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Abstract—Alternating group graphs AG,,, studied by Jwo and others, constitute a
class of Cayley graphs that possess certain desirable properties compared with
other regular networks considered by researchers in parallel and distributed
computing. A different form, AN,,, of such graphs, proposed by Youhou and
dubbed alternating group networks, has been shown to possess advantages over
AG,,. For example, AN,, has a node degree that is smaller by a factor of about 2
while maintaining a diameter comparable to that of AG,,, is maximally fault-
tolerant, and shares some of the positive structural attributes of the well-known
star graph. In this paper, we characterize the distance between any two nodes in
AN, and present an optimal (shortest-path) routing algorithm for this class of
networks.

Index Terms—Alternating group graph, Cayley graph, diameter, interconnection
network, internode distance, optimal routing, permutation group, regular graph,
shortest-path routing.
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1 INTRODUCTION

THE important role played by Cayley graphs in the design and
analysis of interconnection networks for parallel and distributed
computing is now well understood [1], [3], [5]. Rings, toroids,
hypercubes [4], [7], star graphs [1], [6], and alternating group
graphs [2], [4], [9], [10] are all examples of Cayley graphs. Recently,
Cayley graphs AG,, based on the alternating group A, have been
discussed in the literature [4], [9], [10]. Networks based on AG,
have a number of advantages over both the hypercube and the star
graph. For example, alternating group graphs are Hamiltonian-
connected, meaning that there is a Hamiltonian path between
every pair of vertices. Additionally, these graphs are pancyclic,
that is, they contain as subgraphs cycles of all possible lengths,
from the minimum of 3 to the maximum of n (Hamiltonian cycle).

The class AN, of alternating group networks proposed by
Youhu [10] differs from the class AG,, introduced by Jwo et al. [4].
The new alternating group networks are also Cayley graphs and
are thus vertex-symmetric. The diameters of AN, and AG, are
comparable; however, the node degree of AN, is only about half
that of AG,. Furthermore, the new graphs are maximally fault-
tolerant [8] and share some of the positive structural attributes of
the well-known star graphs.

The derivation of a simple and efficient routing algorithm,
preferably one that is optimal (i.e., it routes via shortest paths) and
has other desirable properties such as robustness, adaptivity, and
freedom from deadlocks, is a requirement for practical application
of any new class of interconnection networks [7]. A routing scheme
(described in the Appendix) was proposed for the new alternating
group networks AN, in [10]. However, this routing scheme was
not proven correct and has obvious flaws in that it does not find a
path between some pairs of nodes in certain alternating group
networks. For example, it fails to find a path from node 3125476 to
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the identity node 1234567 in AN (the algorithm and a justification
for the aforementioned claim can be found in the Appendix). Thus,
the problem of optimal routing for AN, remains open. In this
paper, we fill this void by characterizing the distance between any
two nodes in AN, and presenting a provably optimal (shortest-
path) routing algorithm for this class of networks.

2 BACKGROUND AND DEFINITIONS

This section is devoted to introducing background material and
notational conventions needed to understand the rest of the paper.
Let G be a finite group with ¢ as its identity element. Let S C G bea
generator set of G such that e ¢ S and g~! € S if g € S. The Cayley
graph Cay(G,S), defined as having G as its vertex set and E =
{(z,y) | y = zg for some g € S} as its edge set, is a regular vertex-
transitive graph of node degree |S|. Many important and
extensively studied interconnection networks, such as rings,
toroids, hypercubes, star graphs, and alternating group graphs,
are Cayley graphs.

