
Stored-transfer representations with weighted
digit-set encodings for ultrahigh-speed arithmetic

G. Jaberipur and B. Parhami

Abstract: Redundant representations play an important role in high-speed computer arithmetic.
One key reason is that such representations support carry-free addition, that is, addition in a
small, constant time, independent of operand widths. The implications of stored-transfer represen-
tation of digit sets and the associated addition schemes, as an extension of the stored-carry concept
to redundant number systems, on the speed and cost of arithmetic algorithms, are explored.
Two’s-complement digits as the main part and any two-valued digit (twit) in place of a stored
carry are allowed, leading to further broadening of the generalised signed-digit representations.
The characteristics of the digit sets, possibly not having zero as a member, that allow for most
efficient carry-free addition, are investigated. Circuit speed is gained from storing or saving,
instead of combining through addition, the interdigit transfers generated during the carry-free
addition process. Encoding efficiency is gained from using a twit-transfer set encoded by one
logical bit, where more bits would otherwise be needed to represent a transfer value.
1 Introduction

A positional radix-r number system is deemed redundant
if the cardinality of its digit set is greater than r; for
example, decimal digit set f0, 1, 2, . . . , 9, 10, 11g, or
binary digit set f21, 0, 1g [1]. In modern digital circuits,
redundancy is commonly introduced in number represen-
tation with the aim of improving the speed or efficiency
of arithmetic operations [2, 3].

One reason for speed improvement with redundancy is
the possibility of carry-free addition; that is, addition in a
small, constant time, independent of operand widths. This
desirable property is routinely exploited in digital system
designs where internal redundant representations (invisible
to the casual user) are employed, although explicit use of
redundant representations is also gaining in popularity
[4–6]. In carry-free addition, a carry produced by one-digit
position is always absorbed by the next higher position [1].
Because the term ‘carry’ often conjures the notion of a pro-
pagating signal, the information produced by one stage and
absorbed by the next stage is referred to as a ‘transfer’ value
or digit.

Another reason for the usefulness of redundant represen-
tations is that redundancy allows some imprecision in the
decision processes associated with arithmetic algorithms
(such as quotient or root digit selection [7]); this tolerance
to imprecision removes enough complexity from the com-
putation’s critical path to yield significant performance
improvement. As a specific example, quotient digits in
high-radix division can be chosen by inspecting only a

The Institution of Engineering and Technology 2007

doi:10.1049/iet-cds:20050228

Paper first received 10th August 2005 and in revised form 23rd May 2006

G. Jaberipur is with the Department of Electrical and Computer Engineering,
Shahid Beheshti University, Tehran 1983963113, Iran and also with the
School of Computer Science, Institute for Studies in Theoretical Physics and
Mathematics

B. Parhami is with the Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106-9560, USA

E-mail: parhami@ece.ucsb.edu
102
few bits of the divisor and of the redundant partial remain-
der, thus allowing a much shorter cycle time via hardwired
or tabular implementation of the quotient digit selection
process [8].

Contributions to redundant number representation are of
two main types. In abstract studies (e.g. [1, 9, 10]), arith-
metic algorithms are presented in terms of digit-level oper-
ations, specifying how each result digit is derived from
operand digits and auxiliary quantities such as interdigit
transfers. Implementation-oriented studies, on the other
hand, are often based on specific encodings for digit sets
encountered in the course of solving particular design
problems; for example, implementation of a high-speed
two’s-complement full-tree multiplier [11]. Some contri-
butions of this latter type have dealt with limited classes
of digit-set encodings without directly associating them
with a specific design problem. Falling into the latter cat-
egory are hybrid-redundant number systems [12, 13] and
representation paradigms of high-radix signed digit
numbers [14].

Certain weighted encodings of redundant number
systems, using two-valued digits (twits, or generalised
bits) have been recently shown to fill the gap between the
aforementioned contributions [15]. Twits are exemplified
by a unibit that represents a value in f21, 1g, with 21
encoded as logical 0 and 1 encoded as logical 1. Such
encodings lead to efficient representations for redundant
number systems and make it possible to realise arithmetic
circuits based on widely available optimised full/
half adders, compressors, and carry acceleration cells.
Furthermore, they allow faithful representation of digit
sets, including those not having zero as a member, leading
to enhanced encoding efficiency in some cases. Here, we
focus on stored-transfer representation of redundant
digit sets [16], as an instance of weighted twit-set
(WTS) encodings [15], study the implications of twit
transfers, and adapt the conventional carry-free addition
algorithm to stored-transfer representation of general digit
sets that may exclude 0 (e.g. digit values extending from
3 to 12).
IET Circuits Devices Syst., 2007, 1, (1), pp. 102–110

Conventional carry-free addition of radix-r operands x
and y, whose digits xi and yi belong to the redundant digit
set D ¼ [a, b], is described as follows (see Fig. 1a):

Algorithm 1 (Conventional carry-free addition to compute
s ¼ xþ y): Perform the following digit operations for all
positions i (0 � i , k) concurrently:

1. Compute the position sum pi ¼ xiþ yi.
2. Derive the interim sum digit wi and transfer digit tiþ1

satisfying wi ¼ pi 2 rtiþ1.
3. Form the final sum digit si ¼ wiþ ti.

