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Abstract. We investigate the problem of constructing the maximal number of 
node disjoint paths between two distinct nodes in Swapped/OTIS networks. A 
general construction of node disjoint paths in any OTIS network with a 
connected basis network is presented, which is independent of any construction 
of node disjoint paths in its basis network. This general construction is effective 
and efficient, which can obtain desirable node disjoint paths of length at most 
D+4 in O(Δ2+Δf(N1/2)) time if the basis network of size n has a shortest routing 
algorithm of time complexity O(f(n)), where D, Δ and N are, respectively, the 
diameter, the degree and the size of the OTIS network. Further, for OTIS 
networks with maximally fault tolerant basis networks, we give an improved 
version of a conventional construction of node disjoint paths by incorporating the 
above general construction. Finally, we show the effectiveness and efficiency of 
these constructions applied to OTIS-Hypercubes. 

1   Introduction 

Optical transpose interconnection system (OTIS) networks are interesting 
interconnection networks for parallel computation and communication. An OTIS 
network with n2 nodes is a two-level swapped architecture built of n copies of an 
n-node basis network that constitute its clusters. A simple rule for intercluster 
connectivity (node j in cluster i connected to node i in cluster j, for all i ≠ j) leads to 
regularity, modularity, packageability, fault tolerance, and algorithmic efficiency of the 
resulting networks. The OTIS architecture has received considerable attention in recent 
years and has a special place among real-world architectures for parallel and distributed 
systems[1,11]. A number of algorithms have been developed for routing, 
selection/sorting[8,10], numerical analysis[5], matrix multiplication[14], and image 
processing[13].  

Finding node disjoint paths or parallel paths in interconnection networks is one of 
the fundamental issues in design and implementation of parallel and distributed 
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computing systems[4,16]. Parallel paths are useful in speeding up the transfer of large 
amounts of data between nodes and in providing alternative routes in cases of node or 
link failures [6]. From Menger’s Theorem [15], there exist at least k parallel paths 
between any two distinct nodes in a network of connectivity k. In a general network, it 
is non-trivial to identify the parallel paths guaranteed by a given level of connectivity. 
For levels of connectivity greater than two, the identification of parallel paths is 
generally done using maximum flow algorithms which take O(N3) time, where N is the 
size of the network [16]. However, for the interconnection networks with special 
structures such as Hypercube networks, OTIS networks, and so on, flow techniques 
taking O(N3) time may be far from efficient. 

Although some studies are related to general properties, including fault tolerance, of 
OTIS networks [3,9,17,18], so far all research work in this direction is only confined to 
OTIS networks with basis networks being maximally fault tolerant, and those proposed 
constructions of parallel paths in these OTIS networks are closely dependent upon the 
corresponding constructions in their basis networks [2,3,9]. 

In this paper, in a more general sense, we investigate the construction of the maximal 
number of parallel paths between two distinct nodes in any OTIS network whose basis 
network is connected. We propose an effective and efficient general construction of 
parallel paths in the OTIS network, which is independent of any construction of parallel 
paths in its basis network. This general construction can obtain desirable parallel paths 
of length at most D+4 in O(Δ2+Δf(N1/2)) time if the basis network of size n has a shortest 
routing algorithm of time complexity O(f(n)), where D, Δ and N are, respectively, the 
diameter, the maximal node degree and the size of the OTIS network. Further, in the 
special case of a maximally fault tolerant basis network, we make an improvement over 
a conventional construction of parallel paths in such an OTIS network. Finally, the 
effectiveness and efficiency of these construction algorithms applied to 
OTIS-Hypercube are shown.  

In the next section we describe OTIS networks. Section 3 presents the general 
construction of parallel paths in an OTIS network with a connected basis network. 
Section 4 gives the improved version of the conventional construction of parallel paths 
in those OTIS networks whose basis networks possess the maximally fault tolerant 
property. The application of these construction algorithms to OTIS-Hypercubes is 
discussed in Section 5. The conclusion is made in Section 6. 

