider the butterfly network BFq and the de Bruijn network DBq

2 . By example 1,
we know that � = BFq , � = DBq

2 . It is easily shown that bM(�K) ≤ bM(Cq). Hence we obtain
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bM(�) ≤ bM(�) + bM(Cq). In general, bM(Cq) is easily derived. For example, under the unit-
time store-and-forward communication model, we have bM(Cq) = q − 1. Therefore we can
obtain an upper bound on bM(�) when we know some upper bound on bM(�). Similarly, any
known lower bound on bM(�) leads to a corresponding lower bound on bM(�).

Example 4 Consider the cube-connected cycles CCCq and the shuffle-exchange network
SEq

2 . By example 2, we have bM(�) ≤ bM(�) + bM(Cq), where � = CCCq , � = SEq

2 .
Therefore the observations made in example 3 also apply here.

The methods of this section can be extended to the other communication problems and to
undirected graphs. For example, for the undirected butterfly network UBFq and the undirected
de Bruijn network UDBq

2 in [7], we have bM(UBFq) ≤ bM(UDBq

2) + bM(UCq), where UCq

is an undirected cycle of order q.

4. Subgraph factorization

In this section, we assume that � is a finite digraph (possibly with loops) having the vertex set
V (�) = {1, 2, . . . , n} and the arc set E(�) = R. Let G = Aut(�) be the automorphism group
and A(�) the adjacency matrix of the digraph �. Suppose that Ri , 1 ≤ i ≤ r , are orbits of
the group G acting on V (�) × V (�) such that (x, y)g = (xg, yg) for x, y ∈ V (�) and g ∈ G.
Let �i be the digraph with the vertex set V (�) and the arc set Ri for 1 ≤ i ≤ r . Then we have
G = ⋂r

i=1 Aut(�i). Let � denote the empty set. It is easily verified that

A(�) = �{A(�i)|R ∩ Ri �= �, 1 ≤ i ≤ r}
Ri ∩ Rj = � for i �= j

R = ∪{Ri |R ∩ Ri �= �, 1 ≤ i ≤ r}
We denote the above as � = ⊕{�i |R ∩ Ri �= �, 1 ≤ i ≤ r}. Let � be a Cayley digraph Cay(H,
S) for a finite group H and its generating set S. Then H can be regarded as the left regular
automorphism group of �. Because H ≤ G ≤ Aut(�i), the digraph �i is a Cayley digraph [7].
In fact, it is easily proved that �i = Cay(H, Si) and Si = {(xg)−1yg|(x, y) ∈ Ri, g ∈ G}. Thus
we obtain the following factorization theorem and associated examples.

THEOREM 3 Cay(H, S) = ⊕{Cay(H, Si)|R ∩ Ri �= �, 1 ≤ i ≤ r}.

Example 5 For the butterfly network BFq , we have

BFq = Cay(Z2 wr Zq, {(0(q), 1)}) ⊕ Cay(Z2 wr Zq, {(0(q−1)1, 1)}).

Example 6 For the cube-connected cycles CCCq , we have

CCCq = Cay(Z2 wr Zq, {(0(q), 1)}) ⊕ Cay(Z2 wr Zq, {(0(q−1)1, 0)}).

5. Conclusion

In this paper, we have supplied general theorems on homomorphism and broadcasting between
Cayley digraphs and their coset graphs, and a factorization theorem on subgraphs of Cayley
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digraphs. We have also shown the applications of these results to some well-known inter-
connection networks: the butterfly network, the de Bruijn network, the cube-connected
cycles network and the shuffle-exchange network. Many other useful directed and undirected
networks can be similarly formulated and studied.

Because of the generality of these theorems, we believe that they will have further appli-
cations to interconnection networks, providing an interesting area for further research. In
particular, the design of scalable interconnection networks for parallel processing [8], offer-
ing the desirable properties of simple routing algorithms, balanced communication traffic and
resilience to node and link failures, can benefit from our results.
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