If step 3 of Algorithm 1 is to yield a valid digit si in D,
without producing further transfers, the interim sum digit
wi must be restricted in D ¼ [a, b], satisfying for all possible
values of ti

a� ti � a , b � b� ti

We derive bounds on possible values of ti, and the necessary
and sufficient number of these values for carry-free addition
to be applicable, in Section 2. Note that the digit-size
additions of steps 1 and 3, though quite fast compared
with word-size additions required with nonredundant rep-
resentations, are merely used for algorithm description
and need not be explicitly performed in hardware. The
addition in step 1 can be avoided, for example, by noting
that wi and tiþ1 are directly computable in hardware as
functions of xi and yi (see Fig. 1a), that is

wi ¼ vðxi; yiÞ; tiþ1 ¼ t ðxi; yiÞ

This, in effect, fuses steps 1 and 2 and allows the designer to
choose the best possible merged implementation. It may be
the case, with certain digit sets and/or encodings, that some
form of addition is still part of the best hardware implemen-
tation scheme for v and t, but this is not required. We are
thus motivated to investigate methods for eliminating, or
else simplifying, the addition in step 3. In Section 3 we
discuss stored-transfer representation of redundant number
systems [16] and adapt Algorithm 1 to such numbers. In
Section 4 we study the implications of limiting the transfer
set to one twit. Section 5 offers an efficient realisation of
single-twit stored-transfer adder based on the SUT adder
of [15] and compare its performance with other redundant
adders. Conversion from/to two’s-complement represen-
tation is taken up in Section 6.
IET Circuits Devices Syst., Vol. 1, No. 1, February 2007
2 Transfer values in carry-free addition

In this section general characteristics of the interdigit trans-
fer process are studied and bounds on transfer values within
the framework of carry-free addition (Algorithm 1) are
derived. The results obtained allow for the number of
possible transfer values in steps 2 and 3 of Algorithm 1 to
be kept to a minimum, leading to more efficient implemen-
tations. In this study, two practical restrictions imposed
in [17] are relaxed; that is, we deal with digit sets that
do not necessarily include zero as a member, and non-
contiguous transfer sets are allowed. Proofs for formal
results in this section are to be found in the Appendix.

Definition 1 (Characteristics of the digit set): Let
r, D ¼ [a, b], and r ¼ b 2 aþ 1 2 r denote the radix,
digit set (interval of integer values, possibly excluding 0),
and redundancy index of the number system, respectively.
We postulate r � 2, a , b, and r . 0. A

Definition 2 (Characteristics of the transfer set): Let
T ¼ fc0, c1, . . . , cd21g denote the set of d possible transfer
values, listed in ascending order, that can be chosen in step
2 of Algorithm 1. The span of T is d ¼ cd21 2 c0 and its jth
gap, 0 � j , d 2 1, is dj ¼ cjþ1 2 cj � 1. A

Lemma 1 (Bounds on c0, cd21, and dj): For carry-free
addition (Algorithm 1) to be applicable, we must have
c0 � ba/(r 2 1)c, cd21 � db/(r 2 1)e, and dj � 1þ
b(r 2 d)/rc.

In Lemma 1, the focus is on the upper (lower) bound for c0

(cd21) because these bounds determine the smallest span and
consequently the minimum cardinality of transfer values.
Note that, in general, the larger the number of choices for the
transfer value, the greater the complexity of the circuit that
must make the selection and the higher its latency.

Lemma 2 (Minimal span dmin): The minimal span of trans-
fer values in T is bounded from below by 1þ dr/(r 2 1)e
and from above by min(r, 3þ b(r 2 2)/(r 2 1)c). A

Lemma 2 indicates that the minimal span is in the
following range:

1þ dr=ðr � 1Þe � dmin � minðr; 3þ bðr� 2Þ=ðr � 1ÞcÞ
t i

x i y i

wi

Position i – 1 Position i

x′i x″i y′i y″i

wi t i

s′i s″i

Position i – 1 Position iPosition i – 1 Position i

s i s i

x i y i

a b

ω τ

Fig. 1 Carry-free addition schemes of Algorithms 1 and 2

a Algorithm 1: Ordinary carry-free addition, two-stage and single-stage realisations
b Algorithm 2: Stored-transfer addition
103

Thus, whether r is small (so that the upper bound above is r)
or relatively large (so that the upper bound is 3þ b(r 2 2)/
(r 2 1)c), the variation in dmin is quite limited.

Corollary 1 (Practical values for d): For r � 3 and r ¼ 2,
r [[3, r 2 1], or r ¼ r, the minimal span of transfer
values is dmin ¼ 2, dmin [[2, 3], or dmin ¼ 3, respectively.

A

Theorem 1 (Applicability of carry-free addition): For
the carry-free addition of Algorithm 1 to be applicable,
it is necessary and sufficient to have v1þ v2 ,
min((r 2 2)(r 2 1), 2r 2 3), where v1 ¼ a mod(r 2 1) and
v2 ¼ (2b) mod(r 2 1). A

Note that the parameters v1 and v2 are also used in the
proof of Lemma 2 in the Appendix. One consequence of
Theorem 1 is the following generalisation of a previously
known result regarding carry-free addition for generalised
signed-digit (GSD) numbers.

Corollary 2 (Lower bounds for r and r): The requirement
(r 2 2)(r 2 1) . v1þ v2 of Theorem 1 cannot hold
for r , 2 or for r , 3. Therefore both r � 2 and r � 3
are necessary conditions for carry-free addition using
Algorithm 1. A

Theorem 2 (Insufficiency of r ¼ 2 for carry-free addition):
Algorithm 1 is inapplicable for a digit set [a, b] that satisfies
r ¼ 2 and a mod(r 2 1) ¼ r 2 2. A

Corollary 3 (Insufficiency of r ¼ 2 in the special case of
GSD): For ordinary generalised signed-digit number
systems, where the digit set [a, b] includes zero as a
member, r ¼ 2 is insufficient for carry-free addition for
two digit sets: (1) a ¼ 21, b ¼ r; (2) a ¼ 2r, b ¼ 1.