Define (n) as the set {1,2,...,n} and let p=p; ps ... p, be a
permutation of the elements of (n), that is, p; € (n) and p; # p; for
i # j. We may refer to p; as p(i) or the ith element of p or use
square brackets to delineate elements of a permutation when
simply juxtaposing them would lead to ambiguities; for example,
the permutation that swaps the first and ith elements may be
written as gi; =423 ...[¢ — 1]1[i + 1] ... n. For two permutations
o and 6, we define their product, or composition, ¢é, as a
permutation that satisfies 06(i) = o(6(¢)). In other words, if o =
0102 ...0, and 6 =6165...6,, we have o6 = 0(61)c(62)...0(6,)-
Any permutation can be obtained from the identity permutation
e=12...n by a sequence of transpositions (exchanging two
adjacent elements). An even (odd) permutation is one whose
derivation in this manner requires an even (odd) number of steps.
A transposition step applied to an even permutation produces an
odd permutation and vice versa. Thus, there are n!/2 even (odd)
permutations of (n).

Let A, denote the set of all even permutations over (n). The set
A,, along with the operation of product (composition), constitutes
a group. Let gy be the permutation that swaps elements in
positions & and [ and leaves all other elements undisturbed. It is
easy to see that gy is an odd permutation. Define two even
permutations, g/ and g;, as follows for i > 3:

9; = 02912 9; = Grig12-

In other words, g/ swaps the element in position 2 with the
element in position i after first transposing elements 1 and 2, while
g; swaps the element in position 1 with the element in position ¢
following the gi» transposition. Note that g g; = e, the identity
permutation, so, gi+ and g; are each other’s inverses.

The alternating group graph AG, is the Cayley graph
Cay(A,,X) with the generator set:

S ={93.95,90 .91, 90,9, -

The n-dimensional alternating group graph AG,, is a regular graph
with n!/2 nodes, n!(n —2)/2 edges, node degree 2(n —2), and
diameter |3n/2] — 3. Fig. 1 depicts AG3 and AG,.

Similarly, the n-dimensional alternating group network AN, is a
regular graph with each of its nodes labeled with an even
permutation of (n). Two nodes of AN, are directly connected iff
the label (permutation) of one node can be obtained from the label
of the other by one of the following operations:

I. 2 = gi293;, where 3 <1i < n: Swapping symbols 1 and 2
and symbols 3 and i.

2. gp: Shifting the first (leftmost) three symbols cyclically to
the left by one position.
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Fig. 1. Alternating group graphs (a) AG3 and (b) AG,.

3. gg: Shifting the first three symbols cyclically to the right by
one position.

Clearly, the generator z; is its own inverse, while g, and gr are
each other’s inverses. Thus, AN, is a Cayley graph Cay(An,Q)
with the generator set Q = {zy,...,2,,91,9r}. Fig. 2 depicts ANj
and AN,. From now on, we exclude the uninteresting case of AN3,
which is a 3-node ring, and focus on AN, with n > 3.

The following facts about AN, are obvious: It is a regular
graph with n!/2 nodes, n!(n — 1)/4 edges, and node degree n — 1.
We also know from [10] that AN, is Hamiltonian and has a
diameter of [3n/2] — 3, which is no more than one unit greater
than the diameter |3n/2| — 3 of AG,. As a Cayley graph, AN, is
vertex-symmetric. However, it is not edge-symmetric. The latter
observation is easily verified by noting that the edge
(1234...1n,2314 ... n) is in a cycle of length 3, whereas the
edge (1234 ...[n—1]n,21n4 ...[n—1]3) belongs to no such
cycle. For example, in Fig. 2b, the edge (1234,2143) is not part of a
cycle of length 3.

