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Abstract

Many real networks, including those in social, technological, and biological realms, are small-world networks. The two distin-
guishing characteristics of small-world networks are high local clustering and small average internode distance. A great deal of
previous research on small-world networks has been based on probabilistic methods, with a rather small number of researchel
advocating deterministic models. In this paper, we further the study of deterministic small-world networks and show that Cayley
graphs may be good models for such networks. Small-world networks based on Cayley graphs possess simple structures and sign
icant adaptability. The Cayley-graph model has pedagogical value and can also be used for designing and analyzing communicatio
and the other real networks.
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1. Introduction work, which has high clustering but also a large average
internode distance, and to randomly rewire the edges
In the past few years, an array of discoveries have so as to reduce the average internode distance. Their
added to our understanding of complex networks [2]. models, dubbed “small-world networks” (correspond-
Many real networks, including those in social, tech- ing to the popular notion of “six degrees of separation”)
nological, and biological realms, are small-world net- offer high clustering, like loop networks, yet possess
works. As graphs, such networks have clustering co- small average internode distances, as in random net-
efficients much larger than those of random networks, works.
while their average internode distances are comparably ~ Subsequently, Comellas and Sampels [6] discov-
small (growing as the logarithm of the numberof ered that constant-degree deterministic small-world net-
nodes). In 1998, Watts and Strogatz [9] described sto- works are also feasible. One motivation in introduc-
chastic models of small-world networks. Their method ing deterministic models for small-world networks is
is to begin with a structured network such as a loop net- to facilitate the understanding of their behavior. This
approach also permits a direct calculation of relevant
"* Corresponding author. Tel /fax: +1 805 893 3211/3262. network parameters and thus allows the design of spe-
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In this paper we show that Cayley graphs are excel-
lent models for small-world networks, in the sense that
with suitable choice of relevant parameters, they can
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exist between the neighbors is known as the clustering
coefficient of nodev. The average of’, over allv € G
is the clustering coefficient of the graphl”.

be adapted to possess the distinguishing characteristics Becausd™ is symmetric, the clustering coefficient of

of such networks. Our models offer simple structures
as well as significant adaptability. The Cayley-graph

every node is the sam€{ = C). Thus, we only need to
consider the clustering coefficient of node 1, the iden-

model has pedagogical value and can also be used fortity element ofG. The set of neighbors of node 1§s
designing and analyzing communication and the other If s1,s2 € S, thens, ands; are adjacent if and only if

real networks.
2. Cayley-graph network models
It is known that Cayley graphs are excellent models

for interconnection networks [1,3]. Many well-known
and practically useful interconnection networks are

Cayley graphs. For example, hypercube and cube-con-

there iss € S such thats; = s15. Assume thatH C S
and H U {1} is a subgroup of5. Thensys2 € H when
s1,s2 € H. Hence, there are at leag?|(|H| — 1)/2
edges among the sStof neighbors of node 1. As a re-
sult, the clustering coefficient of" will be large if H
can be chosen to be large. This is the central idea of our
method.

In contrast to the method of [9], we start from net-

nected cycles networks are Cayley graphs. We shall works with small clustering coefficients and small av-
demonstrate that Cayley graphs can also serve as exerage internode distances and proceed to increase the

cellent models for small-world networks.

We first introduce some notation and technical terms.
A digraph I = (V, E) is defined by a seV of ver-
tices and a sef of arcs or directed edges. The dét
is a subset of elements,(v) of V x V. If the subsett
is symmetric, that is,i(, v) € E implies @, u) € E, we
identify two opposite arcs«( v) and (@, u) by the undi-
rected edgey, v). We then have a graph. Lét be a
finite group andS a subset of; (we do not deal with
infinite groups in this paper). The subsgis said to be
a generating set fa&, and the elements of are called
generators of;, if every element of; can be expressed
as a finite product of the powers of the elementS.iim
this case, we also say thatis generated bys.

The Cayley digraph of a grou@ and the subsef
of G, denoted byCay(G, S), has vertices that are ele-
ments of G and arcs that are ordered paigs £s) for
g€ G,seS. If Sisagenerating set af, then we say
thatCay(G, S) is the Cayley digraph of; generated by
S.1f1 ¢ S (1is the identity element o) ands = §~1,
thenCay(G, S) is a simple (undirected) graph. For more

definitions and basic results on graphs and groups we re-c, —

fer the reader to [5], for instance, and on interconnection
networks to [7,8]. Unless noted otherwise, all graphs in
this paper are undirected graphs.