Corollary 3 affirms the results first reported in [17]. The
following two results are also generalisations of the corre-
sponding results for generalised signed-digit representations.

Theorem 3 (Sufficiency of r � 3 for carry-free addition):
The condition of Theorem 1 for carry-free addition is
satisfied by all possible digit sets [a, b] having
r ¼ b 2 aþ 1 2 r � 3. A

Theorem 4 (Minimal cardinality d of transfer set in carry-
free addition): A minimal set T of possible transfer values
in Algorithm 1 is at least three-valued; for r � r, it is at
most four-valued.

The preceding results contain both bad news and good
news. The bad news is that the transfer value cannot be rep-
resented by a single bit, thus forcing us to use two bits for its
binary encoding. The good news is that, in virtually all prac-
tical cases, we do not need to go beyond two bits in repre-
senting the transfer values.

Corollary 4 (Contiguity of the transfer set for r ¼ 2): In
the case of r ¼ 2, provided the conditions of Theorem 2
are met, the minimal transfer set always constitutes a
three-valued interval of integers. A

Corollary 5 (Maximal encoding efficiency): Given
2 � r � r and r ¼ 2h, a redundant radix-r digit set with at
most 2r members and the transfer values for carry-free
addition of Algorithm 1 can be encoded by hþ 1 and two
bits (i.e. the minimum possible for both), respectively. A
104
In the following sections, the practical consequences
of the preceding results are explored, leading to the
particularly efficient implementations in Section 5.

3 Stored-transfer representations

In a manner similar to stored-carry or carry-save represen-
tation of binary numbers [2], a study is carried out of the
implications of stored-transfer or transfer-save represent-
ations of redundant digits, where the pair (wi, ti) in the
carry-free addition of Algorithm 1 is viewed as an encoding
of the sum digit si. This interpretation obviates the need for
the final addition si ¼ wiþ ti in step 3 (wi is the main part
and ti the transfer part of a digit’s stored-transfer encoding).

Definition 3: (Stored-transfer encoding): The stored-transfer
encoding of a redundant digit set D ¼ [a, b] is based on a
main digit set D ¼ [a, b] and a transfer set G ¼ fc0, c1,
. . . , cd21g, such that any digit z [D has a stored-transfer
encoding kz0, z00l, with z ¼ z0 þ z00, z0 [D, and z00 [G.
Primed and double-primed variables are used to designate
the main and transfer parts of a digit. A

Example 1: A main part that is a 4-bit two’s-complement
number in [28, 7] and a four-valued stored transfer in
[21, 2] constitute a 6-bit faithful encoding of the digit set
[29, 9]. Direct encoding of the digit set would require
five bits, where the encoding is not faithful. A

The stored-transfer representation of definition 3 leads to
a two-step formulation of carry-free addition, as described
by Algorithm 2 and depicted in Fig. 1b.

Algorithm 2 (Stored-transfer addition to compute s ¼ xþ y):
Perform the following digit operations for all positions i
(0 � i , k) concurrently:

1. Compute the position sum pi ¼ x0iþ x00iþ y0iþ y00i .
2. Derive si ¼ ks0i, s00i l satisfying s0i ¼ pi 2 rs00iþ1.

Of course, steps 1 and 2 in this new two-step process can
again be fused, in the manner previously outlined
for Algorithm 1, leading to a merged or single-step
implementation

s0i ¼ s0ðx0i; x00i ; y0i; y00i Þ; s00iþ1 ¼ s00ðx0i; x00i ; y0i; y00i Þ

Note that the transfer set G ¼ fc0, c1, . . . , cd21g, satisfying
c0 , c1 , . . . , cd21, is d-valued but does not necessarily
contain a set of d consecutive integers. This more general
view is taken in anticipation that it may provide added flexi-
bility for optimisations. It can be seen later that even though
such generalised transfer sets do not provide additional
benefits directly, they can be used with minor modifications
to the carry-free addition algorithm. On the other hand, the
main part of a digit belongs to an interval D ¼ [a, b] of
values. Whereas gaps in this set are also admissible, provided
that the set contains one member from each of the r residue
equivalence classes j mod r (0 � j � r 2 1), this generality
has not been found to yield any speed or cost benefit.

An objection may be raised that Algorithm 2 simply
shifts the complexity of the original step 3 in Algorithm 1
to the new step 1. The fact that this is not the case will
become apparent when the methods employed in this
paper are explained in more detail. Here, it is argued that
the new scheme can, in principle, be faster than that of
Algorithm 1. For instance, a four-operand addition, where
two of the operands (transfer parts) are fairly small, can
IET Circuits Devices Syst., Vol. 1, No. 1, February 2007

indeed be faster and less complex than two separate
additions [18]. For another, the stored-transfer represen-
tation kz0, z00l may well contain the same total number of
bits as the binary encoding of z [15]. In such a case, the
function pairs (v, t) of Section 1 and (s0, s00) of this
section have comparable bit-level complexities.

