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Abstract—A number of low degree and, thus, low complexity, Cayley-graph interconnection structures, such as honeycomb and

diamond networks, are known to be derivable by systematic pruning of 2D or 3D tori. In this paper, we extend these known pruning

schemes via a general algebraic construction based on commutative groups. We show that, under certain conditions, Cayley graphs

based on the constructed groups are pruned networks when Cayley graphs of the original commutative groups are kD tori. Thus, our

results offer a general mathematical framework for synthesizing and exploring pruned interconnection networks that offer lower node

degrees and, thus, smaller VLSI layout and simpler physical packaging. Our constructions also lead to new insights, as well as new

concrete results, for previously known interconnection schemes such as honeycomb and diamond networks.

Index Terms—Algebraic structure, Cayley graph, distributed system, geometric group theory, interconnection network, network

diameter, parallel processor architecture, pruning scheme, VLSI realization.
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1 INTRODUCTION

THE fact that Cayley (di)graphs and coset graphs are
excellent models for interconnection networks, studied in

connection with parallel processing and distributed compu-
tation, is widely acknowledged [1], [2], [4]. Many well-known
interconnection networks are Cayley (di)graphs or coset
graphs. For example, hypercube, butterfly, and cube-con-
nected cycles networks are Cayley (di)graphs, while de Bruijn
and shuffle-exchange networks are Cayley coset graphs [4],
[11]. Unfortunately, much of the extensive body of work on
interconnection networks consists of ad hoc design and
evaluation: proposing a new interconnection scheme and
showing it to be superior to some previously studied
network(s) with respect to one or more performance or
complexity attributes. Whereas Cayley (di)graphs have been
used to explain and unify interconnection networks with
some success, much work remains to be done. Heydemann
[4] believes that there is a lack of general theorems pertaining
to Cayley (di)graphs and advocates the exploitation of more
group theory to study their properties.

One approach to reducing the implementation complex-
ity of a network and, hence, increasing its performance with
constant cost is systematic pruning of links. Under certain
conditions, when the original networks are Cayley graphs,
so are the pruned versions [9], [10]. Thus, the pruned
networks maintain node symmetry while benefiting from
lower node degree, sparser wiring, and simpler layout. For
example, in one type of construction based on 2D or

3D torus (a Cayley graph of a finite commutative group G),
defining a new group operator � on G leads to the group
ðG;�Þ and, thereby, a Cayley-graph formulation of the
pruned network. Certain known interconnection architec-
tures, such as cube-connected cycles, honeycomb, and
diamond networks, may be constructed in this manner.

In this paper, we propose a general method for deriving
new groups from a finite commutative group G. Our
method generalizes previously proposed pruning schemes
and establishes a systematic and uniform framework for
constructing new networks. Armed with this method, we
also obtain new results on previously proposed networks
such as diamond and honeycomb networks, the latter of
which has important applications in wireless communica-
tion [7], [11]. Before proceeding further, we introduce key
definitions and notations related to interconnection net-
works and (di)graphs, Cayley (di)graphs, in particular. For
more definitions and basic results on graphs and groups,
we refer the reader to [3], for instance, and, for interconnec-
tion network concepts, to [6], [8]. A list of key notation for
this paper is presented in Table 1 for ease of reference.
Unless noted otherwise, all graphs in this paper are
undirected.

A digraph � ¼ ðV ;EÞ is defined by a set V of vertices
and a set E of arcs or directed edges. The set E is a subset of
elements ðu; vÞ of V � V . If the subset E is symmetric, that
is, ðu; vÞ 2 E implies ðv; uÞ 2 E, we identify two opposite
arcs ðu; vÞ and ðv; uÞ by the undirected edge ðu; vÞ. Because
we deal primarily with undirected graphs in this paper, no
problem arises from using the same notation ðu; vÞ for a
directed arc from u to v or an undirected edge between u

and v.
Let G be a finite group and S a subset of G. The subset S

is said to be a generating set for G if every element of G can
be expressed as a finite product of the powers of its
elements, called the generators of G. We also say that G is
generated by S. The Cayley digraph of the group G and the
subset S, denoted by CayðG; SÞ, has vertices that are
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elements of G and arcs that are ordered pairs ðg; gsÞ for
g 2 G, s 2 S. If S is a generating set of G, then we say that
CayðG;SÞ is the Cayley digraph of G generated by S. If
�1 62 S (�1 is the identity element of G) and S ¼ S�1, then
CayðG;SÞ is a simple graph.