3. Clustering coefficient

Let G be afinite group. Assume that= CayG, S)
for some generating sétof G, where 1¢ S, S = S~ 1.
Then, I" is a Cayley graph of constant degrée- |S]|,
every nodev of I' has exactlyl neighbors, and at most
d(d — 1)/2 edges exist between theg@eighbors ofv.
The fractionC, of these allowable edges that actually

clustering coefficient by means of adding elements of
G into S, while ensuring that the average internode
distance remains small. We present the essence of our
method via two examples.

4. First example network

Let G1 = Z}, be an elementary commutative group
of order 2. Consider an integdr satisfying 1</ < ¢.
Define Hy = {(x1, x2, ..., x,,07)) | (x1,x2,...,x)) €
Z,M\{(0,0,...,0)}, where (0,0,...,0) is the iden-
tity element ofG1, andS1 = H1 U {(x1,x2,...,x;) €
Z5 | only one ofxy, x2, ..., x; is 1}. Assume that’; =
Cay(G1, S1). When! = 1, the networkl is the well-
known hypercube (binary-cube) network; it becomes
the complete graph fdr=¢t. One can easily verify that
|Hy|=2' —1and|S1|=|Hy| +t—1=2"+1t—1—1.
Hence, we have established the following result.

Proposition 1. The clustering coefficient dfy is

2 -1 -2
C+t—-1-1D2+t—-1-2)

Let the diameter (maximum distance between any
pair of nodes) of’; be D(I'1) andn = 2'. Then|G1| =
n and D(I'1) < t =log,n. Thus the average internode
distance off is no greater than lgg:. Based on the re-
sults above, we can choose the valué efich that the
clustering coefficien€ is large and the degree 61 is
still small. For instance, with=log, ¢, or equivalently,
t = 2!, the clustering coefficient is:

_ - -2
(2t —logyt —1)(2t —logyt —2)°

C1
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ThereforeC1 — ‘—11 whent — oo. More generally, let
a= (2" —1)/t. Then we have:

_ at(at — 1)
C(at+t—D(at+t—1-1)

In this caseC1 — a?/(a + 1)?> whenr — oo. By suit-
ably choosing:, we can obtain different clustering co-
efficients forI';, while maintaining a small node degree
equal toatr +¢ — /.

One can choosg&; and H; as subsets aff; in many
different ways, leading to diverse small-world network
models. However, the degree 6% is at least equal to
t =log,n. We consider Cayley graphs of constant de-
grees in the following example.

C1

5. Second example networ k

Let N = ZJ, whereq > 3. Suppose thak = Z,
is a cyclic group of ordeyy and G, = ZowrZ, is a
semidirect product ofN by K. Consider integers
and r satisfying 1</ <t <gq and letS; = H, U
{(07, 1), (07, =1)} U {(x1, x2, ..., %1, 7" | (3, x2,
..., X) € Z’z, and only one ok1, x2, ..., x; is 1}, where
Hy=Z5\{(0,0,...,0)} and(0,0, ..., 0) is the identity
element ofG. Let I', = Cay(Ga, S2). Whent =1 =1,
the networkr? is the well-known cube-connected cy-
cles network. One can easily verify thii,| =2/ — 1
and|Sp| = |Ha| +t —1+2=2+¢—1+1. Thus, we
have established the following result.

Proposition 2. The clustering coefficient df; is

2 -12 -2

Co= .
2T 2 i I+ 0@ 41—

We know that the degree @b is |So| =2/ +1 —1+1
and the order 063 is |G2| = 27¢. Hence the degree of
I'; does not depend on the order@fand is a constant
whent and! are fixed. The diameter df; is no greater

than that of the cube-connected cycles of the same order,

which is in turn at most /2 — 1. Thus, the grapt»

is a small-world network model. By suitably choosing
and!, we can get different clustering coefficients which
are large.

6. Discussion

We have established that Cayley graphs are indeed

good models for small-world networks. Our models are

structurally simpler, as well as more amenable to the-
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[9], our networks are characterized by closed-form, ex-
act formulas for various properties, which lead to in-
tuitive and fairly precise mechanisms for varying the
pertinent parameters. The deterministic models of [6],
which borrow from techniques previously found use-
ful for constructing large, low-diameter networks [4],
do not offer the same simplicity and precision. In par-
ticular, the method of starting with a regular degree-
network and replacing each of its nodes withd#hrode
complete graptK,, which is the only node-symmetric
construction proposed in [6], yields only one small-
world network for each starting configuration. Our ap-
proach, on the other hand, results in a family of net-
works which offer a range of parameters.

We believe that our models will have important ap-
plications to diverse research fields, including in parallel
architectures and communication networks. By suitably
choosing the parameters of the Cayley-graph models,
they can be made to mimic many real networks of the
types found in social, technological, and biological do-
mains. This constitutes a fertile field for further investi-
gation.
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