Example 2: Stored-transfer representations of some redun-
dant number systems appear in Table 1. The hybrid signed-
digit entries (lines 6 and 7) use the radix r ¼ 2h. Note that
even though not all entries in Table 1 are practically
useful, they have been included in the list to demonstrate
the generality of the results. It is the belief of the authors
that such generality is desirable and must be pursued
whenever it does not interfere with the clarity of
presentation for more practical cases. One important
reason for this viewpoint is the fact that general results
ensure that no important special case has been overlooked
by imposing arbitrary restrictions based on current practice
or implementation technologies. A

The transfer sets of entries 6, 10, and 12 in Table 1 are
two-valued and thus representable by a single bit.
However, by Theorem 4, the cardinality d of the transfer
set must be at least three for carry-free addition to be pos-
sible. Moreover, the noncontiguous two-valued transfer
sets f21, 1g and f2, 4g of entries 4, 9, and 12 do not
satisfy the result of corollary 4, stating that for carry-free
addition with r ¼ 2, the transfer set must contain a three-
valued interval of integers; that is, it must consist of three
consecutive integers. In Section 4, where an implementation
of stored-transfer addition is presented, a simple design
modification is used to deal with these two problems.
Note that in designing a stored-transfer encoding, the trans-
fer set G used should preferably be of the minimum size pre-
scribed by Theorem 4. Extra values in G, though they offer
small advantages in extending the range of the digit set,
degrade the encoding efficiency and increase implemen-
tation costs (i.e. latency, area and power). Furthermore,
the wider digit set may not be preserved under carry-free
addition, thus nullifying any accrued benefits.

Because a four-valued G is always sufficient by Theorem
4, our stored-transfer representations need at most two bits
of redundancy per digit compared with binary encoding of
the nonredundant digit set [0, r 2 1]. Virtually all practical
redundant representations use power-of-two radices and
thus imply at least one bit of redundancy. Therefore the
incremental cost of the proposed scheme, in its initial
IET Circuits Devices Syst., Vol. 1, No. 1, February 2007
form, and without the enhancement to be covered in
Section 4, is one bit of redundancy per digit. The added
cost of one bit per digit position enables significant
latency improvement in the basic operation of carry-free
addition and all other arithmetic operations that use addition
as a building block. In multioperand addition, and thus in
multiplication, as well as in subtractive and multiplicative
division, the per-add savings are compounded over many
addition levels.

Because the main part of digits in a stored-transfer rep-
resentation can be in nonredundant two’s-complement
format, much of the digit-level addition circuits can be
based on readily available, and well optimised, binary
adder cells. For example, a digit adder can be built from
an h-bit binary adder, computing the (hþ 1)-bit sum
x0iþ y0i, followed by a special (hþ 5)-input, (hþ 2)-output
circuit; the inputs are the aforementioned (hþ 1)-bit sum
and two two-bit stored transfers x00i and y00i, while the
outputs are the h-bit sum digit s0i and a two-bit generated
transfer s00iþ1. Except for an O(h)-time digit addition, the
rest of the computation may be performed in a small con-
stant time, independent of the radix (see Section 4).

4 Two-valued stored transfers

The representational efficiency of the proposed stored-
transfer scheme can be improved by using a design trick
involving coupled encoding of the two components x0 and
x00 of a digit x. Consider a three-valued stored transfer
x00 [f21, 0, 1g attached to a main digit x0 ¼ 2u0 þ v0,
where u0 ¼ bx0/2c and v0 ¼ x0 mod 2. It is assumed that x0

is encoded in two parts: a single bit denoting v0 and an arbi-
trary encoding for u0. A stored-transfer digit k2u 0 þ 0, 0l can
be recoded as k2u0 þ 1, 21l, and k2u0 þ 1, 0l as k2u0 þ 0, 1l,
thus making it unnecessary to store the transfer value 0. The
resulting two-valued stored transfer renders the represen-
tational efficiency of the proposed scheme competitive
with the most efficient redundant representations. The
delay and circuit costs of this recoding are small, given
that only a single bit v0 in the encoding of x0 is affected.
The more general case of a three-valued transfer x00 [fl,
lþ 1, lþ 2g is handled with equal ease: recode k2u0 þ 0,
lþ 1l as k2u0 þ 1, ll and k2u0 þ 1, lþ 1l as k2u0 þ 0,
lþ 2l.

The modification of the preceding paragraph, which may
be viewed as reintroducing step 3 of the carry-free addition
process, but in much simpler form involving single-bit
logical operations, can be applied after each carry-free
Table 1: Stored-transfer representations of some redundant number systems