Assume that � and � are two digraphs. The mapping �
of V ð�Þ to V ð�Þ is a homomorphism from � to � if, for any
ðu; vÞ 2 Eð�Þ, we have ð�ðuÞ; �ðvÞÞ 2 Eð�Þ. In particular, if �
is a bijection such that both � and the inverse of � are
homomorphisms, then � is called an isomorphism of � to �.
Let G be a finite group and S a subset of G. Assume that K
is a subgroup of G (denoted as K � G). Let G=K denote the
set of the right cosets of K in G. The (right) coset graph of G
with respect to subgroup K and subset S, denoted by
CosðG;K; SÞ, is the digraph with vertex set G=K such that
there exists an arc ðKg;Kg0Þ if and only if there exists s 2 S
and Kgs ¼ Kg0.

The remainder of our presentation is organized as
follows: In Section 2, we introduce a number of pruned
networks. In Section 3, we discuss a general method of
constructing a new group from a given finite commutative
group. In Section 4, we apply the aforementioned method to
torus networks, thereby deriving a unified and systematic
scheme for constructing new interconnection networks. In
Section 5, we provide some new results on diamond and
other networks. Section 6 contains our conclusions.

2 SOME KNOWN PRUNED NETWORKS

Assume that q is an integer. Let G ¼ Zk1
� Zk2

� � � � � Zkq ,
where Zki is a cyclic group of order ki and ki is an integer for
1 � i � q. Thus, G is a commutative group that is a direct
product of the cyclic groups Zki for 1 � i � q. Let si ¼
ð0ði�1Þ; 1; 0ðq�iÞÞ be a vector of dimension q for 1 � i � q and
S ¼ f�sij1 � i � qg. Suppose that � ¼ CayðG;SÞ, that is, �

is a Cayley graph of the group G and the generator set S.
The network � just defined is a q-dimensional (or qD) torus.
By pruning links of the graph � in a unified and systematic
fashion, we can obtain a pruned network which is still a
Cayley graph. We give some known examples in the
following:

Example 1. Cube-connected cycles CCCq. Let G ¼ Zq2 � Zq.
For any x 2 G, we write x ¼ ðx1; x2; . . . ; xq; xqþ1Þt, where

t denotes transpose. For x; y 2 G, define a new group

operator � as

x� y ¼ xþ

0 0 � � � 0 1 0
1 0 � � � 0 0 0
0 1 � � � 0 0 0
..
. ..

. . .
. ..

. ..
. ..

.

0 0 � � � 1 0 0
0 0 � � � 0 0 1

2
6666664

3
7777775

fðxÞ

y; ð1Þ

where the matrix is of order q þ 1 andf is a function fromG

to Zq such that fðxÞ ¼ �xqþ1. It can be verified that H ¼
ðG;�Þ is a new group under the group operator�. LetS be
as above and � ¼ CayðH;T Þ, where T ¼ fs1; sqþ1; s

�1
qþ1g.

Then, � is known as cube-connected cycles CCCq. It is the
pruned network obtained from the graph � ¼ CayðG;SÞ,
which is a ðq þ 1ÞD torus [10]. Fig. 1 depicts the CCC4

network with 24 � 4 ¼ 64 nodes.

Example 2. Honeycomb network. Let G ¼ Zl � Zk and S ¼
f�s1;�s2g as above, where l and k are even integers.

Then, � ¼ CayðG;SÞ is a 2D torus. Define a group

operator � for x; y 2 G as:

x� y ¼ xþ �1 0
0 1

� �x1þx2

y: ð2Þ

LetH ¼ ðG;�Þ andT ¼ fs1; s2; s
�1
2 g. Then, � ¼ CayðH;T Þ

is a form of pruned 2D torus known as honeycomb

network [9]. Fig. 2 depicts a 64-node honeycomb network

with l ¼ k ¼ 8.