3 FINDING INTERNODE DISTANCES

A permutation p=p; p>...p, of the elements in (n) can be
represented by its cycle structure, thatis, p=ci ca...cpreies... ¢,
where ¢; is a cycle of length |¢;| >2 for 1 <i <k and ¢; is an
invariant for 1<4 <I[. Thus, n=|e;|+|ca|+ ...+ ||+ . For
brevity, we may refrain from listing the invariants in the canonical
cycle representation of p. For example, if p=15124 37 6, then the
cycle structure of p can be given as (1 5 3 2) (6 7), omitting the
invariant (4). Note that a cycle such as (1 5 3 2) indicates that the
first element is replaced by the fifth, the fifth element is replaced by
the third, the third element is replaced by the second, and,
wrapping around, the second element is replaced by the first. We
use d(p,q) to denote the length of a shortest path from node p to
node ¢. As before, e denotes the identity permutation 123...n.
Given a node p whose label contains a cycle ¢ and a different
node ¢ with a label in which the elements of ¢ are invariants (each
element  appears in the corresponding position ), we say that, in
going from p to ¢, the cycle ¢ has been sorted. This means that ¢
does not appear in the canonical cycle structure of g. Sorting of
cycles constitutes the building block of routing algorithms, as will
become clear in the rest of this paper.

Lemma 1. Let p be a node of AN, having the cycle structure
(12)co...ch, that is, ¢; = (12). The cycle ¢ automatically gets
sorted when all the other cycles in p have been sorted.

Proof. Divide the cycles of p into even and odd cycles. Because p is
an even permutation, it must have an even number of even
cycles. So, there are an odd number of even cycles other than ¢;.
Sorting each odd cycle will leave the elements 1 and 2 in their
original out-of-order state, given that they undergo an even
number of transpositions. Sorting each even cycle, on the other
hand, will transpose the elements 1 and 2 an odd number of
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Fig. 2. Alternating group networks (a) AN; and (b) AN,.

times. After an odd number of such reorderings to sort all the
other even cycles, 1 and 2 must appear in sorted order. Hence,
once all the other cycles in p have been sorted, the cycle ¢; must
be sorted as well. 0

Lemma 2. For a node p of AN,, let the canonical cycle structure be
¢ ¢ ...cp and define m = |ci| + |co| + ... + |cx]|. We derive d(p, e)
in the two cases when 3 is or is not an invariant.

1. If 3 is an invariant, then the distance d(p,e) from node p to
the identity node e is:

d(p,e) =m+k ifpy=1and py =2
=m+k—3 ifp=2andp, =1
=m-+k if |{p1,p2} N{1,2}| =1,
and 1 or 2 is an invariant
=m+k—1 if {p1,p2} N{1,2}| =1,
and 1 and 2 belong to the same cycle ¢;
=m+k if {p1,p2} N{1,2}| =0,
and 1 and 2 belong to the same cycle ¢;
=m+k—1 if {p1,p2} N{L,2}| =0,

and 1 and 2 belong to different cycles.

2. If 3 is not an invariant, then d(p, e) is two units less than the
expressions given above.

Proof. Case 1: 3 is an invariant, that is, p3 = 3.
Subcase a: p; = 1 and p, = 2. To sort any cycle ¢;, we need
|ci| + 1 steps. Thus, d(p,e) = |c1]| + |ca| + ...+ |cx| + k=m + k.
Subcase b: p; =2 and py =1, that is, the cycle
structure of p includes ¢; =(12). From Lemma 1, we
know that we do not need to sort the cycle ¢ =(12).
To sort a cycle ¢ other than (12), we need |¢|+1
steps. Thus, d(p,e) =|co|+...+ || +k—1=m+k—3.
Subcase c: [{p1, p2} N {1,2}| = 1and 1 or 2 is an invariant. For
simplicity, we assume that 2 is an invariant and 1 is in the cycle
¢; = (1 p1...). To sort this cycle, that is, to put those elements in
¢; which are larger than 1 in their correct positions, we need
|ci| + 1 steps. Thus, d(p,e) = |c1| + |co| + ... + |ex| + k=m + k.
Subcase d: |{p1,p2} N{1,2}| =1 and 1 and 2 belong to the
same cycle ¢;. For simplicity, we assume that 1 and 2 are in the
cycle ¢; =(12py...). To sort this cycle, that is, to put the
elements in ¢; which are larger than 2 in their correct positions
and the elements {1, 2} in positions 1 and 2, we need |¢;| steps.
Thus, d(p,e) = |ci| + 2| + ...+ |e] +k—1=m+ k-1
Subcase e: |{p1,p2} N{1,2}| =0, and 1 and 2 belong to
the same cycle ¢. Let 1 and 2 be in the cycle
¢ =0p1 ...2py...). To sort this cycle, we need |c;|+1
steps. Thus, d(p,e) = |e1] + |eo| + ... + |ex| + E=m + k.
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Subcase f: |{p1,p2} N{1,2}| =0 and 1 and 2 belong to endif
different cycles. Let 1 be in the cycle ¢; = (1 p1...) and 2 in the endif
cycle ¢; = (2py...). To sort these two cycles, we need |¢;|+

