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Abstract

Many real networks, including those in social, technological, and biological realms, are small-world networks. The two
guishing characteristics of small-world networks are high local clustering and small average internode distance. A grea
previous research on small-world networks has been based on probabilistic methods, with a rather small number of re
advocating deterministic models. In this paper, we further the study of deterministic small-world networks and show tha
graphs may be good models for such networks. Small-world networks based on Cayley graphs possess simple structures
icant adaptability. The Cayley-graph model has pedagogical value and can also be used for designing and analyzing comm
and the other real networks.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the past few years, an array of discoveries h
added to our understanding of complex networks
Many real networks, including those in social, tec
nological, and biological realms, are small-world n
works. As graphs, such networks have clustering
efficients much larger than those of random netwo
while their average internode distances are compar
small (growing as the logarithm of the numbern of
nodes). In 1998, Watts and Strogatz [9] described
chastic models of small-world networks. Their meth
is to begin with a structured network such as a loop
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work, which has high clustering but also a large aver
internode distance, and to randomly rewire the ed
so as to reduce the average internode distance. T
models, dubbed “small-world networks” (correspon
ing to the popular notion of “six degrees of separatio
offer high clustering, like loop networks, yet posse
small average internode distances, as in random
works.

Subsequently, Comellas and Sampels [6] disc
ered that constant-degree deterministic small-world
works are also feasible. One motivation in introdu
ing deterministic models for small-world networks
to facilitate the understanding of their behavior. T
approach also permits a direct calculation of relev
network parameters and thus allows the design of
cific small-world networks for applications such as n
communication systems and computer architectures
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In this paper we show that Cayley graphs are ex
lent models for small-world networks, in the sense t
with suitable choice of relevant parameters, they
be adapted to possess the distinguishing character
of such networks. Our models offer simple structu
as well as significant adaptability. The Cayley-gra
model has pedagogical value and can also be use
designing and analyzing communication and the o
real networks.

2. Cayley-graph network models

It is known that Cayley graphs are excellent mod
for interconnection networks [1,3]. Many well-know
and practically useful interconnection networks
Cayley graphs. For example, hypercube and cube-
nected cycles networks are Cayley graphs. We s
demonstrate that Cayley graphs can also serve a
cellent models for small-world networks.

We first introduce some notation and technical ter
A digraph Γ = (V ,E) is defined by a setV of ver-
tices and a setE of arcs or directed edges. The setE

is a subset of elements (u,v) of V × V . If the subsetE
is symmetric, that is, (u,v) ∈ E implies (v,u) ∈ E, we
identify two opposite arcs (u,v) and (v,u) by the undi-
rected edge (u,v). We then have a graph. LetG be a
finite group andS a subset ofG (we do not deal with
infinite groups in this paper). The subsetS is said to be
a generating set forG, and the elements ofS are called
generators ofG, if every element ofG can be expresse
as a finite product of the powers of the elements inS. In
this case, we also say thatG is generated byS.

The Cayley digraph of a groupG and the subsetS
of G, denoted byCay(G,S), has vertices that are el
ments ofG and arcs that are ordered pairs (g,gs) for
g ∈ G, s ∈ S. If S is a generating set ofG, then we say
thatCay(G,S) is the Cayley digraph ofG generated by
S. If 1 /∈ S (1 is the identity element ofG) andS = S−1,
thenCay(G,S) is a simple (undirected) graph. For mo
definitions and basic results on graphs and groups w
fer the reader to [5], for instance, and on interconnec
networks to [7,8]. Unless noted otherwise, all graph
this paper are undirected graphs.

3. Clustering coefficient

Let G be a finite group. Assume thatΓ = Cay(G,S)

for some generating setS of G, where 1/∈ S, S = S−1.
Then,Γ is a Cayley graph of constant degreed = |S|,
every nodev of Γ has exactlyd neighbors, and at mos
d(d − 1)/2 edges exist between thesed neighbors ofv.
The fractionCv of these allowable edges that actua
s

r

-

-

exist between the neighbors is known as the cluste
coefficient of nodev. The average ofCv over allv ∈ G

is the clustering coefficientC of the graphΓ .
BecauseΓ is symmetric, the clustering coefficient

every node is the same (Cv = C). Thus, we only need t
consider the clustering coefficient of node 1, the id
tity element ofG. The set of neighbors of node 1 isS.
If s1, s2 ∈ S, thens1 ands2 are adjacent if and only i
there iss ∈ S such thats2 = s1s. Assume thatH ⊆ S

andH ∪ {1} is a subgroup ofG. Thens1s2 ∈ H when
s1, s2 ∈ H . Hence, there are at least|H |(|H | − 1)/2
edges among the setS of neighbors of node 1. As a re
sult, the clustering coefficient ofΓ will be large if H

can be chosen to be large. This is the central idea o
method.