Example 3. Diamond network. We only consider the 3D

diamond network. Let G ¼ Z3
k . For x; y 2 G, define a new

group operator � as

x� y ¼ xþ
�1 0 0
0 �1 0
0 0 1

2
4

3
5
fðxÞ

y; ð3Þ

where fðxÞ ¼ x1 þ x2 þ x3. LetH ¼ ðG;�Þ,T ¼ fs1; s2; s3;

s�1
3 g, � ¼ CayðH;T Þ. Then, it is known that H is a new

group under the group operator�and� is the 3D diamond

network [9]. Fig. 3 depicts a 64-node diamond network

with k ¼ 4.
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3 GROUP CONSTRUCTION FROM COMMUTATIVE

GROUPS

In Section 2, we defined a new group operator � based on a
given commutative group G and obtained a new group
H ¼ ðG;�Þ. Let � ¼ CayðG;SÞ be the Cayley graph of the
group G and the generator set S. Then, the Cayley graph
� ¼ CayðH;T Þ is a pruned network of the graph �, where
T � S. For each of the examples in Section 2, a matrix M
appeared in the definition of x� y. A natural question is:
What conditions should the matrix M satisfy for defining a
new group operator � on the set G?

For the operator � on G to define a group, it must satisfy
the following three conditions:

1. There is an identity �1 in G such that x��1 ¼ x for
any x 2 G.

2. Any element x of G has a right inverse x�1 in G such
that x� x�1 ¼ �1.

3. For any three elements x, y, z of G, the associative
law ðx� yÞ � z ¼ x� ðy� zÞ holds.

We now define a mapping � on G. For any x; y 2 G, let

x� y ¼ xþMfðxÞy; ð4Þ

where M is a matrix of order q and f is a function from G to

Zl such that MfðxÞ is well defined. That condition 1 is

satisfied can be easily established: x��1 ¼ x for any x 2 G,

where �1 ¼ ð0; 0; . . . ; 0Þt is the all-0s vector of length q.

Similarly, condition 2 is also satisfied: Any element x of G

has a right inverse �M�fðxÞx. In fact, letting y ¼ �M�fðxÞx,

we have:

x� y ¼ xþMfðxÞy ¼ xþMfðxÞð�M�fðxÞxÞ ¼ x� Iqx ¼ �1:
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Fig. 1. The cube-connected cycles network CCC4.

Fig. 2. A 2D honeycomb torus network.

Fig. 3. A 3D diamond network; to avoid clutter, only four of the 16 vertical
and two out of eight horizontal wraparound links are shown in full.



Hence, to define a group operator � on the set G by means

of (4), it suffices to ensure that the associative law 3 holds

for the operator �. We have:

ðx� yÞ � z ¼ ðxþMfðxÞyÞ � z ¼ xþMfðxÞyþMfðx�yÞz:

On the other hand, we have:

x� ðy� zÞ ¼ xþMfðxÞðy� zÞ ¼ xþMfðxÞðyþMfðyÞzÞ
¼ xþMfðxÞyþMfðxÞþfðyÞz:

Therefore, the associative law is satisfied for the operator �
if and only if, for any x; y; z 2 G,

Mfðx�yÞz ¼MfðxÞþfðyÞz;

or, if and only if, for any x; y 2 G,

Mfðx�yÞ ¼MfðxÞþfðyÞ: ð5Þ

Let M and f be as above. We can now state our main

theorem.

Theorem 1. If (4) and (5) hold for any x; y 2 G, then ðG;�Þ is a

group.