lc;| + 1 steps. Thus, Note that, in Algorithm Route, the notation “cycle (ij...)

represents the cycle that contains both ¢ and j and p gr or p gz, is
d(p,e) =|ci| +lea| + ...+ +h—1=m+k—1. the group product of p and one of the generators gp or g;, defined
in Section 2.

Case 2: 3 is not an invariant, that is, p3 # 3. We begin by
Example 1, A shortest path from p=45123toe=123451in

sorting the cycle ¢; = (3 p3...) in |¢j| — 1 steps. The rest of the
process parallels that of Case 1. ANs:
Subcase a: py =1 and p; =2. To sort any cycle ¢; that

does not contain 3, we need |¢|+1 steps. Thus, 45123 —ygr
d(p,e) =ler| +leal + ... +lerl +k—2=m+k—2. 51423 — oz

Subcase b: p; =2 and p; =1, that is, the cycle structure 15243 —gg
of p includes ¢; = (12). From Lemma 1, we know that we 21543  — 2
do not need to sort the cycle ¢; = (12). To sort any other 12345 (

cycle ¢; that does not include 3, we need |¢;| + 1 steps. Thus,
d(p,e) =|co| + ...+ x| +k—3=m+ k5.

Subcase c: |{p1,p2} N{1,2}| =1 and 1 or 2 is an invariant.
For simplicity, we assume that 2 is an invariant and 1 is in the
cycle ¢; = (1 p1...). To sort this cycle, we need |¢;| +1 steps 3125476
when ¢; does not include 3 and we need |¢;| — 1 steps when it
does. Thus, d(p,e) = |e1]| + |co| + ... + || +k—2=m+k—2.

Example 2. A shortest path from p=3125476 to e=
123456 7in ANy:

— 9L
1235476 — z

Subcase d: |{p1,p2} N {1,2}| =1 and 1 and 2 belong to the 2153476 —z
same cycle ¢;. For simplicity, we assume that 1 and 2 are in the 1243576 — 2z
cycle ¢; =(12py...). To sort this cycle, that is, to put the 2134576 — 2

elements in ¢; which are larger than 2 in their correct positions 19274536
and the elements {1, 2} in positions 1 and 2, we need |¢;| steps A
when ¢; does not include 3 and we need |¢;| — 2 steps when it 2164537  — z
does. Thus, d(p,e) = |e1] + |co| + ...+ |cx| + k=3 =m + k- 3. 1234567
Subcase e: [{p1,p2} N{1,2}| =0 and 1 and 2 belong to the
same cycle ¢. Let 1 and 2 be in the cycle
ci=(1p1...2p2...). To sort this cycle, we need |c|+1 Theorem 1. The algorithm Route(p) is optimal.
steps when ¢; does not include 3 and |¢;| — 1 steps when it
does. Thus, d(p,e) = |ci| +|eo| +...+ || +k—2=m+ k-2
Subcase f: |{p1,p2} N{1,2}|=0 and 1 and 2 belong to

different cycles. Let 1 be in the cycle ¢; = (1p;...) and 2 L i
in the cycle ¢; = (2ps...). To sort these two cycles, we structure of p’ is hy ha...hy, where |h;| > 2 for 1 <i < K. Let

