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Abstract  
Reversible hardware computation, that is, performing logic 
signal transformations in a way that allows the original input 
signals to be recovered from the produced outputs, is helpful 
in diverse areas such as quantum computing, low-power 
design, nanotechnology, optical information processing, and 
bioinformatics. We propose a paradigm for performing such 
reversible computations in a manner that renders a wide 
class of circuit faults readily detectable at the circuit’s 
outputs. More specifically, we introduce a class of reversible 
logic gates (consisting of the well-known Fredkin gate and a 
newly defined Feynman double-gate) for which the parity of 
the outputs matches that of the inputs. Such parity-preserving 
reversible gates, when used with an arbitrary synthesis 
strategy for reversible logic circuits, allow any fault that 
affects no more than a single logic signal to be detectable at 
the circuit’s primary outputs. We show the applicability of 
our design strategy by demonstrating how the well-known, 
and very useful, Toffoli gate can be synthesized from parity-
preserving gates and apply the results to the design of a 
binary full-adder circuit, which is a versatile and widely used 
element in digital arithmetic processing. 

 

1. Introduction 
 
Conventional logic is not reversible. For example, knowing 
the values of both A ∨ B and A ∧ B is inadequate for deducing 
the values of the inputs A and B. Reversible logic, which 
allows the reproduction of the circuit’s inputs from observed 
outputs [Benn73], [Haye06], finds applications in quantum 
computing [Rief00], low-power design, nanotechnology, 
optical information processing, and bioinformatics. 
Elaborating on the relevance of reversible logic to low-power 
circuits, we note that the loss of 1 bit of information 
dissipates at least kT ln 2 joules of energy, where k = 
1.3806505 × 10–23

 m2
 kg s–2

 K–1 (joule/kelvin) is the Boltzmann 
constant and T is the operating temperature [Land61]. Thus, 
the only way to avoid power waste, and hence to curtail the 
production of heat, is to build circuits from reversible 
elements. 
 
Commonly used reversible elements include the Toffoli gate, 
TG [Toff80], and the Fredkin gate, FRG [Fred82], depicted in 
Figs. 1a and 1b. Owing to advantages of simplicity and 
universality, these two gate types have been studied 

extensively. There are also design methodologies and tools 
that incorporate them separately or in combination with each 
other [Masl05]. A generalized, k-way, Toffoli gate has k + 1 
inputs: k control inputs, that are copied to the first k outputs, 
and one other input that is complemented if all control inputs 
are 1s and is directly copied to the last output otherwise. The 
Feynman gate, FG [Feyn85], also known as controlled NOT, 
is a special Toffoli gate with only one control input (Fig. 1c). 
The Peres gate, combining TG and FG (Fig. 1d), and several 
other types of reversible gates, have also been used. 
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Fig. 1. Some well-known reversible logic gates. 

 
Any reversible gate has the same number of input and output 
lines, and it implements a permutation from input values to 
output values. For example, a 3-input, 3-output reversible 
gate may permute input values 0, 1, 2, 3, 4, 5, 6, 7 to output 
values 0, 1, 4, 6, 2, 3, 5, 7, corresponding to a permutation 
definable by its cycle structure (2 4)(3 6 5). Neither feedback 
nor fan-out is allowed in reversible logic. Consequently, 
making a reversible circuit robust or fault-tolerant is much 
more difficult than a conventional logic circuit. For example, 
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the commonly used method of duplication and result 
checking via comparison implies the additional overhead of 
accommodating input fan-out, to feed the two copies of the 
circuit, and output fan-out, to allow comparison, besides 
requiring a reversible comparator. 
 
In this paper, we present a fault detection method based on 
parity-preserving, reversible logic gates. The advantage of 
our method is that it is implemented at the gate level. Thus, 
once the required gates have been designed and an 
appropriate synthesis framework (either adapted from 
existing methods or custom-built for the new gates) has been 
established, fault-tolerant implementation requires no extra 
expenditure in design or verification effort. We note that 
additional, higher-level fault tolerance mechanisms can be 
built on top of our gate-level approach in order to increase the 
level of coverage beyond single-point deviations. 
 