We give some corollaries to Theorem 1 in the following:
Since MfðxÞ is well defined, � : x!MfðxÞ is a mapping

from the set G to the set fMfðxÞjx 2 Gg. Letting H ¼ ðG;�Þ,
we have the following corollary:

Corollary 1. The set fMfðxÞjx 2 Hg is a group on matrix

multiplication and the mapping � is a homomorphism from the

group H to the group fMfðxÞjx 2 Hg.
Proof. We have �ðxÞ ¼MfðxÞ, �ðyÞ ¼MfðyÞ, and, so,

�ðx� yÞ ¼Mfðx�yÞ ¼MfðxÞþfðyÞ ¼ �ðxÞ�ðyÞ. tu
Corollary 2.

1. x�1 ¼ �M�fðxÞx for x 2 H.
2. Mfðx�1Þ ¼M�fðxÞ for x 2 H.
3. y�1�x�y¼y�1þM�fðyÞxþMfðxÞ�fðyÞy for x; y2H.

Proof.

1. We have �1 ¼ x� x�1 ¼ xþMfðxÞx�1 and, so,
x�1 ¼ �M�fðxÞx.

2. We have y ¼ �1� y ¼ �1þMfð�1Þy ¼Mfð�1Þy and, so,
Mfð�1Þ is the identity matrix. Thus:

MfðxÞþfðx�1Þ ¼Mfðx�x�1Þ ¼Mfð�1Þ;

and; so; Mfðx�1Þ ¼M�fðxÞ:

3. By statement 2 just proven, we have:

y�1 � x� y ¼ y�1 þMfðy�1ÞðxþMfðxÞyÞ

¼ y�1 þMfðy�1ÞxþMfðy�1ÞþfðxÞy

¼ y�1 þM�fðyÞxþMfðxÞ�fðyÞy:

ut

Corollary 3. Let � ¼ CayðG;SÞ and � ¼ CayðH;T Þ be as
introduced earlier in this section. Then, � is a pruned network
obtained from � if and only ifMfðxÞT � S for anyx 2 G as a set.

Proof. � is a pruned network obtained from � if and only if,
for any z 2 T , there is some s 2 S such that x� z ¼ xþ s.
But, x� z ¼ xþMfðxÞz. Thus, � is a pruned network
obtained from � if and only if MfðxÞT � S for any x 2 G
as a set. tu

Remark 1. By Corollary 3, it can be verified that cube-
connected cycles, honeycomb, and diamond networks
are obtainable from corresponding torus networks via
pruning.

Remark 2. By Theorem 1 and Corollary 3, we may construct
a series of pruned networks from given torus networks.
Thus, we get a systematic and unified method of
constructing new and useful interconnection networks.

4 GENERAL RESULTS FOR CONSTRUCTING NEW

NETWORKS

By suitably selecting the matrix M and the function f of
Section 3, we may construct a series of new interconnection
networks according to Theorem 1. We first give a useful
definition.

Definition 1. A matrix M of order q is a quasipermutation
matrix if only one element of each row and each column of M
is 1 or �1 and all other elements are zero. Thus, in terms of
zero and nonzero elements, a quasipermutation matrix M of
order q has the appearance as a permutation matrix, which is
derived by permuting the rows of Iq (the identity matrix of
order q).

We consider two classes of interconnection networks in
the following.

For the first class of interconnection networks, we let

G ¼ Zq
l � Zk, M ¼

Q 0
0 1

� �
, where Q is a quasipermutation

matrix of order q such that Qk ¼ Iq, the identity matrix of

order q. Let fðxÞ ¼ xqþ1. Then, f is a function from G to Zk.

Defining a� b ¼ aþMaqþ1b, we have:

Mfðx�yÞ ¼Mxqþ1þyqþ1 ¼MfðxÞþfðyÞ:

By Theorem 1, � is a group operator on the set G. Let S
and T be as above. Then, MS � S and so MfðxÞT � S for
any x 2 G. By Corollary 3, the Cayley graph � ¼ CayðH;T Þ
is a pruned network obtained from the Cayley graph
� ¼ CayðG;SÞ. It is clear that the cube-connected cycles
CCCq belongs to this class of interconnection networks.