2   Preliminaries 

Let G be a simple undirected graph (graph, for short) with vertex (node) set V(G) and 
edge (link) set E(G). For v ∈ V(G), we denote by degG(v) the degree of v in G, by NG(v) 
= {u ∈ V | (v, u) ∈ E(G)} the open neighborhood of v, and by NG[v] = NG(v) ∪ {v} its 
closed neighborhood. The maximum degree among the vertices of G is denoted by 
Δ(G) and the minimum degree by δ(G). The distance of between two nodes u and v, 
denoted by dG(u,v), is the length of a shortest path between u and v. The diameter D(G) 
of G is the maximal distance between any two nodes of G. Two paths from u to v are  
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node disjoint (also called parallel paths) if they have no common internal node. The 
connectivity of G is the minimal number of nodes in G whose removal can cause G 
disconnected or trivial. A graph G of connectivity δ(G) is maximally fault tolerant. 
Other notation and terminology used in this paper follow those in [15]. In the remainder 
of this paper, we use the terms graph and network interchangeably. 

Definition 1. OTIS (Swapped) network [7,17]: The OTIS (swapped) network OTIS-Ω, 
derived from the graph Ω, is a graph with vertex set V(OTIS-Ω) = {〈g, p〉 | g, p ∈ V(G)} 
and edge set E(OTIS-Ω) = {(〈g, p1〉, 〈g, p2〉) | g ∈V(G), (p1, p2) ∈ E(G)} ∪ {(〈g, p〉, 〈p, 
g〉) | g, p ∈V(G) and g ≠p}. 

In OTIS-Ω, the graph Ω is called the basis (factor) graph or network. We refer to g as 
the cluster address of node 〈g, p〉 and p as its processor address. In an OTIS network, an 
intercluster (optical) link connects processor p of cluster g to processor g of cluster p for 
all p ≠ g. No intercluster link is incident to processor g of cluster g. An example of 
OTIS networks is shown in Fig. 1. 
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Fig. 1. An OTIS network with the basis graph C4 , a cycle of size 4 

The following basis topological metrics of OTIS-Ω as functions of the corresponding 
metrics of Ω are derived from Definition 1 and similar expressions in [3,9]: 

• N=n2, where N=|V(OTIS-Ω)|, n=|V(Ω)|. 
• degOTIS-Ω(〈g, g〉)= degΩ(g), and degOTIS-Ω(〈g, p〉)=degΩ(p)+1 for g≠p.   
• dOTIS-Ω(〈g, p1〉,〈g, p2〉)=dΩ(p1, p2), and for g1≠g2, 

dOTIS-Ω(〈g1, p1〉,〈g2, p2〉)=min{dΩ(p1, g2)+dΩ(g1, p2)+1, dΩ(p1, p2)+dΩ(g1, g2)+2}. 
• Δ(OTIS-Ω)=Δ(Ω)+1, and δ(OTIS-Ω)=δ( Ω). 
• D(OTIS-Ω)= 2D(Ω)+1. 

The following results on parallel paths of an OTIS network have been given in [3]. 

Theorem 1. (Day and Al-Ayyoub [3]). Let the graph Ω be connected.  
(1) If g1 ≠ g2 and degΩ(p) = d, then there are d parallel paths between nodes 〈g1, p〉 

and 〈g2, p〉 in OTIS-Ω. 
(2) If 〈g1, p1〉 and 〈g2, p2〉 are two nodes in OTIS-Ω such that p1 ≠ p2 and such that 

there are d parallel paths between p1 and p2 in Ω, then there are d parallel paths 
between 〈g1, p1〉 and 〈g2, p2〉 in OTIS-Ω. 
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3   Constructing Parallel Paths in OTIS Networks with Connected 
Basis Graphs 

In the section, we give an effective and efficient general algorithm for constructing 
parallel paths between two distinct nodes 〈g1, p1〉 and 〈g2, p2〉 in an OTIS network with a 
connected basis graph Ω. 

3.1   Basis Idea 

We first notice the following basis fact, which is easily derived from the rule for 
intercluster connectivity in OTIS networks: In cluster g1 (g2, respectively), every node 
of NΩ[p1] (NΩ[p2], respectively) is linked to one different cluster by an optical link if the 
node is not 〈g1, g1〉 (〈g2, g2〉, respectively). Based on this fact, we construct parallel paths 
between src=〈g1, p1〉 and dst=〈g2, p2〉 as follows. Each of these paths begins with the 
source node src, immediately leaves cluster g1 from a neighbor of src in cluster g1 along 
an optical link, and then goes through successively at most two mediate clusters, until 
finally enters cluster g2 at a neighbor of dst in cluster g2 along an optical link prior to 
arriving at the destination node dst. If these mediate clusters are selected properly so 
that each mediate cluster can be passed through only by one of these paths, we will 
obtain desired parallel paths. See Fig. 2. 
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Fig. 2. An illustration of constructing parallel paths between src and dst in OTIS-Ω with Ω being 
connected for the case of g1≠g2 and g1∉NΩ[p1] and g2∉NΩ[p2] 