Number system D d ¼ r D G

1 Stored-carry (SC) [0, r] 1 [0, r 2 1] f0, 1g

2 Stored-borrow (SB) [21, r 2 1] 1 [0, r 2 1] f21, 0g

3 Stored-carry-or-borrow (SCB) [21, r] 2 [0, r 2 1] f21, 0, 1g

4 Stored-carry-or-borrow (SCB) [21, r] 2 [0, r 2 1] f21, 1g

5 Stored-double-carry (SDC) [0, rþ 1] 2 [0, r 2 1] f0, 1, 2g

6 Hybrid S-D (h 2 1 B, 1 BSD) [21, 2h 2 1] 1 [0, r 2 1] f21, 0g

7 Hybrid S-D (1 BSD, h 2 1 B) [22h21, 2h 2 1] 2h21 [0, r 2 1] f22h21, 0g

8 Minimally asymmetric [2r/2 2 1, r/2] 2 [2r/2, r/2 2 1] f21, 0, 1g

9 Minimally asymmetric [2r/2 2 1, r/2] 2 [2r/2, r/2 2 1] f21, 1g

10 Excess-1 stored-carry [1, rþ 1] 1 [0, r 2 1] f1, 2g

11 Excess-3 stored double carry [3, rþ 4] 2 [1, r] f2, 3, 4g

12 Excess-3 stored double carry [3, rþ 4] 2 [1, r] f2, 4g
105

106
Table 2: Stored unibit transfer (SUT)-like redundant digit sets

Number system a b ¼ aþ 2h
þ 1 l ¼ aþ 2h21 c0 ¼ ba/(2h 2 1)c cd21 ¼ db/(2h 2 1)e

SUT 2(2h21
þ 1) 2h21 21 21 1

SDC 0 2h
þ 1 2h21 0 2

Excess-3 SDC 3 2h
þ 4 2h21

þ 3 0 2

Excess-2h SCB 2h 2 1 2hþ1 2h
þ 2h21 2 1 1 3

Short-2h SUT 2(2h
þ 2h21

þ 1) 22h21 2(2h
þ 1) 22 0
addition operation to keep representations efficient in the
arithmetic circuits and their associated registers or it can
be applied only at the interface between the arithmetic
unit and the storage system.

Other ad hoc simplifications and efficient implemen-
tations for special cases may be derived. For example, the
following algorithm (basically as a detailed description of
Algorithm 2) is applicable for addition of two k-digit
radix-2h stored-transfer numbers x and y, where the main
part of each digit is an h-bit two’s-complement number
and the transfer is a unibit in G ¼ f21, 1g.

Algorithm 3 (Radix-2h stored-unibit-transfer addition to
compute s ¼ xþ y): Perform the following digit operations
for all positions i (0 � i , k) concurrently:

1. Form the h-bit two’s-complement value zi ¼ x00iþ y00i.
2. Derive the carry-save sum (uiþ1, vi) ¼ ziþ x0iþ y0i.
3. Add ui to vi, forming the binary position sum pi.
4. Derive s0i and s00iþ1 satisfying s0i ¼ pi 2 rs00iþ1.
5. Adjust s00i and the least significant bit of s0i.

Consider G ¼ f21, 1g, with its two members encoded as
f0, 1g. The rightmost bit of zi is always 0, the next bit is
derived by an XNOR operation on the unibits, and the
identical leftmost h 2 2 bits by a NOR operation (XNOR
and NOR are complements of logical XOR and OR
functions). Step 2 can be realised by standard full-adders.
Step 3 requires an adder that is h bits wide (h 2 1 if an
extra half-adder is used in step 2); this adder can be of
any suitable design. In step 4, s0i and s00iþ1 are directly
derived in constant time from pi and its two most significant
bits, respectively. Step 5 involves one gate delay, as pre-
viously discussed. Only step 3 has a latency that depends
on h. Moreover, steps 1, 2 and 3, 4 may be partially over-
lapped to further reduce the constant-time component of
the addition latency. A high-level circuit design, based
on standard full/half-adders and carry acceleration cells
for stored-unibit-transfer addition/subtraction (i.e. with
G ¼ f21, 1g) is offered in [15].

Unfortunately, the two-valued transfer scheme just dis-
cussed is not applicable to arbitrary digit sets. Corollary 4
suggests the suitability of this scheme for any digit set
with r ¼ 2. However, there are other digit sets with r . 2
and minimal d that lead to consecutive three-valued transfer
sets (i.e. d ¼ 2). By Lemma 2, such desirable digit sets are
limited to 2 � r � r 2 1. For example, it is easy to verify
that possible transfer sets for radix-16 digit sets [29, 9]
(with r ¼ 3) and [20, 45] (with r ¼ 10) are f21, 0, 1g
and f1, 2, 3g, respectively. But the main part of the two-
valued stored-transfer representation of these digit sets is
necessarily redundant. This complicates the addition
scheme and renders the simple adder design, as previously
discussed and implemented in [15], inapplicable.
Therefore in the following section we focus exclusively
on minimally redundant digit sets with r ¼ 2.
5 Encoding of stored transfers

The results derived in Section 2 suggest the applicability of
Algorithm 2 (as well as Algorithm 1) for arbitrary digit sets
[a, b], possibly excluding zero as a member and with
a , b. As discussed earlier, to obtain an efficient addition
scheme, the focus is on digit sets with r ¼ 2, using stored
transfer encoding of the digit set with a nonredundant
two’s-complement main part and a twit transfer part. Thus
the digit set [a, b] in a radix-2h number system is
decomposed into D ¼ [22h21, 2h21 2 1] as the two’s-
complement main part and G ¼ fl, lþ 2g as the twit
transfer part. With these assumptions, given a value a as
the lower bound of the digit set, the upper bound b and
the twit parameter l are derived as

b ¼ aþ 2h
þ 1; l ¼ aþ 2h�1

Example 3 (SUT-like digit sets): Table 2 shows the
characteristic parameters of some stored-transfer digit
sets, using twit transfers in fl, lþ 2g, that satisfy the
conditions of corollary 4. It is shown that for such digit
sets, the SUT addition scheme (Algorithm 3) is applicable.

A

In the addition scheme for radix-2h stored-unibit-transfer
operands (first entry of Table 2), an h-bit two’s-complement
sum of the transfers is derived (step 1 of Algorithm 3), and a
standard three-operand addition is performed (fused steps
2–4 of Algorithm 3). Both operations are performed in
parallel for all radix-2h digits. The required high-level

T (i+1)h–1

t ih

 . . . t ih+2t (i+1)h–2

Sub

t ih+1
A″ih

B″ih
θθ

Θ

θ

θ Sub

Fig. 3 SUT transfer addition cell

FA FA FA HA

FA FA FA HA

. . .

. . .