For the second class of interconnection networks, we let
G ¼ Zk1

� Zk2
� . . .� Zkqþ1

, where ki is an even integer for
1 � i � q þ 1. Assume that M is a quasipermutation
matrix of order q þ 1 and that M2 ¼ Iqþ1, the identity
matrix of order q þ 1. Let f be a function from G to Z2

such that fðxÞ ¼ x1 þ x2 þ � � � þ xqþ1 for any x 2 G. Define
the operator � by x� y ¼ xþMfðxÞy, where x; y 2 G.
Then, Mfðx�yÞ ¼MfðxÞþfðyÞ and, so, � is a group operator
on G. Let S, T , and H be as above and � ¼ CayðH;T Þ. It
is possible that � is not a pruned network obtained from
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the graph � ¼ CayðG; SÞ because it may be the case that
MfðxÞT 6	 S for some x 2 G. But, if all ki ð1 � i � q þ 1Þ
are the same, then MfðxÞT � S holds for any x 2 G.
Hence, � is a pruned network obtained from � by
Corollary 3. On the other hand, when

M ¼

�1 � � � 0 0
..
. . .

. ..
. ..

.

0 � � � �1 0
0 � � � 0 1

2
664

3
775;

we have MfðxÞT � S for any x 2 G. Thus, the graph � is a
pruned network obtained from �. It is evident that
honeycomb and diamond networks belong to this class of
networks [9].

To show the power of our method, beyond serving as a
unifying model of interconnection networks that are
already known, we present an example of a new network
that has not been previously proposed or studied. Note that,
owing to the intuitive appeal as well as simpler visualiza-
tion and analysis for 3D networks, much of the published
studies in this area have been focused on pruned versions of
3D networks.

Example 4. We can extend the T1 network of [5] to four
dimensions, obtaining a pruned interconnection net-
work that has some advantages of 4D networks (such
as lower diameter) and the implementation ease of
lower-dimensional networks, while maintaining the all-
important property of node symmetry. Let G ¼ Z4

k and
�¼CayðG;SÞ. For any x 2 G, we write x¼ðx1; x2; x3;

x4Þt and define fðxÞ ¼ x4. For x; y 2 G, define the new
group operator � based on the 4� 4 permutation
matrix M as follows:

x� y ¼ xþ

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

2
664

3
775
x4

y: ð6Þ

We have H ¼ ha; b; cihdi, where a ¼ ð1; 0; 0; 0Þt, b ¼
ð0; 1; 0; 0Þt, c ¼ ð0; 0; 1; 0Þt, d ¼ ð0; 0; 0; 1Þt, with a, b, c,
and d satisfying the following relations:

ak ¼ bk ¼ ck ¼ dk ¼ �1; ab ¼ ba; ac ¼ ca; bc ¼ cb;
d�1ad ¼ c; d�1cd ¼ a; d�1bd ¼ b:

LettingT ¼ fa�1; b�1; d�1gand� ¼ CayðH;T Þ,weobserve
that � is a pruned network obtained from �. Fig. 4 depicts
the structure of the network �, where the neighbors of x ¼
ðx1; x2; x3; x4Þt are as follows: x� b�1 ¼ x� b ¼ ðx1; x2

�1; x3; x4Þt, x� d�1 ¼ x� d ¼ ðx1; x2; x3; x4 � 1Þt, x� a�1

¼ x� a ¼ ðx1 � 1; x2; x3; x4Þt if x4 is even, and x� a�1 ¼
x� c ¼ ðx1; x2; x3 � 1; x4Þt if x4 is odd.

The diameter of the network � of Example 4 is 2k,

except in the case of k ¼ 2, when it is 5. This is easily

proven. For k ¼ 2, we have distð�1; vÞ � 5, for all v 2 H,

and distð�1; abcÞ ¼ distð�1; abdadÞ ¼ 5. For k 
 4, we note

that no node is at a greater distance from node ð0; 0; 0; 0Þt
and that node u ¼ ak=2bk=2ck=2dk=2 ¼ ak=2bk=2dak=2dk=2�1 is at

distance 2k. For example, a diametral path of length 8 in

the network of Fig. 4, beginning at node 0000, is as

follows: 0000 ! 1000 ! 2000! 2100! 2200! 2201!
2211! 2221! 2222 (the last node is also depicted in