3.2   Algorithm 

For the convenience of describing the algorithm, we need introduce some additional 
notations. We denote by PathΩ(p, q) a shortest path from p to q in Ω, and by 〈g, 
PathΩ(p, q)〉 a shortest path from 〈g, p〉 to 〈g, q〉 in OTIS-Ω that is completely contained 
in cluster g. Let Y and Z be two disjoint subsets of V(Ω). A match M from Y to Z is a 
binary relation from Y to Z such that |M|=min{|Y|, |Z|}, and such that (y, z)≠(y’, z’) if and 
only if both y≠ y’ and z≠ z’ for all (y, z), (y’, z’)∈M. Obviously, a match M from Y to Z 
can be constructed in O(Δ2(Ω)) time if Ω is represented by adjacency lists. In addition, 
we assume that a shortest routing algorithm of time complexity O(f(n)) in Ω is given, 
where n is the size of Ω.  
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Algorithm 1 
Case I (g1=g2=g): 
Step 1.1:  Construct a path as follows based on a shortest path from p1 to p2 in Ω:  
〈g, PathΩ(p1, p2)〉, where PathΩ(p1, p2)=p1→PathΩ(y0, z0)→p2 for some y0 ∈NΩ[p1] 

and some z0∈NΩ[p2]. 
Step 1.2:  Let S0=NΩ[p1]∩NΩ[p2]−{y0, z0}. For every x∈ S0, construct a path as 

follows: 〈g, p1〉→〈g, x〉→〈g, p2〉.  
Step 1.3:  Let S1=NΩ[p1]−S0−{y0, g}, S2= NΩ[p2]−S0−{z0, g}. Construct a match M 

between S1 and S2. Then, for each (y, z)∈M, construct a path as follows: 
〈g, p1〉→〈g, y〉→〈y, PathΩ(g, z)〉→ 〈z, PathΩ(y, g)〉 →〈g, z〉→〈g, p2〉. 
Case II (g1≠g2): 
Step 2.1:  Construct a path as follows based on a shortest path from p1 to g2 and a 

shortest path from g1 to p2 in Ω: 〈g1,PathΩ(p1, g2)〉→〈g2, PathΩ(g1, p2)〉, where PathΩ(p1, 
g2)=p1→PathΩ(y0, g2) for some y0 ∈NΩ[p1] and PathΩ(g1, p2)=PathΩ(g1, z0)→p2 for some 
z0∈NΩ[p2]. 

Step 2.2:  Let S0=NΩ[p1]∩NΩ[p2]−{g1,g2,y0,z0}. For every x∈S0, construct a path as 
follows: 〈g1, p1〉→〈g1, x〉→〈x, PathΩ(g1, g2〉 →〈g2, x〉→〈g2, p2〉.  

Step 2.3:  Let S1=NΩ[p1]−S0−{g1, y0} and S2=NΩ[p2]−S0−{g2, z0}. Construct a match 
M between S1 and S2. Then, for each (y, z)∈M, construct a path as follows: 

〈g1, p1〉→〈g1, y〉→〈y, PathΩ(g1, z)〉→ 〈z, PathΩ(y, g2〉 →〈g2, z〉→〈g2, p2〉. 

3.3   Performance Analysis 

The correctness of Algorithm 1 is stated in Theorem 2. 

Theorem 2. Let Ω be a connected graph, 〈g1, p1〉 and 〈g2, p2〉 be two distinct nodes in 
OTIS-Ω. Then, Algorithm 1 constructs at least d parallel paths between these two 
nodes in OTIS-Ω, where d = min{degΩ(p1), degΩ(p2)}. 