need |ci|+|cj| +1 steps when ¢ Uc; does not include 3 m' = |h1| + |h2| + ... + |he|. The three cases identified in the
and we need |c|+ le;| — 1 steps when it does. Thus, algorithm must be considered: 1) p3 >3, 2) p3 =3, and
d(p,e) =ler| + |eo] +... || +k—3=m+k—3. O 3) p3 < 3. In the following, we only consider the case of p3 < 3
as the first two cases can be proven similarly. Furthermore,
because ps; =2 and p=(32...)cy...cy is similar to p; = 1 and
p=(31...)ca...cy we only supply a proof for the latter case.

Proof. We only need to prove that d(p’,e) = d(p,e) — 1. Suppose
that the cycle structure of p is ¢; ¢y ...cp, where |¢;| > 2 for
1<i<k Letm=|ci|+ |eo| + ...+ |ck|. Suppose that the cycle

4 AN OPTIMAL ROUTING ALGORITHM

In this section, we provide, and prove correct, a shortest-path Case a: If [{p1,p2} N{1,2}| =1 and 1 or 2 is an invariant,
routing algorithm Route(p) for AN,. Because AN, is vertex- then 2 is an invariant, d(p, e) :/ m+k—2and p’ =pgr.
symmetric, a path from any node z to an arbitrary node y can be havSeubcase al:If pr =3, thenp’ = (1 2)cy ... ¢ By Lemma 2, we
easily deduced, given a path from p =y~ ! x to the identity node

e =123...n. The latter is the path that our algorithm provides. dip',e)=2+lcal +...+ || +k—3=m+k—3 =d(p,e) — 1.
Route(p = p1 p2 ...py): returns p/, the first node on a shortest path Subcase a2: If p; >3, then p' =(12)3p1 ...)e2...ch. By

from p to e Lemma 2, we have

Case 1: if ps > 3 then p' = p z,, endif
Case 2: ifp3=3
then if py =4,ps = 5,...,p, = n then stop endif
else p' = p z;, where t > 3 and p; # ¢ Case b: If [{p1,p2} N{1,2}| =1 and 1 and 2 belong to the
endif same cycle ¢;, then p; = 2,d(p,e) =m+k—3 and p' =p gp.
Subcase bl: If p, =3, then p' =¢;...¢;. By Lemma 2, we
have d(p/,e) =m' +K =m -3+ k—1=d(p,e) — 1.
Subcase b2: If py; >3, then p=3B12py...)e2...cp,
P =(3p2...)ea...cp. By Lemma 2, we have

dip',e)=m'+ K —5=m+1+k+1-5
=m+k—-3=d(pe)—1

Case 3: ifp3 <3
then if p; <3 or ps <3
then if p; < 3 then p' = p gg else p' = p gr endif

endif
else if (p; = 1 and 2 is not in the cycle (31...)) dip.e)=m'+k —2=m-2+k-2=m+k—-4=d(pe) - L
or (p3 =2 and 1is in the cycle (32...)) Case c: If |{p1,p2} N{1,2}| =0 and 1 and 2 belong to the
then p' = p gp same cycle ¢;, then p; >2,py > 2,d(p,e) =m+k—2 and

else p' = pgr P =Dy
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Subcase «cl: If py, =3,
Thus, p=(13p;...2)c2... ¢y

then p=B1pi...2)c...c.
By Lemma 2, we have

dip',e)=m'+¥ —3=m+k—3=d(p,e) — 1.
Subcase c2: If p; > 3, then p; > 3,

p=0B1lp1...2ps...5)c2...C.
Thus, p' = (3p1...21ps...J)c2... ¢, By Lemma 2, we have

dp,e)=m'+ kK —3=m+k—-3=d(pe)—1.