Fig. 4). Note that this network resembles a 4D network in

terms of diameter and average internode distance, but has

an implementation cost (node degree, VLSI layout

complexity) that is close to those of 3D networks. This

XIAO AND PARHAMI: A GROUP CONSTRUCTION METHOD WITH APPLICATIONS TO DERIVING PRUNED INTERCONNECTION NETWORKS 641

Fig. 4. The 4D pruned network of Example 4. Only one of the 64 cycles of length 4 along the x4 dimension is shown (broken lines).



is a recurring theme for interconnection networks that are

obtained by judicious pruning of more complex networks

(that have higher dimensions as well as more links) and

constitutes the main motivation for our interest in a

systematic study of network pruning schemes.

5 NEW RESULTS FOR 3D INTERCONNECTION

NETWORKS

In this section, we consider certain 3D interconnection

networks in detail. Let G ¼ Z3
k as in Example 3, where k is

an even integer. For x; y 2 G, define a new group operator �
as x� y ¼ xþMfðxÞy, where the matrix M is one of the

three matrices below:

ð1Þ M ¼
0 �1 0

�1 0 0

0 0 1

2
64

3
75; ð2Þ M ¼

0 1 0

1 0 0

0 0 1

2
64

3
75;

ð3Þ M ¼
�1 0 0

0 �1 0

0 0 1

2
64

3
75:

The function f is chosen in two possible ways:

ðAÞ fðxÞ ¼ x3 and ðBÞ fðxÞ ¼ x1 þ x2 þ x3:

In the following discussion, we omit the operator � in

expressions. We consider the six possible cases 1A (case 1 of

the matrix M and case A of the function f), 1B, 2A, 2B, 3A,

and 3B in turn.
For case 1A, we have H ¼ ðhai � hbiÞhci, where

a ¼ ð1; 0; 0Þt, b ¼ ð0; 1; 0Þt, c ¼ ð0; 0; 1Þt and a, b, and c

satisfy the following relations:

ak ¼ bk ¼ ck ¼ �1; ab ¼ ba; c�1ac ¼ b�1; c�1bc ¼ a�1:

Let T ¼ fa�1; c�1g and � ¼ CayðH;T Þ. Then, � is the T1

network of [5].
For case 1B, we have H ¼ ha; bihci, where a ¼ ð1; 0; 0Þt,

b ¼ ð0;�1; 0Þt, c ¼ ð0; 0; 1Þt, and a, b, and c satisfy the

following relations:

a2k ¼ b2k ¼ ck ¼ �1; c�1ac ¼ b; c�1bc ¼ a;

ðabÞk=2 ¼ ðbaÞk=2 ¼ �1:

Let T ¼ fa�1; c�1g and � ¼ CayðH;T Þ. Then, � is the T2

network of [5].
For cases 2A and 2B, it is easily verified that the

corresponding pruned network � is isomorphic to the T1

and T2 networks of [5], respectively.
For case 3A, we have H ¼ ðhai � hbiÞhci, where

a ¼ ð1; 0; 0Þt, b ¼ ð0; 1; 0Þt, c ¼ ð0; 0; 1Þt, and a, b, and c

satisfy the following relations:

ak ¼ bk ¼ ck ¼ �1; ab ¼ ba; c�1ac ¼ a�1; c�1bc ¼ b�1:

Let T ¼ fa�1; b�1; c�1g and � ¼ CayðH;T Þ. Then, � is

isomorphic to the 3D torus.
For case 3B, we have H ¼ hd; a; e; bihci, where

a ¼ ð1; 0; 0Þt, b ¼ ð0; 1; 0Þt, c ¼ ð0; 0; 1Þt and a, b, c, d, and

e satisfy the following relations:

a2 ¼ b2 ¼ ck ¼ dk=2 ¼ ek=2 ¼ �1; ada ¼ d�1; cac�1 ¼ d�1a;

cdc�1 ¼ d�1; beb ¼ e�1; cbc�1 ¼ e�1b; cec�1 ¼ e�1:

Let T ¼ fa; b; cg and � ¼ CayðH;T Þ. Then, � is the 3D
diamond network [9].