(i+1)h–1

B (i+1)h–1

A (i+1)h–1

ih+2

b ih+2

a ih+2

ih+1

b ih+1

a ih+1

bih

aih

w ihwih+1 wih+2 W (i+1)h–1

C (i+1)h c ih+1 c ih+2 c (i+1)h–1

S ′ (i+1)h–1 s ′ s ′ s ′ih+2 ih+1 ih

S ″ ih

θθΘ

Fig. 2 SUT adder
IET Circuits Devices Syst., Vol. 1, No. 1, February 2007

Table 3: Comparison of SUT adder with other redundant adders

Adder type Asymmetry Cost Latency with carry ripple Direct carry acceleration Subtraction penalty

Maximally redundant [6] None .42h (hþ 1) DFAþ a few logic levels Applicable Minimal

HSD [12] �50% 32hþ 10 .h DFA Not applicable Substantial

SUT Minimal 28h (hþ 1) DFA Applicable Minimal
circuit design is reproduced in Fig. 2 from [15], where the
transfer addition cell of step 1, generating the u inputs,
appears in Fig. 3. Note that step 5 of Algorithm 3 is taken
care of by in-place reduction [15] in the lower full-adder
in position ih of Fig. 2.

Table 3 presents some performance measures for the
proposed SUT adder, along with those of two other high-
radix redundant representations. The addition scheme of
Fahmy and Flynn [6], proposed in the context of implement-
ing a floating-point adder, is based on maximally redundant
radix-16 (h ¼ 4) symmetric signed digits in [215, 15],
where a digit is represented by a 5-bit two’s-complement
number, excluding the value 216. The compound, maxi-
mally redundant signed-digit adder (first row of Table 3)
computes three values simultaneously: the actual sum, and
the incremented and decremented sums (sum + 1). This is
done for reduced latency, at the cost of tripling the layout
area and power consumption relative to a standard 5-bit
two’s-complement adder. Despite the use of the aforemen-
tioned speed-up technique, the extra control logic needed
increases the overall addition latency by several logic
levels [6], the extent of which has not been specified.

The hybrid redundancy scheme of Phatak and Koren [12]
(second row in Table 3), suffers from highly asymmetric
digit sets (see row 7 of Table 1), which reduces its appeal
for general-purpose applications and complicates the use
of addition circuitry for the subtraction operation.
Moreover, the inapplicability of carry acceleration tech-
niques leads to a best-case O(h) addition latency for
radix-2h operands. The design is based on the use of non-
standard adder cells for redundant and nonredundant pos-
itions, realised by 42 and 32 transistors, respectively,
which result in the implementation cost of 32hþ 10 transis-
tors for each radix-2h digit. The average latency per radix-2
position is roughly equal to that of one full adder (DFA).

The proposed SUT adder, represented in the third row of
Table 3, requires two rows of full adders. This corresponds

Table 4: Addition of two twit transfers

A00 B 00 A00 þ B 00 th Qh21uh22 . . . u2u1u0 t0

0 0 2l tminþ 1 v 2 2h21 l 2 tmin

0 1 2lþ 2 tminþ 1 v 2 2h21
þ 2 l 2 tmin

1 0 2lþ 2 tminþ 1 v 2 2h21
þ 2 l 2 tmin

1 1 2lþ 4 tminþ 1 v 2 2h21
þ 4 l 2 tmin
IET Circuits Devices Syst., Vol. 1, No. 1, February 2007
to an active hardware redundancy factor of two, compared
to a redundancy factor of at least three for the addition
scheme in Fahmy and Flynn [6]. The latency of the proposed
adder is no greater than that of a (hþ 1)-bit two’s-
complement adder, which can be reduced drastically via
standard carry acceleration. A radix-2 slice in the proposed
adder is realisable by roughly 28 transistors, given the use
of 14-transistor full adders [19].

An attractive solution for the addition of
stored-twit-transfer operands, in cases where the stored
transfers are twits other than unibit, is to design a special
transfer adder for twit transfers and use the same
three-operand adder of Fig. 1. Table 4 shows the addition
summary for two twits A00 and B00 in fl, lþ 2g and a
special binary representation of the sum. Following the
convention in Jaberipur et al. [15], bold-italic underlined
uppercase type is used for twits, while uppercase (lower-
case) regular type corresponds to negabits (posibits).

Based on Lemma 1, for r ¼ 2h, the minimum value
for generated transfers in carry-free addition based
on Algorithms 1 and 2 is tmin ¼ ba/(2h 2 1)c, leading to
a ¼ tmin(2h 2 1)þ v, where 0 � v � 2h 2 2. Substituting
for a in the equation for l yields

l ¼ aþ 2h�1

¼ tminð2
h
� 1Þ þ vþ 2h�1

¼ 2h
ðtmin þ 1Þ þ v� 2h�1

� tmin

Using this equation for l the possible transfer sum values
2l, 2lþ 2, and 2lþ 4 can be expressed as follows,
where i ¼ 0, 2, and 4, respectively:

2lþ i ¼ lþ tmin þ l� tmin þ i

¼ 2h
ðtmin þ 1Þ þ ðv� 2h�1

þ iÞ þ ðl� tminÞ

The first, middle, and last terms on the right-hand side of the
equation are represented in Table 4 as th, Qh21uh22 . . .
u2u1, and t0, respectively, where the middle term represents
an h-bit two’s-complement number in the range 22h21

