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Abstract. In this short communication, we extend the known relation-
ships between Cayley digraphs and their subgraphs and coset graphs
with respect to subgroups and obtain some general results on homomor-
phism and distance between them. Intuitively, our results correspond to
synthesizing alternative, more economical, interconnection networks by
reducing the number of dimensions and/or link density of existing net-
works via mapping and pruning. We discuss applications of these results
to well-known and useful interconnection networks such as hexagonal
and honeycomb meshes.

1 Introduction

The fact that Cayley (di)graphs and coset graphs are excellent models for in-
terconnection networks, studied in connection with parallel processing and dis-
tributed computation, is widely acknowledged [1], [2], [4]. Many well-known in-
terconnection networks are Cayley (di)graphs or coset graphs. For example, hy-
percube, butterfly, and cube-connected cycles networks are Cayley graphs, while
de Bruijn and shuffle-exchange networks are coset graphs [4], [11].

Much work on interconnection networks can be categorized as ad hoc de-
sign and evaluation. Typically, a new interconnection scheme is suggested and
shown to be superior to some previously studied network(s) with respect to one
or more performance or complexity attributes. Whereas Cayley (di)graphs have
been used to explain and unify interconnection networks with some success,
much work remains to be done. As suggested by Heydemann [4], general theo-
rems are lacking for Cayley digraphs and more group theory has to be exploited
to find properties of Cayley digraphs. In this paper, we explore the relationships
between Cayley (di)graphs and their subgraphs and coset graphs with respect
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to subgroups and obtain general results on homomorphism between them. We
provide several applications of these results to well-known interconnection net-
works such as hexagonal and honeycomb meshes. Our Cayley graph addressing
scheme of interconnection networks is a unified and elegant representation for
network nodes, which efficiently uses the results of group theory. Clearly, this
addressing method is superior to those such as in [6] and [10] in this respect.
For example, we prove the formula on the distance of the honeycomb network
by means of the method of group theory. We think that our method will have
further applications for interconnection networks.

Before proceeding further, we introduce some definitions and notations related
to (di)graphs, Cayley (di)graphs in particular, and interconnection networks. For
more definitions and basic results on graphs and groups we refer the reader to [3],
for instance, and on interconnection networks to [5], [7]. Unless noted otherwise,
all graphs in this paper are undirected graphs.

A digraph I' = (V, E) is defined by a set V of vertices and a set E of arcs or
directed edges. The set E is a subset of elements (u,v) of V x V. If the subset
E is symmetric, that is, (u,v) € F implies (v,u) € F, we identify two opposite
arcs (u,v) and (v,u) by the undirected edge (u,v). Because we deal primarily
with undirected graphs in this paper, no problem arises from using the same
notation (u,v) for a directed arc from u to v or an undirected edge between u
and v. Let G be a (possibly infinite) group and S a subset of G. The subset S
is said to be a generating set for GG, and the elements of S are called generators
of G, if every element of G can be expressed as a finite product of their powers.
We also say that G is generated by S. The Cayley digraph of the group G and
the subset S, denoted by Cay(G,S), has vertices that are elements of G and
arcs that are ordered pairs (g,gs) for ¢ € G,s € S. If S is a generating set
of G then we say that Cay(G,S) is the Cayley digraph of G generated by S.
If 1 ¢ S (1 is the identity element of G) and S = S~!, then Cay(G,S) is a
simple graph. Assume that I" and X are two digraphs. The mapping ¢ of V(I")
to V(X) is a homomorphism from I' to X if for any (u,v) € E(I') we have
(¢p(u), p(v)) € E(X). In particular, if ¢ is a bijection such that both ¢ and the
inverse of ¢ are homomorphisms then it is called an isomorphism of I" to X.
Let G be a (possible infinite) group and S a subset of G. Assume that K is a
subgroup of G (denoted as K < G). Let G/K denote the set of the right cosets of
K in G. The (right) coset graph of G with respect to the subgroup K and subset
S, denoted by Cos(G, K, S), is the digraph with the vertex set G/K such that
there exists an arc (Kg, K¢’) if and only if there exists s € S and Kgs = Kg' .
The following basic result is easily verified.

Theorem 1. The mapping ¢ : g — Kg is a homomorphism from Cay(G,S) to
Cos(G, K, S) for g € G.