We next consider the structure of the group H. It is clear
that hd; ai ¼ hdihai is a semidirect product of hdi by hai since
ada ¼ d�1. Similarly, he; bi ¼ heihbi is a semidirect product of
hei by hbi. Hence, jhd; aij ¼ jhe; bij ¼ k, that is, their order is k.
Because hd; ai \ he; bi ¼ �1, the order of hd; aihe; bi is k2. By the
relations among a, b, c, d, and e, H ¼ hd; a; e; bihci is a
semidirect product of hd; a; e; bi by hci. Thus, we obtain that
the order of hd; a; e; bi is k2. Therefore, hd; a; e; bi ¼ hd; aihe; bi
and, so,H ¼ ðhdihaiÞðheihbiÞhci. It is easily verified thatde�1 ¼
abab and de ¼ ed.

We illustrate the method above by using it to compute
the diameter of the 3D diamond network.

Theorem 2. Let � be as above. Then, the diameter of � is 3k=2,
where k is an even integer.

Proof. Let the diameter of the diamond network � be
Diamð�Þ. It is easily verified that c2 is commutative with
any elements of H. For any g; h 2 H, the distance
between g and h is denoted distðg; hÞ. It is clear that
distð�1; abcÞ ¼ 3 and, so, Diamð�Þ ¼ 3 when k ¼ 2.
Similarly, we can prove that Diamð�Þ ¼ 6 when k ¼ 4
because de ¼ abab and distð�1; dec2Þ ¼ distð�1; ababc2Þ ¼ 6.
Now, let k be any even integer. We consider two cases,
depending on whether 4 divides k.

If k is a multiple of 4, then we have:

distð�1; ðdeÞk=4ck=2Þ ¼ distð�1; ðababÞk=4ck=2Þ ¼ 3k=2:

On the other hand, we can prove that, for any g 2 H,
distð�1; gÞ � 3k=2 because c2 is commutative with any
elements of H.

If k is not a multiple of 4, then we have:

distð�1; ðde�1Þðk�2Þ=4abck=2Þ ¼ distð�1; ðababÞðk�2Þ=4abck=2Þ
¼ 3k=2:

In a manner similar to that of the first case, we can
prove that, for any g 2 H, distð�1; gÞ � 3k=2. The two
cases together establish the result that Diamð�Þ ¼ 3k=2
for any even k. tu

Remark 3. In [9], the authors showed that the diameter of
the pruned 3D torus [10] is 3k=2. Theorem 2 establishes
that the pruned 3D torus, which has the same node and
wiring complexity as the 3D diamond network, is also
identical to the latter in terms of diameter.

6 CONCLUSION

In this paper, we have provided a general group construc-
tion from a commutative group. It generalizes previously
proposed pruning schemes and provides a systematic and
unified framework of constructing interconnection net-
works. As an application of our method, we also derived
some new results on pruned networks, such as honeycomb
and diamond networks. Because of the generality of these
results, which can be viewed as allowing the synthesis of
alternative, more economical, interconnection networks by
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reducing the number of dimensions and/or link density of
existing networks via mapping and pruning, we expect that
they will find many more applications.

Many problems remain to be studied. We are currently
investigating the applications of our method to problems
related to routing and average internode distance in certain
subgraphs and coset graphs of diamond and infinite
honeycomb networks. These results, along with potential
applications in the following areas, will be reported in the
future:

. Load balancing and congestion control.

. Scheduling and resource allocation.

. Fault tolerance and graceful degradation.

These constitute important practical problems in the
design, evaluation, and efficient operation of parallel and
distributed computer systems. Another interesting open
problem is the extent to which Cayley graphs that are
incomplete k-ary n-cubes can be derived within our
framework with appropriate choices of M, fðxÞ, and T .
In other words, does there exist such a Cayley graph that
does not belong to the class of networks derived from
this formulation?
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