�

v 2 2h21
� v 2 2h21

þ 4 � 2h21 2 1. This conformance is
necessary for using the adder of Fig. 1, but it requires the
constraint v � 2h 2 5. This restriction, given the looser
bound v � 2h 2 2, means that our addition scheme does
not work for v ¼ 2h 2 3 and v ¼ 2h 2 4; note that the
case v ¼ 2h 2 2 is already excluded by Theorem 2.
Table 5: Sample digit sets for stored-twit-transfer addition

Range of [a, b] l ¼ aþ 8 c0 ¼ ba/15c cd21 ¼ db/15e Digit sets that are excluded by:

Theorem 2 v . 11

[275, 258]! [264, 247] 267! 256 25 23 [261, 244] [263, 246], [262, 245]

[215, 2]! [24, 13] 27! 4 21 1 [21, 16] [23, 14], [22, 15]

[0, 17]! [11, 28] 8! 19 0 2 [14, 31] [13, 30], [12, 29]

[210, 227]! [221, 238] 218! 229 14 16 [224, 241] [223, 240], [222, 239]
107

The SUT adder of Fig. 2 generates a transfer value in
f21, 1g in position h, where adding th produces a transfer
in ftmin, tminþ 2g. Finally, t0 of the next higher radix-2h

digit is also added to the latter transfer value to yield a
value in fl, lþ 2g. The two additions just described do
not actually take place, and th and t0 are not physically
stored. They are merely used to show the relevant interpret-
ation of the transfers produced. Note that for the SUT adder
with l ¼ tmin ¼ 21 and v ¼ 2h21 2 2, we have
th ¼ t0 ¼ 0 and the transfer sum values associated with
the entries in Table 4 are 22, 0, 0, and 2.

Example 4 (Radix-16 stored-twit-transfer addition): Table 5
lists some a, b, and l values, for which the twit-transfer
addition scheme works, along with their associated transfer
range represented by c0 and cd21. Here, h ¼ 4. A

Example 5 (Logic equations for transfer addition cell): The
transfer addition cells for different values of l (and
correspondingly v), though not exactly the same, have
comparable complexities. Table 6 lists the logic equations
defining the bits of the transfer sum for h ¼ 4 and all
12 possible values of v. A

6 Conversion to/from two’s complement

The following algorithm provides a general method
to convert a two’s-complement integer x to a stored-
twit-transfer representation in radix 2h, where the twit
transfers are in fl, lþ 2g and the two possible values are
encoded logically as f0, 1g.

Algorithm 4 (Conversion from two’s complement to
stored-twit-transfer):

1. Sign-extend x until its width is a multiple of h, say kh
2. Compute y ¼ x 2 l(2kh 2 1)/(2h 2 1), where the sub-
trahend is composed of l-valued digits in positions 0, h,
2h, . . . , (k 2 1)h, weighted 1, 2h, 22h, . . . , 2(k21)h

3. Transform the bits of y to the target bits as follows (see
Table 7 for justification):

a. X0ih21 ¼ :yih21, for 1 � i � k 2 1.
b. X00ih ¼ yih yih21, for 1 � i � k 2 1; X000 ¼ 0.
c. x0ih ¼ yih � yih21, for 1 � i � k 2 1.
d. x0ih2j ¼ yih2j, for 1 � i � k21 and 2 � j � h.

The delay of steps 1 and 3 of Algorithm 4 is constant and
independent of h and k, but step 2 requires word-width carry
propagation in general. However, there are special practical

Table 6: Transfer sum equations (h 5 4 and 0 � v � 11)

v Q3 u2 u1 u0

0 0 X 00^ Y 00 X 00� Y 00 0

1 0 X 00^ Y 00 X 00� Y 00 1

2 0 X 00_ Y 00 :(X 00� Y 00) 0

3 0 X 00_ Y 00 :(X 00� Y 00) 1

4 X 00 ^ Y 00 :(X 00^ Y 00) X 00� Y 00 0

5 X 00 ^ Y 00 :(X 00^ Y 00) X 00� Y 00 1

6 X 00 _ Y 00 :(X 00_ Y 00) :(X 00)� (Y 00) 0

7 X 00 _ Y 00 :(X 00_ Y 00) :(X 00)� (Y 00) 1

8 1 X 00^ Y 00 X 00� Y 00 0

9 1 X 00^ Y 00) X 00� Y 00 1

10 1 X 00_ Y 00) :(X 00� Y 00) 0

11 1 X 00_ Y 00 :(X 00� Y 00) 1
108
cases where this step may be eliminated (e.g. for l ¼ 0 and
in the SUT case of [15] with l ¼ 21).

For the reverse conversion, the main parts are added,
treating their corresponding transfers as doublebits (bits
with double the normal weight), all in parallel. This yields
a redundant number of the same value with two’s-
complement radix-2h digits. The rest of the process follows
conventional redundant-to-binary conversion techniques [1],
except that addition of a constant l(2kh 2 1)/(2h 2 1)
should be fused into the process. Therefore the reverse
conversion, as is expected for any redundant representation,
involves word-width carry propagation.

7 Conclusions

We have shown that the stored-transfer representation of
redundant numbers offers speed and cost benefits in the carry-
free addition process. We have proved the necessity of at least
three transfer digit values, and sufficiency of four values, to
allow carry-free addition in all cases of practical interest.
We have further shown that by a simple adjustment in the
final stage of the carry-free addition algorithm, the number
of stored transfers can be reduced to two values, thus requir-
ing a single bit for storage. The proposed stored-transfer
scheme is thus competitive with other practical redundant
representations with regard to storage cost.