2 Hexagonal Mesh Networks

Let G = Z x Z, where Z is the infinite cyclic group of integers, and consider
I' = Cay(G,S) with S = {(1,0),(-1,0),(0,1),(0,-1),(1,1),(=1,=1)}. It is
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evident that I is isomorphic to the hexagonal (hex) mesh network [10]. A finite
hex mesh is obtained by simply using the same connectivity rules for a finite
subset of the nodes located within a regular boundary (often a rectangle or
hexagon). In the latter case, wraparound links are sometimes provided to keep
the node degree uniformly equal to 6, leading to a hexagonal torus network.
Here, we do not concern ourselves with these variations and deal only with the
infinite hex mesh. Let N = {(d,d,d)|d € Z}. Then, N is a normal subgroup of
ZxZxZ. Let H=(ZxZxZ)/Nand ¥ = Cos(Z x Z x Z,N,T), where
T = {(1,0,0),(-1,0,0),(0,1,0),(0,—1,0),(0,0,1), (0,0, —1) }. Then, it is clear
that I" is isomorphic to the Cayley graph Cay(H, NT) by Theorem 1, where
NT = {Nt|t € T} is a subset of the group H. Now we are prepared to show the
following result.

Proposition 1. The network X, defined above, is isomorphic to the hex mesh
network.

Proof. Omitted.

Proposition 1 has interesting applications to parallel and distributed systems,
including in certain problems pertaining to cellular communication networks [6].

Using the Cayley-graph formulation of hex mesh networks, we can easily de-
rive the distance dis((a,b), (¢,d)) between the vertices (a,b) and (¢,d) in such
networks.

Proposition 2. In the hex mesh I", dis((0,0), (a, b)) equals maz(|al, |b|) if a and
b have the same sign and |a| + |b| otherwise.

Proof. Omitted.

By symmetry of Cayley graphs, we can easily obtain the distance between
any two vertices in the graph I' from Proposition 2, using dis((a,b), (c,d))
= dis((0,0), (¢ — a,d — b)). We also can obtain the routing algorithm of the
graph I' from the proof of Proposition 2 directly.

We now consider the automorphism group Aut(I") of the graph I". We know
that Aut(I") contains the (left) regular automorphism group of I" which is iso-
morphic to the group Z x Z; we still denote it as Z x Z. Furthermore, we know
that Aut(I") = (Z x Z)(Aut(I")) vy, where (Aut(I")) (v is the stabilizer (sub-
group) of Aut(I") which fixes the vertex (u,v). we easily prove the following.

Proposition 3. Let o : (z,y) — (z,2—y) and A : (z,y) — (x—y,x) be mappings
from Zx Z to Zx Z. Then, (Aut(I')) = (Zx Z) < o, >, , where 0 = \% =1
and Ao = A7,

3 Honeycomb and Other Networks

Let G be a (possibly infinite) group and S a subset of G and consider the prob-
lem of constructing a group G” and its generating set S” such that G = G as
sets and S” C S, and a homomorphism ¢ : IV — I' | where I' = Cay(G, 5)
and I = Cay(G”,S5”). It is easily shown that a number of pruning schemes, in-
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cluding the one studied in [8], are equivalent to the construction above. Pruning
of interconnection networks constitutes a way of obtaining variants with lower
implementation cost, and greater scalability and packageability [9]. If pruning is
done with care, and in a systematic fashion, many of the desirable properties of
the original (unpruned) network, including (node, edge) symmetry and regular-
ity, can be maintained while reducing both the node degree and wiring density
which influence the network cost.

Example 1. In [8], the authors studied the honeycomb torus network as a
pruned 2D torus. They also proved that the honeycomb torus network is a
Cayley graph, without explicating its associated group. We fill this gap in the
following, while also showing (in the proof of Proposition 4 below) why the
parameter k in [8] must be even. Let G = (< ¢ >< b >) < a > be the group
generated by the elements a, b, ¢, satisfying the relations a* = b2 = /2 = 1,
beb = ¢, aba™! = ¢ b, aca™! = ¢7!. Here, k and | are even integers. Thus
the group < ¢ >< b >=< ¢,b > is a semidirect product of < ¢ > by < b > |,
and G is a semidirect product of < ¢,b > by < a > . Let S = {a,a™',b} and
A = Cay(G, S). We may prove that A is isomorphic to the honeycomb torus
network in [8] (denoted as X).

Proposition 4. The Cayley digraph A, defined in Example 1, is isomorphic to
the honeycomb torus network X of reference [8].

Proof. Omitted.