 

2. Parity-Preserving Reversible Gates 
 
Parity checking is one of the oldest, as well as one of the most 
widely used, methods for error detection in digital systems. 
Its most common use is for detecting errors in the storage or 
transmission of information, primarily because most 
arithmetic and other processing functions do not preserve the 
parity of the data. There have been attempts at performing 
arithmetic operations on specially encoded operands in a way 
that parity checking becomes applicable [Parh02], [Parh02a], 
but such methods need further development and are not in 
widespread use. 
 
With reversible logic, the use of standard methods of error 
detection presents some problems, given the requirement for 
fan-out and the associated increase in “garbage bits,” that is, 
extra bits that are produced to maintain the reversibility 
property, without themselves being a necessary part of the 
computation itself or of its final results. If computation is 
performed in such a way that the parity of the input data 
persists throughout the computation (and, thus, at the output), 
no intermediate checking would be required. Such results can 
be forwarded to subsequent modules on the data path, while 
they are checked in a manner that is off the computation’s 
critical path, and thus not subject to stringent performance or 
reversibility requirements. Any erroneous result tends to 
propagate through the downstream modules without a danger 
of corrupting additional information in the absence of 
multiple compensating faults. 
 
Given that reversible gates tend to have the same number of 
input and output lines, a sufficient requirement for parity 
preservation in the course of a reversible computation with 
such gates is that each gate be parity-preserving; i.e., have the 
same parity for input and output lines. Our objective is to 
show that such parity-preserving reversible gates exist and 
that they can be used to generate viable (competitive in terms 
of cost and latency) designs. 

We first note that of the gates depicted in Fig. 1, only the 
Fredkin gate is parity-preserving. This is readily verified by 
comparing the input parity A ⊕ B ⊕ C (or A ⊕ B for the 
Feynman gate) to the output parity P ⊕ Q ⊕ R (or P ⊕ Q). 
The Feynman gate is quite useful, but, unfortunately, it is 
inadequate for the synthesis of efficient reversible circuits. 
Given that synthesis methods with the Toffoli gate, using 
Fredkin gates to assist in optimizing cost or performance, are 
quite advanced, we are motivated to look for additional 
reversible gates that would lead to similarly efficient designs. 
In this search, the following impossibility result rules out a 
fundamental role for 2-input, 2-output gates. 
 
Theorem 1: Other than a gate that complements both inputs 
(unconditionally) to produce its outputs, no 2-input, 2-output 
reversible gate can be parity preserving. 
 
Proof: There are 24 reversible 2-input, 2-output gates, 
corresponding to the 24 possible permutations of the 4 input 
values 0-3. Of these 24 permutations, only 4 are parity-
preserving: even-parity inputs 00 and 11 must be mapped to 
00 and 11; odd-parity inputs 01 and 10 to 01 and 10. Two of 
these are the uninteresting identity and exchange gates that 
simply forward the inputs to the outputs. The remaining two 
are defined by permutations having the cycle structures (0, 3) 
and (0, 3)(1, 2), both of which complement the two inputs, 
with the first one also exchanging them. [QED] 
 
Guided by Theorem 1, which limits reversible 2-input, 2-
output gates to two rather unintereting cases, we next look 
into 3-input, 3-output gates. We have already observed that 
the Fredkin gate is parity-preserving. Are there other parity-
preserving, reversible 3-input, 3-output gates? The answer to 
this question is affirmative, as evidenced by the gate shown in 
Fig. 2a (in both block-diagram form and symbolic form), 
which is a Feynman gate with an additional input and one 
more output. We call the gate depicted in Fig. 2a the 
“Fynman double-gate,” given that the extra input and output, 
along with the control input A define a second controlled 
NOT operation. Note that, like the Feynman gate and the 
Fredkin gate, the Fynman double-gate is its own inverse. 
 