Proof. First, it is straightforward to check that the number of paths constructed by the 
algorithm is at least d. Secondly, in order to show all these paths are pairwise node 
disjoint, we note the following two facts: (i) no cluster, except for g1 and g2 (g in the 
case of g1=g2=g), is visited by more than one of these paths because S0, S1 and S2 are 
disjoint sets, and (ii) all the segments of these paths contained in clusters g1 and g2 (g in 
the case of g1=g2=g) are pairwise node disjoint. In any case, the pairwise node disjoint 
property of the constructed paths is easily derived based on the aforementioned two 
facts, so the details of justifications are omitted.                                                            

Recall that degOTIS-Ω(〈g, g〉)=degΩ(g), and degOTIS-Ω(〈g, p〉)=degΩ(p)+1 for g≠p. From 
Theorem 2, we know that the number of parallel paths constructed by Algorithm 1 
attains the maximum or less one than the maximum. 

The performance of Algorithm 1 is given in the following theorem.  

Theorem 3. Let n and N be, respectively, the size of Ω and the size of OTIS-Ω, 
Δ=Δ(OTIS-Ω), d=dOTIS-Ω(〈g1,p1〉,〈g2,p2〉), and l be the length of any path constructed by 
Algorithm 1. Then,  

(1) the time complexity of Algorithm 1 is O(Δ2+Δf(N1/2)), 
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(2) l≤D(OTIS-Ω)+4, and 
(3) if g1≠g2 and d=dΩ(p1, g2)+dΩ(g1, p2)+1, then d≤l≤d+6 holds for all the 

constructed paths, with at most |S0| exceptions in Step 2.2. 

Proof. (1) We first prove that the time complexity of the algorithm is O(Δ2+Δf(N1/2)). 
On the one hand, generating the sets S0, S1 and S2 requires O(Δ2) time, and then 
obtaining the match M requires O(Δ2) time. Based on these sets, on the other hand, 
constructing all required paths takes O(Δf(n)) time since at most Δ parallel paths need to 
be constructed. So, the total running time of the algorithm is Ο(Δ2+Δf(n)), namely, 
O(Δ2+Δf(N1/2)) due to N=n2.  

(2) In the algorithm, obviously, any path contains at most two sub-paths like 
PathΩ(g,p) for some g, p∈V(Ω), at most three optical links, and at most two other links 
(a link from 〈g1,p1〉 to its a neighbor in cluster g1, a link from 〈g2,p2〉 to its a neighbor in 
cluster g2). Considering PathΩ(x,y)≤D(Ω) for all x, y∈V(Ω), we have 
l≤2D(Ω)+5=D(OTIS-Ω)+4. 

(3) In the case of g1≠g2, we consider the length l of any path constructed in Step 2.1 
and Step 2.3. When d= dΩ(p1, g2)+ dΩ(g1, p2)+1, we have l=dΩ(p1, g2)+ dΩ(g1, p2)+1=d 
for the path constructed in Step 2.1, and l≤dΩ(y,g2)+dΩ(g1,z)+5≤dΩ(p1,g2)+dΩ(g1, 
p2)+7=d+6 for the path constructed in Step 2.3. Note that the last inequation is based on 
y∈NΩ[p1] and z∈NΩ[p2]. Thus, we have d≤l≤d+6, as claimed.                                       

Theorem 2 means there exist at least δ(OTIS-Ω) parallel paths between any two distinct 
nodes in OTIS-Ω, since δ(OTIS-Ω)=δ(Ω). From Menger’s Theorem[15], we can derive 
that OTIS-Ω is maximally fault tolerant. From Theorem 3(2), moreover, we can obtain 
an upper bound of the fault diameter of OTIS-Ω, the diameter of the resulting graph 
from OTIS-Ω by removing at most δ(OTIS-Ω)−1 nodes. 

Corollary 4. Let Ω be a connected graph. Then, OTIS-Ω is maximally fault tolerant, 
and the fault diameter of OTIS-Ω is at most D(OTIS-Ω)+4. 

4   Constructing Parallel Paths in OTIS Networks with Maximally 
Fault Tolerant Basis Graphs 

In this section, we consider how to effectively and efficiently construct parallel paths in 
an OTIS network with a maximally fault tolerant basis graph. 

