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Abstract. The clustering coefficient C of a network, which is a measure
of direct connectivity between neighbors of the various nodes, ranges
from 0 (for no connectivity) to 1 (for full connectivity). We define ex-
tended clustering coefficients C'(h) of a small-world network based on
nodes that are at distance h from a source node, thus generalizing
distance-1 neighborhoods employed in computing the ordinary cluster-
ing coefficient C' = C(1). Based on known results about the distance
distribution Ps(h) in a network, that is, the probability that a randomly
chosen pair of vertices have distance h, we derive and experimentally
validate the law Ps(h)C(h) < clogN/N, where c is a small constant
that seldom exceeds 1. This result is significant because it shows that
the product Ps(h)C(h) is upper-bounded by a value that is considerably
smaller than the product of maximum values for Ps(h) and C(h).

1 Introduction

Complex systems with many components and associated interactions abound
in nature, prevail within society, and define many human artifacts. The inter-
connection or interaction structure of such systems are typically neither random
(amenable to probabilistic analysis) nor regular (mathematically tractable), ren-
dering the systematic study of their properties a rather challenging undertak-
ing. Interactions in such systems can be modeled by networks/graphs composed
of vertices/nodes and undirected or directed edges/links. A network or graph
G = (V, E)has a set V of N vertices or nodes and a set E of M edges or links,
where each edge is defined by a pair of vertices (ordered pair, for directed graphs).

Two models of actual complex networks have been studied extensively [TI2I3/4]:
the small-world model and the scale-free one. Our focus in this paper is on small-
world networks that feature localized clusters connected by occasional long-range
links, leading to an average distance between vertices that grows logarithmically
with the network size N.
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Watts and Strogatz [2] studied mechanisms via which a regular network can
be transformed into a small-world network, with little or no change in the vertex-
degree distribution, and quantified the parameters that characterize the resulting
structures. One feature shared by small-world networks is that their clustering
coefficients are fairly high compared with random networks[2]. Clustering co-
efficient is defined as follows. Let a vertex v of G have k(v) neighbors; that
is, v has degree k(v). These k(v) neighbors can potentially be connected via
k(v)(k(v) —1)/2 edges. The fraction of this maximum possible number of edges
that actually exist between neighbors of v is its clustering coefficient C,; the
average of clustering coefficients over all v € V' is the clustering coefficient C' of
the network G. A network with C' close to 1 may consist of highly connected
clusters or cliques, perhaps with sparser connections between the local clusters.

2 Extended Clustering Coefficients

We extend the clustering coefficient of Watts and Strogatz [2] in the following
way. Define the h—neighbors of a vertex v as vertices of G that are at dis-
tance h (measured in number of hops) from v. Assume that v has kp(v) such
h—neighbors, where ki (v) is the same as k(v) defined earlier (see Section 1).
Then there can be at most kp(v)(kp(v) — 1)/2 edges connecting h—neighbors
of vertex v. The fraction C,(h) of allowable edges that actually exist between
h—neighbors v is the h—clustering coefficient of v. We assume that C,(h) = 1
when kp,(v) = 1, which also covers the special case h = 0. The average of C,(h)
over all v € G is the h—clustering coefficient C(h) of G. The 1—clustering coef-
ficient C'(1) is the clustering coefficient C' as defined in Section 1.

Thus, while the definition of clustering coefficient is based on the immediate
neighborhood of vertices, extended clustering coefficient relates to a wider neigh-
borhood defined by the distance parameter h. Using experimental data from a
wide variety of actual complex networks, along with a deterministic model of
small-world networks that we have developed, we seek to relate C(h) and the
distance distribution Ps(h) of a network, defined as the probability that a ran-
domly chosen pair of vertices are at distance h from each other.

Note that all distances referred to in this paper are shortest distances. How-
ever, in view of the results of Kim et al. [5], distances obtained from a routing
algorithm with localized decisions are not fundamentally different from shortest
distances in complex networks. Thus, our results are expected to remain valid
when this latter definition of distance is used in lieu of shortest distance.

3 Experimental Observations

For an N—vertex network with M edges, we have Ps(0) = 1/N and Ps(1) =
2M/N? > 1/N. Beyond h = 1, however, a precise expression for the value
of Ps(h) cannot be supplied, except in the case of certain regular networks.
However, for many networks (small-world or otherwise), the value of Ps(h) rises
with A until it reaches a maximum value and then declines as the distance h gets
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closer to the network diameter D. This is confirmed experimentally for several
complex networks of practical interest in Figlh, Fig2b.