A
B
C

P = A 
Q = A ⊕ B 
R = A ⊕ C 

F2G

(a) Feynman double-gate 

A
B
C

P = A 

R = A′ C ⊕ A B 
FRG Q = A′ B ⊕ A C 

(b) Fredkin gate 

+
+

 

Fig. 2.  Parity-preserving reversible gates, 
satisfying A ⊕ B ⊕ C = P ⊕ Q ⊕ R: 

Block diagrams and symbolic forms. 
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A natural question at this point is whether there exist other 3-
input, 3-output parity-preserving reversible gates beyond the 
two depicted in Fig. 2. We must perform an exhaustive search 
to answer this question, but meanwhile have the following 
preliminary result that indicates such gates, if they exist, 
would not be of the kind that lend themselves to simple and 
efficient design procedures. 
 
Theorem 2: Up to the permutation of inputs and outputs and 
(conditional) complementation of both outputs Q and R, no 3-
input, 3-output reversible logic gate, other than the two 
depicted in Fig. 2, can be parity preserving if its first output 
equals its first input (P = A). 
 
Proof: As shown in Table I, when P = A, the rest of the truth 
table for a reversible 3-input, 3-output gate can be filled out 
in only 16 possible ways, if {A, B, C} and {P, Q, R} are to 
have the same parity. The output functions Q and R are 
shown in Table II for these 16 cases. It is easily seen that the 
resulting gate is not useful in four of these cases, is idential to 
F2G or a variant (F2G-var) in which both Q and R are 
complemented in four additional cases, and is identical to 
FRG or FRG-var in the remaining eight cases. [QED] 
 
 

Table I.  Potential truth tables for a 3-input, 3-output, 
parity-preserving gate with P = A. 

 
A   B   C P = A Q R 
0    0    0 0 a a 
0    0    1 0 b b′ 
0    1    0 0 b′ b 
0    1    1 0 a′ a′ 
1    0    0 1 c c 
1    0    1 1 d d′ 
1    1    0 1 d′ d 
1    1    1 1 c′ c′ 

 
 

Table II.  The 16 possible ways of assigning values 
to the entries a, b, c, and d in Table I. 

 
a    b    c    d Q(A, B, C) R(A, B, C) Comment 
0    0    0    0 B C Not useful 
0    0    0    1 A′B ∨ AC A′C ∨ AB FRG 
0    0    1    0 A′B ∨ AC ′ A′C ∨ AB ′ FRG-var 
0    0    1    1 A ⊕ B A ⊕ C F2G 
0    1    0    0 A′C ∨ AB A′B ∨ AC FRG′ 
0    1    0    1 C B Not useful 
0    1    1    0 A ⊕ C A ⊕ B F2G 
0    1    1    1 A′C ∨ AB ′ A′B ∨ AC ′ FRG-var 
1    0    0    0 A′C ′ ∨ AB A′B

Note that in all the reversible logic gates that have been 
proposed in the literature to date, the condition P = A holds. 
Any reversible logic gate that does not satisfy P = A 
corresponds to another one that does. In order to see this, we 
let P = f(A, B, C), Q = g(A, B, C), and R = h(A, B, C). Setting 
T = A ⊕ f(A, B, C), a modified logic gate with the three 
outputs P = T ⊕ f(A, B, C) = A, Q = T ⊕ g(A, B, C), and R = T 
⊕ h(A, B, C) essentially performs the same computation as 
the original gate, in the sense that one gate can replace the 
other with minimal redesign effort. This observation leads to 
the following result. 
 
Theorem 3: Up to the permutation of inputs and outputs, 
(conditional) complementation of both outputs Q and R, and 
XORing of every output with the same function T of the 
inputs A, B, and C, no 3-input, 3-output reversible logic gate, 
other than the two depicted in Fig. 2, is parity preserving. 
 