4.1   A Conventional Algorithm 

Provided that a parallel path construction method in the basis graph Ω is known, there is 
a straightforward construction of parallel paths in OTIS-Ω according to [3]. The idea of 
the construction in OTIS-Ω is as follows. If the source node and the destination node 
are in the same cluster, the construction of parallel paths between these two nodes is 
trivial since the construction of parallel paths in Ω is given. Otherwise, for each parallel 
path πi(p1,p2) from p1 to p2 in Ω, if the last 2rd node xi on the path (namely, xi∈ NΩ(p2)) 
such that xi∉{g1,g2} then a path from 〈g1,p1〉 to 〈g2,p2〉 in OTIS-Ω is constructed as 
follows: 〈g1,πi(p1,xi)〉 →〈xi,PathΩ(g1,g2)〉→〈g2,xi〉→〈g2, p2〉, where πi(p1, xi) is a 
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Fig. 3. An illustration of constructing parallel paths(shown solid) from 〈g1,p1〉 to 〈g2,p2〉 for the 
case of g1≠g2 and p1≠p2 and all xi∉{g1,g2} in Algorithm 2 

sub-path of πi(p1,p2). See Fig. 3. Notice that even if there exists i such that xi∈{g1,g2}, 
one desired path can be constructed by cleverly using π i as well as p1 and/or p2.  

The construction described in [3] is here called Algorithm 2, which constructs k 
parallel paths between 〈g1, p1〉 and 〈g2, p2〉 in OTIS-Ω, where k is the number of parallel 
paths from p1 to p2 in Ω generated by the given construction of parallel paths in Ω. See 
[3] for the detailed description and proof of the correctness of the algorithm. 

Now we give the performance of Algorithm 2. Assume the given construction of 
parallel paths in Ω requires O(g(n)) time for each path, and the given shortest routing 
algorithm requires O(f(n)) time, where n is the size of Ω. Let σ+dΩ(p1, p2) be an upper 
bound of the length of any path between nodes p1 and p2 in Ω generated by the parallel 
path construction in Ω. The following theorem establishes the performance of 
Algorithm 2. 

Theorem 5. Let N be the size of OTIS-Ω, Δ=Δ(OTIS-Ω), d=dOTIS-Ω(〈g1,p1〉,〈g2,p2〉), l be 
the length of any path constructed by Algorithm 2. We have, 

(1) the time complexity of Algorithm 2 is O(Δg(N1/2)+Δf(N1/2)), 
(2) l≤max{D(OTIS-Ω)+1+σ, D(OTIS-Ω)+2}, and  
(3) if g1=g2 or, g1≠g2 and d=dΩ(p1, p2)+dΩ(g1, g2)+2, then d≤l≤d+σ holds for all the 

constructed paths. 

Proof. A proof of Theorem 5 is similar to the one of Theorem 3, and therefore is 
omitted.                                                                                                                            

4.2   An Improved Algorithm 

From Theorem 3 and Theorem 5, we can see that there is no much difference between 
the performance of Algorithm 1 and one of Algorithm 2. However, we can improve 
Algorithm 2 in the length of constructed paths by combining it with Algorithm 1, so 
that the resulting algorithm can offer a guarantee that the length l of any constructed 
path is not much longer than the distance d between the source node and the destination 
node with a few possible exceptions for all the cases.  

Recall that the distance d between two nodes 〈g1,p1〉 and 〈g2,p2〉 is dΩ(p1, p2) for 
g1=g2, and min{dΩ(p1, g2)+dΩ(g1, p2)+1, dΩ(p1, p2)+dΩ(g1, g2)+2} for g1≠ g2. The two 
items in the minimum function are independent from each other. From Theorem 3 and 
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5, we think Algorithm 1 is more effective than Algorithm 2 in the case of g1≠g2 and 
dΩ(g1, g2)+dΩ(p1, p2)+2>dΩ(p1,g2)+dΩ(g1,p2)+1, whereas Algorithm 2 is more effective 
than Algorithm 1 for the other cases. Therefore, Algorithm 2 can be improved by 
incorporating Algorithm 1, described as Algorithm 3. 

Algorithm 3 
If g1≠g2 and dΩ(g1, g2)+ dΩ(p1, p2)+2>dΩ(p1, g2)+dΩ(g1, p2)+1, then construct parallel 
paths by Algorithm 1; otherwise, construct parallel paths by Algorithm 2.  

The performance comparison among the three algorithms is shown in Table 1. In Table 
1, N is the size of OTIS-Ω, D=D(OTIS-Ω), l is the length of any constructed parallel 
paths, d is the distance between nodes 〈g1, p1〉 and 〈g2, p2〉, and σ+dΩ (p1, p2) is an upper 
bound of the length of any path between nodes p1 and p2 in Ω generated by the given 
parallel path construction in Ω. In addition, Case A refers to the case of g1≠g2 and dΩ(g1, 
g2)+ dΩ(p1, p2)+2> dΩ(p1, g2)+dΩ(g1, p2)+1, and Case B to the other cases. 