For extended clustering coefficients, the trend begins by a decrease in clus-
tering, from C(0) = 1 to C(1) = C, and is then followed by further reductions.
This is owing to the fact that as h increases, the number g; of nodes at dis-
tance h from a given node increases, and such nodes are apt to belong to several
cliques; hence, the presence of many edges between them is quite unlikely. As h
approaches D, however, a different effect may take hold. Consider, for example,
one extreme case where each node in the network is at distance D from exactly
one node (it has a single diametrically opposite node). This leads to C(D) = 1.
In this same situation, C(D — 1) is likely to be large as well, given the common
presence of multiple diametral paths to the same opposite vertex. Note that the
preceding argument suggests that C(h) can be large when h approaches D; it
does not imply that C'(h) must be large in this case. Figures 1¢ and 2¢ confirm
these trends.

Given the opposing trends of Ps(h) (up, then down) and C(h) (down, then
possibly up), one might be led to believe that the product Ps(h)C(h) has an
upper bound. Based on the evidence presented in Figla and Fig2a, we conjecture
that this is in fact the case. That is, for a constant c in the vicinity of and seldom
exceeding 1, we have:

Py(h)C(h) < clogN/N 1)

In the special case of h = 1, equation (1) implies Ps(1)C(1) =~ logN/N. We
have Ps(1) = 2M/N? =~ logN/N for small-world networks. This is consistent
with C(1) = C being large for such networks.

4 Model-Based Validation

We now present additional evidence on the validity of equation (1), using a
model of deterministic small-world networks that we have developed [6]. In fact,
it was through this model that we first became aware of the trend represented
in equation (1) and experimentally confirmed in Figl and Fig2. A review of our
deterministic model, which is based on Cayley graphs [7], has been provided
in the supporting information, where we also show that the model yields the
clustering coefficient:

at(at — 1)

el Y Y @

In this model, ¢ = logaN and a = (2! — 1)/t is a free tuning parameter that
is related to the interconnection density, thereby affecting the value of C. Note
that for very large networks (N,t — +o0), C tends to a?/(a + 1)? when a is a
constant. By suitably choosing a, we can obtain different clustering coefficients,
while maintaining a small vertex degree equal to at +t — I = (a + 1)logaN — 1.

Unlike actual networks for which the computation of C'(h) is extremely diffi-
cult, our deterministic model is amenable to mathematical analysis that yields
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Fig. 1a. The plot of Product(Ps(h)C(h)) versus h in the maximum component A of
NCSTRL graph (9), with 6396 vertices and diameter of 31
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Fig. 1b. The plot of distance distribution(Ps(h)) versus h in A

an approximate closed-form expression for the extended clustering coefficients.
In our deterministic model, the number m of adjacent vertex pairs among the
h—neighbors of any vertex is given by the expression:

t—1

h—1 ®)

m=(2'-1)2"1 - 1) (

)



Extended Clustering Coefficients of Small-World Networks 71

1.0
L ]
n
L] 1
084 m . [Nl
n
|

0.6
—_ n
=
o L}

0.4+

u
|
0.2+ . .
n L]
- |
0.0 — —"Sagmann® : . — :
0 5 10 15 20 25 30
distance h

Fig. 1c. The plot of C'(h) versus h in A
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Fig. 2a. The plot of Product(Ps(h)C(h)) versus h in the maximum component Al of
Linux graph (10) with 5285 vertices and diameter of 17

On the other hand, the number kj;(v) of h—neighbors of a vertex v is bounded

T e () smo=e-n(i7)+(7) W
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Fig. 2b. The plot of distance distribution(Ps(h)) versus h in Al
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Fig. 2c. The plot of C'(h) versus h in Al
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Given that the extended clustering coefficient C'(h) is proportional to m/(kp (v))
we readily find:

cm~1/(3"4) 5)

In a companion paper[§], we have derived the distance distribution for small-
world networks:

path) = () ©)
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Here, we have logN =~ D. Because the diameter of our deterministic network
model is D =t — [+ 1, we conclude:

i~ (37 T ) ==t () o) ™
Equations (5) and (7) lead to:
Ps(h)C(h) < clogN/N (3)

Equation (8) confirms our hypothesis in equation (1), thereby supplementing the
previously supplied experimental evidence of its validity.

5 Conclusion

We have shown that extended clustering coefficients are generalizations of ordi-
nary clustering coefficient and are governed by laws that are also generalizations
of those pertaining to the latter. We have presented experimental and analyt-
ical evidence that the inequality Ps(h)C(h) < clogN/N holds for small-world
networks. This result is significant because it shows that the product Ps(h)C(h)
is upper-bounded by a value that is considerably smaller than the product of
maximum values for Ps(h) and C(h). Thus, extended clustering coefficients of-
fer new insights into the structure of small-world networks and open up further
avenues for exploration of their properties. Additionally, different shapes for the
variations of C(h) and Ps(h)C(h), exemplified by Figl and Fig2, can be used to
categorize small-world networks in order to facilitate their study.
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