Remark 1. We may consider the infinite honeycomb mesh network as a Cayley
graph of a different group. Let G = (< ¢ >< b >) < a >, where < ¢ > and
< a > are infinite cyclic groups, and c, b, a satisfy the relations b = 1,bcb =
ctaba™l = c7haca™ = ¢l Let S = {a,a7!,b} and A, = Cay(G,S).
Then Ay is isomorphic to the infinite honeycomb mesh network.

Now let N =< a* >< /2 > | where k and [ are even integers. We can easily
verify that N is a normal subgroup of G. Construct the quotient group G’ =
G/N and let S’ = {Na, Na—!, Nb}; the graph Cay(G’,S’) is isomorphic to the
honeycomb torus network.

Remark 2. An important case in the construction above arises for G = Zj, x
e X Zy,, (n > 1), where ky, ..., ky, are positive integers. In general, G” = N @ K
is a semidirect product of groups NV and K. If ¢ is the identity mapping of G to
G” | then for s” € §” we have (1, ...,2,) ® 8" = (21, ..., Tp) + s for some s € S.
In particular, if (z1,...,z,) is the identity element of G, we obtain that s” = s
for some s € S. Hence S” C S. For instance, for the honeycomb torus network,
we have N =< ¢ ><b> K =<a>,8={a,a”1,b,b71},8" = {a,a™1,b}.

As an application of the method above, we now consider the problem of finding
the distance between two vertices in the honeycomb mesh network A,, . We
know that the infinite honeycomb mesh network A, = Cay(G, S), where G =
(<e><b>)<a>,S={a,a ! b}, <c>and < a > are infinite cyclic groups

and ¢, b, a satisfy the relations b2 = 1,bcb = ¢ ', aba™! = ¢ 'b,aca™! = ¢ L.
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Thus, any element of G can be expressed as the product ¢/bla’, where [ is 0 or 1
and j and ¢ are integers. We first formulate the distance between vertex 1 (the
identity of G) and vertex ¢/b'a’ in the following theorem.

Theorem 2. For |i| < |2 + 1|, we have dis(1,c'bla’) = |45 + 1+ 1/2[(—1)"+ —
(=1)Y|; otherwise, dis(1,cbla?) = |i| + |25 + 1.

Proof. Omitted.

Applying the pruning scheme to the infinite mesh, we obtain the infinite honey-
comb mesh. By Remark 1, it is isomorphic to the Cayley graph A, . Thus by
Theorem 2 we have the following.

Corollary 1. In the infinite honeycomb mesh, the distance between nodes (x,y)
and (u,v) is obtained as follows: if |v —y| < |u — x|, then dis((z,y), (u,v))
equals [2(u — z) + 1/2[(=1)%T" — 1]| when x +y = 0(mod?2), and |2(x — u) +
1/2[(=1)v*tv+1 —1]| otherwise. In the case of |v—y| > |u—z|, we have dis((x,y),
(4, 0)) = [u— 3] + v — g].

Proof. Omitted.

Finally, we embark on determining the automorphism group of the infinite hon-
eycomb mesh network. Let ¢ be the mapping of the set G to itself such that
1 < 1,a < a',b < b, and 0? = 1. This is the reflection to the straight line
through two vertices 1 and b. Similarly, let A be the mapping of the set G to
itself such that 1 < 1,a < b,a™' < a~ !, and A2 = 1. The latter is the reflection
to the straight line through two vertices 1 and a~!. Then we have (oc))® = 1.
We easily prove (Aut(As))1 =< o, A >. Thus we have proved the following.

Proposition 5. Let the mappings o and A be defined as above. Then, Aut(As) =
G<oA>.

4 Conclusion

In this paper, we have provided a number of general results on homomorphism
between Cayley (di)graphs and their subgraphs and coset graphs. We have also
demonstrated the applications of these results to some well-known interconnec-
tion networks, including hexagonal and honeycomb meshes and related networks.
Because of the generality of these theorems, which can be viewed as allowing the
synthesis of alternative, more economical, interconnection networks by reducing
the number of dimensions and/or link density of existing networks via mapping
and pruning, we expect that they will find many more applications.

We are currently investigating the applications of our method to the problems
related to routing and average internode distance in certain subgraphs of the in-
finite honeycomb mesh network. These results, along with potential applications
in the following areas will be reported in future:

(1) Load balancing and congestion control
(2) Scheduling and resource allocation
(3) Fault tolerance and graceful degradation
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These constitute important practical problems in the design, evaluation, and
efficient operation of parallel and distributed computer systems.
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