In contrast to the method of [9], we start from n
works with small clustering coefficients and small a
erage internode distances and proceed to increas
clustering coefficient by means of adding elements
G into S, while ensuring that the average interno
distance remains small. We present the essence o
method via two examples.

4. First example network

Let G1 = Zt
2 be an elementary commutative gro

of order 2t . Consider an integerl satisfying 1� l � t .
Define H1 = {(x1, x2, . . . , xl,0t−l ) | (x1, x2, . . . , xl) ∈
Zl

2}\{(0,0, . . . ,0)}, where (0,0, . . . ,0) is the iden-
tity element ofG1, andS1 = H1 ∪ {(x1, x2, . . . , xt ) ∈
Zt

2 | only one ofx1, x2, . . . , xt is 1}. Assume thatΓ1 =
Cay(G1, S1). When l = 1, the networkΓ1 is the well-
known hypercube (binaryt-cube) network; it become
the complete graph forl = t . One can easily verify tha
|H1| = 2l − 1 and|S1| = |H1| + t − l = 2l + t − l − 1.
Hence, we have established the following result.

Proposition 1. The clustering coefficient ofΓ1 is

C1 = (2l − 1)(2l − 2)

(2l + t − l − 1)(2l + t − l − 2)
.

Let the diameter (maximum distance between
pair of nodes) ofΓ1 beD(Γ1) andn = 2t . Then|G1| =
n andD(Γ1) � t = log2 n. Thus the average internod
distance ofΓ1 is no greater than log2 n. Based on the re
sults above, we can choose the value ofl such that the
clustering coefficientC1 is large and the degree ofΓ1 is
still small. For instance, withl = log2 t , or equivalently,
t = 2l , the clustering coefficient is:

C1 = (t − 1)(t − 2)
.

(2t − log2 t − 1)(2t − log2 t − 2)
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4 when t → ∞. More generally, let

a = (2l − 1)/t . Then we have:

C1 = at (at − 1)

(at + t − l)(at + t − l − 1)
.

In this case,C1 → a2/(a + 1)2 whent → ∞. By suit-
ably choosinga, we can obtain different clustering c
efficients forΓ1, while maintaining a small node degr
equal toat + t − l.

One can chooseS1 andH1 as subsets ofG1 in many
different ways, leading to diverse small-world netwo
models. However, the degree ofΓ1 is at least equal to
t = log2 n. We consider Cayley graphs of constant
grees in the following example.

5. Second example network

Let N = Z
q

2 , whereq � 3. Suppose thatK = Zq

is a cyclic group of orderq and G2 = Z2wrZq is a
semidirect product ofN by K . Consider integersl
and t satisfying 1� l � t < q and let S2 = H2 ∪
{(0q,1), (0q,−1)} ∪ {(x1, x2, . . . , xt ,0q−t+1) | (x1, x2,

. . . , xt ) ∈ Zt
2, and only one ofx1, x2, . . . , xt is 1}, where

H2 = Zl
2\{(0,0, . . . ,0)} and(0,0, . . . ,0) is the identity

element ofG2. Let Γ2 = Cay(G2, S2). Whent = l = 1,
the networkΓ2 is the well-known cube-connected c
cles network. One can easily verify that|H2| = 2l − 1
and|S2| = |H2| + t − l + 2 = 2l + t − l + 1. Thus, we
have established the following result.

Proposition 2. The clustering coefficient ofΓ2 is

C2 = (2l − 1)(2l − 2)

(2l + t − l + 1)(2l + t − l)
.

We know that the degree ofΓ2 is |S2| = 2l + t − l +1
and the order ofG2 is |G2| = 2qq. Hence the degree o
Γ2 does not depend on the order ofG and is a constan
whent andl are fixed. The diameter ofΓ2 is no greater
than that of the cube-connected cycles of the same o
which is in turn at most 5q/2 − 1. Thus, the graphΓ2
is a small-world network model. By suitably choosint
andl, we can get different clustering coefficients whi
are large.

6. Discussion

We have established that Cayley graphs are ind
good models for small-world networks. Our models
structurally simpler, as well as more amenable to t
oretical development and comparative evaluation, t
those in [6] or [9]. Unlike the probabilistic models
,

[9], our networks are characterized by closed-form,
act formulas for various properties, which lead to
tuitive and fairly precise mechanisms for varying t
pertinent parameters. The deterministic models of
which borrow from techniques previously found us
ful for constructing large, low-diameter networks [4
do not offer the same simplicity and precision. In p
ticular, the method of starting with a regular degred
network and replacing each of its nodes with thed-node
complete graphKd , which is the only node-symmetr
construction proposed in [6], yields only one sma
world network for each starting configuration. Our a
proach, on the other hand, results in a family of n
works which offer a range of parameters.

We believe that our models will have important a
plications to diverse research fields, including in para
architectures and communication networks. By suita
choosing the parameters of the Cayley-graph mod
they can be made to mimic many real networks of
types found in social, technological, and biological d
mains. This constitutes a fertile field for further inves
gation.
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