 

3. Parity-Preserving Design Process 
 
Results on synthesis of parity-preserving reversible logic 
circuits for various functions will be reported in the future. In 
this preliminary report, we demonstrate that a versatile 
arithmetic building elements, the full-adder circuit, can be 
built to be parity-preserving. This is significant in itself, given 
that many arithmetic functions can be synthesized from full-
adders and other simple circuits.  
 
For our first design, we modify a known full-adder circuit 
based on Fredkin gates (also using one Feynman gate), 
depicted in Fig. 3. This design is not parity-preserving, given 
that after the two gates in the first stage on the left, the inputs 
A, B, 0, C, 1, 0 are transformed to A, B, B, C, C ′, C, with the 
latter set’s parity then preserved through the remaining two 
circuit stages. The input and output parities are thus related 
by pout = pin ⊕ B. A simple way to restore the output parity to 
that of the input, without affecting the circuit’s functionality, 
is to pass the ouputs B and G through another Feynman gate, 
thereby transforming them to B and G ⊕ B. 
 
 

B
0

C
1
0

+

A
Cout

s (sum)

B

A
s ′

G

 
B ′ ∨ AC FRG-var 

1    0    0    1 (A ⊕ C)′ (A ⊕ B)′ F2G-var 
1    0    1    0 C ′ B

Fig. 3.  Binary full-adder built of Fredkin gates. 
The single Feynman gate fans out B. 

B ′ Not useful 
1    0    1    1 A′C ′ ∨ AB′ A′B′ ∨ AC ′ FRG-var 
1    1    0    0 (A ⊕ B)′ (A ⊕ C)′ F2G-var 
1    1    0    1 A′B′ ∨ AC A′C ′ ∨ AB FRG-var 
1    1    1    0 A′B′ ∨ AC ′ A′C ′ ∨ AB′ FRG-var 
1    1    1    1 B

 
We next show how the functionality of a Toffoli gate can be 
synthesized by a parity-preserving reversible circuit. This will 
allow us to use existing designs for full-adders and other 
arithmetic circuits [Vedr96], [Masl05] via simple substitution, B ′ C ′ Not useful 
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with some postoptimization used to reduce the number of 
garbage bits. Figure 4 depicts a relatively simple full-adder 
circuit containing Peres gates (each composed of a Toffoli 
and a Feynman gate) as an example. Given that synthesis 
methods using Toffoli gates are widely available, this serves 
as evidence that our proposed parity-preserving design 
strategy would be viable. 
 
 

 

Fig. 4.  Binary full-adder built of 2 Peres gates. 

 
Figure 5 shows how one FRG and two F2Gs can be used to 
synthesize a Toffoli gate. Extra inputs and outputs (garbage 
outputs) have been indicated with dashed lines. Note that if 
we do not insist on reproducing all three Toffoli gate outputs 
exactly (e.g., by foregoing the Q = B output), a less complex 
design becomes possible (Fig. 6), which can replace a Toffoli 
gate in most contexts. At present, we are investigating such 
alternative designs and their effect on synthesis procedures. 
 
 

 

Fig. 5.  Synthesizing a TG from one FRG and two 
F2Gs, with parity preservation. 

 
 

 

Fig. 6.  Synthesizing a TG-like element from one 
FRG and one F2Gs. 

4. Conclusion 
 
We have demonstrated the feasibility of the parity-preserving 
approach to design of reversible logic circuits. This approach 
provides a way of incorporating fault tolerance into reversible 
circuits without much extra design effort and with modest 
hardware overhead, a goal that has proven difficult to achieve 
thus far. The small number of reports in the literature have 
been based on fairly ad hoc methods or have involved 
excessive overhead in circuit complexity (see, e.g., [Shor96], 
[Pres98], [Boyk05]). It is hoped that parity preservation, by 
itself and in combination with other methods, proves useful 
for ensuring the robustness of reversible logic circuits in their 
various application domains. 
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