Case d: If |{pi,p2}N{1,2}|=0 and 1 and 2 belong to
different cycles, then we have p; >2, ppy>2, p=
Blpi...i)(2p2...J)cs...cr,d(p,e) =m+k—3 and p' =p gr.
Thus, p’ =(3pa...52p1...1)c3...¢; and 1 is an invariant of p'.
By Lemma 2, we have

dp,e)=m'+ K —2=m+k—4=d(pe) —1.

5 CONCLUSION

Given that the design space for interconnection networks is quite
vast, identifying structures that lend themselves to theoretical
analyses constitutes an important area of research. Cayley graphs
in general, and networks based on alternating groups in particular,
provide a rich area of study for analyzing both well-known and
new interconnection networks. In this paper, we derived the
distance between any pair of nodes in the alternating group
networks AN, and used the results in the construction and proof
of an optimal (shortest-path) routing algorithm for this new class
of networks. In so doing, we solved an open problem due to the
lack of a complete, and provably correct, routing algorithm for
AN,,. We have also built a foundation for further studies of these
and other Cayley graphs based on alternating groups that offer
advantages over well-known, and extensively studied, intercon-
nection networks such as the hypercube and the star graph.

The work reported here can be extended in several directions.
Some important open problems include: 1) enumerating and
constructing node-disjoint, or parallel, paths for the evaluation of
fault tolerance, 2) finding the exact value of the network’s fault
diameter to assess its robustness, and 3) deriving a fault-tolerant
routing algorithm to allow continued operation in the presence of
faults. We are now investigating some aspects of these and other
problems of practical interest.

APPENDIX

A ROUTING ALGORITHM FOR AN,

The following routing algorithm for AN,, called YRoute, is
reproduced from [10] for comparison purposes and for verifying
our claim that it fails to find a route in some cases. The algorithm
YRoute supplies a route from node p in AN,, whose cycle structure
is ¢y ¢y ...c to node e.

YRoute(p = ¢y ¢z ... cp): p' is the first node on a shortest path from p
toe
Step 1: if p3 =3
then if p contains a cycle (i; iz ...4s) with s > 2 and i; > 3
then p' = p 2,
else p’ = p(132) or p’ = p(123)
/* there must be a cycle (i142...45 1...)
or (iydg...1s2...) with s > 1and i; >3 */
endif
else /* p3 £3*/
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if p contains a cycle (4 42 ...i5 3...) with s > 1 and

i; >3
then p' = p z;,
endif

if p contains (i; 42...45 1 3...) (2) or
(t142...43523...) (1) with s > 1 and 4; > 3

then p’ = p(132) or p' = p(123)

endif

if p contains (13...) (241 42...45) or (23...)
(141 4y...45) with s > 1 and ¢; > 3

then p’ = p(123) or p' = p(132)

endif
endif
Step 2:  One by one, place the elements 4,,%5_1,. .., in p’ at their
correct positions
Step 3:  Sort the cycles ci, ¢, ..., ¢ in turn by using Steps 1 and 2

as required;
Finally, put the elements 1, 2, and 3 in their correct
positions.

Now, consider the example of routing from the node p = 3125476
to the identity node 1234567 in AN7, cited in Section 1. Thus, p3 = 2
and the cycle expression of p is (1 3 2) (4 5) (6 7). Because p3 # 3, p
does not satisfy any of the following conditions:

1. containing a cycle (i1 42...45 3...) with s > 1 and ¢; > 3,
2. containing cycles (i 3...95 13...) (2) or (i1 i2...4523...)
(1) with s > 1 and 4; > 3,
3. containing cycles (13...) (2414y...495) or
(1 il iQ . Tg) with s > 1 and L/ > 3.
Algorithm YRoute fails to compute p'. In other words, the three
subcases under the “else” part of Step 1 (corresponding to p3 # 3)
do not cover all possibilities. Clearly, the example above is not the
only one for which Algorithm YRoute fails to provide a routing
path. Routing from any node whose cycle structure contains (1 3 2)
will create the same problem.

23..)
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