Table 1. Performance comparison among three algorithms 

Alg. Case A Case B Upper Bound on l Time Complexity 
Alg.1 d≤l≤d+6* --- D+4 O(Δ2+Δf(N1/2)) 
Alg.2 --- d≤l≤d+σ D+1+ max{1,σ} O(Δg(N1/2)+Δf(N1/2)) 
Alg.3 d≤l≤d+6* d≤l≤d+σ D+1+ max{3,σ} O(Δg(N1/2)+Δf(N1/2)) 

Note. In Table 1, these two inequations with asterisk hold with at most |S0|  exceptions, where 
S0=NΩ[p1]∩NΩ[p2]−{g1,g2,y0,z0} in Step 2.2 of Algorithm 1. 

5   An Example—Constructing Parallel Paths in OTIS-Hypercubes 

In order to show the effectiveness and efficiency of these algorithms applied to an OTIS 
network with a specific basis network, in the section, we investigate these algorithms in 
the context of OTIS-Hypercubes, whose basis graphs are hypercube networks [12]. 
Hypercube networks and their many variants, including OTIS-Hypercubes, are popular 
graphs as the models of many interconnection networks. Some research works on 
OTIS-Hypercubes are reported [2,18]. We use Qk to denote an k-dimensional 
hypercube network. Let n is the size of Qk, namely, n=2k .It is known that Qk has a 
shortest routing algorithm of time complexity O(logn). Moreover, it has been shown in 
[12] that Qk is maximal fault tolerant, and there are k node-disjoint paths between any 
two nodes x and y in Qk, each of which can be constructed in O(log n) time. Among 
these k paths, dQk (x, y) paths are of optimal length dQk(x, y) and k-dQk (x, y) paths are of 
length dQk (x, y)+2.  

From Theorem 3 and Theorem 5, the time complexity of each of these three 
algorithms applied to OTIS-Qk is O(log2N), since f(n)=O(log n) and g(n)=O(log n) as 
well as Δ=log n. The performance comparison among these algorithms applied to 
OTIS-Qk is given in Table 2, which straightforwardly comes from Table 1 due to σ=2. 
All notations in Table 2 are the same as ones in Table 1.  
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From Table 2, we can see that these algorithms are the same efficient in the context 
of OTIS-Qk. However, Algorithm 3 slightly outperforms Algorithm 1 and Algorithm 2 
with regard to the length of constructed parallel paths. 

Table 2. Performance comparison among three algorithms for OTIS-Qk 

Alg. Case A Case B Upper Bound on l
Time 

Complexity 
Alg.1 d≤l≤d+6* --- D+4 O(log2N) 
Alg.2 --- d≤l≤d+2 D+3 O(log2N) 
Alg.3 d≤l≤d+6* d≤l≤d+2 D+4 O(log2N) 

6   Conclusion 

In this paper, we have proposed an effective and efficient construction algorithm for the 
node-to-node disjoint path problem in an OTIS network with a connected basis network, 
which can find desired parallel paths of length at most D+4 in O(Δ2+Δf(N1/2)) time if the 
basis network of size n has a shortest routing algorithm of time complexity O(f(n)), 
where D, Δ and N are, respectively, the diameter, the degree and the size of the OTIS 
network. Obviously, if the basis network with logarithmic degree has a shortest routing 
algorithm of logarithmic time complexity then the time complexity of the algorithm is 
O(log2N). The number of parallel paths constructed by the algorithm attains the 
maximum or less one than the maximum. In addition, in the special case of maximally 
fault tolerant basis networks, we make an improvement over a conventional construction 
of node disjoint paths in OTIS networks by incorporating the above algorithm. These 
obtained algorithms can replace a number of parallel path constructions in OTIS 
networks for specific basis networks. As an application of these algorithms to 
OTIS-Hypercubes, desirable node disjoint paths are obtained in O(log2N) time.  

It is interesting to find efficient general algorithms for other disjoint path problems, 
such as node-to-set disjoint paths problem, set-to-set disjoint paths problem and k-pair 
nodes disjoint path problem, in OTIS networks. 
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