In the course of establishing the theoretical basis for the
proposed method, two practical restrictions imposed in the
general signed-digit representations of Parhami [17] were
relaxed, thereby providing the ability to deal with more
general digit sets that do not necessarily include zero as a
member and with noncontiguous transfer sets. This is an
important aspect of the work reported in this paper
because the generalisation comes with no inherent latency
or cost penalty, but opens up valuable alternatives in explor-
ing the implementation options in the design space associ-
ated with different redundant number representations.

We also demonstrated that converting a two’s-complement
number to stored-transfer form implies minimal constant cost
and latency for many important practical cases, while the
reverse conversion needs the obligatory carry propagation.
This affinity with two’s-complement numbers in repre-
sentation and circuit implementation (i.e. use of standard
full/half adders and compressors) is a key strength of the
stored-transfer scheme.

Derivation of algorithms for stored-transfer multipli-
cation and division is quite feasible. Very-high-radix SRT
division algorithms with signed-digit partial remainders
and signed-digit quotient [20] can be modified to accept
stored-transfer operands. A series of arithmetic operations
can thus be performed without carry propagation by repre-
senting the inputs, intermediate results, and outputs in
stored-transfer format. Results on other arithmetic oper-
ations, particularly for floating-point operands, and a
number of useful arithmetic support functions (such as shift-
ing) will be reported in the near future.

Table 7: Justification for transformations of Algorithm 4

yih yih21 Arithmetic value

2yihþ yih21 ¼ 2(x0ihþ 2X00ih)

þX0ih21 2 1

x0ih X00ih X0ih21

0 0 0þ 0 ¼ 2 (0þ 0)þ 1 2 1 0 0 1

0 1 0þ 1 ¼ 2 (1þ 0)þ 0 2 1 1 0 0

1 0 2þ 0 ¼ 2 (1þ 0)þ 1 2 1 1 0 1

1 1 2þ 1 ¼ 2 (0þ 2)þ 0 2 1 0 1 0
IET Circuits Devices Syst., Vol. 1, No. 1, February 2007

8 Acknowledgments

G. Jaberipur’s research was supported, in part, by IPM
under grant CS-1384-3-02 and by Shahid Beheshti
University under grant 600/2818.

9 References

1 Parhami, B.: ‘Computer arithmetic: algorithms and hardware designs’
(Oxford University Press, New York, 2000)

2 Metze, G., and Robertson, J.E.: ‘Elimination of carry propagation in
digital computers’. Proc. Int. Conf. on Information Processing,
Paris, 1959, pp. 389–396

3 Avizienis, A.: ‘Signed-digit number representations for fast parallel
arithmetic’, IRE Trans. Electron. Comput., September 1961, 10,
pp. 389–400

4 Edamatsu, H., Taniguchi, T., Nishiyama, T., and Kuninobu, S.: ‘A 33
MFLOPS floating point processor using redundant binary
representation’. Digest of IEEE Int. Conf. on Solid-State Circuits,
February 1988

5 Balakrishnan, W., and Burgess, N.: ‘Very-high-speed VLSI
2s-complement multiplier using signed binary digits’, IEE Proc. E,
Comput. Digit. Tech., 1992, 139, pp. 29–34

6 Fahmy, H., and Flynn, M.J.: ‘The case for a redundant format in
floating-point arithmetic’. Proc. 16th IEEE Symp. on Computer
Arithmetic, 2003, pp. 95–102

7 Atkins, D.E.: ‘An introduction to the role of redundancy in computer
arithmetic’, Computer, 1975, 8, (6), pp. 74–76

8 Parhami, B.: ‘Tight upper bonds on the minimum precision required of
the divisor and the partial remainder in high-radix division’, IEEE
Trans. Comput., 2003, 52, (11), pp. 1509–1514

9 Matula, D.W.: ‘Basic digit sets for radix representation’, J. ACM,
1982, 29, (4), pp. 1131–1143

10 Kornerup, P.: ‘Digit-set conversions: generalizations and
applications’, IEEE Trans. Comput., 1994, 43, (5), pp. 622–629

11 Takagi, N., Yasuura, H., and Yajima, S.: ‘High-speed VLSI
multiplication algorithm with a redundant binary addition tree’,
IEEE Trans. Comput., 1985, 34, (9), pp. 789–796

12 Phatak, D.S., and Koren, I.: ‘Hybrid signed-digit number systems:
a unified framework for redundant number representations with
bounded carry propagation chains’, IEEE Trans. Comput., 1994, 43,
pp. 880–891

13 Phatak, D.S., and Koren, I.: ‘Constant-time addition and simultaneous
format conversion based on redundant binary representations’, IEEE
Trans. Comput., 2001, 50, (11), pp. 1267–1278

14 Jaberipur, G., and Ghodsi, M.: ‘High radix signed digit number
systems: representation paradigms’, Sci. Iranica, 2003, 10, (4),
pp. 383–391

15 Jaberipur, G., Parhami, B., and Ghodsi, M.: ‘Weighted two-valued
digit-set encodings: unifying efficient hardware representation
schemes for redundant number systems’. IEEE Trans. Circuits
Syst. I, 2005, 52, (7), pp. 1348–1357

16 Jaberipur, G., Parhami, B., and Ghodsi, M.: ‘A class of stored-transfer
representations for redundant number systems’. Proc. 35th Asilomar
Conf. on Signals Systems and Computers, 2001, pp. 1304–1308

17 Parhami, B.: ‘Generalized signed-digit number systems: a unifying
framework for redundant number representations’, IEEE Trans.
Comput., 1990, 39, (1), pp. 89–98

18 Kobayashi, H.: ‘A multioperand two’s complement addition
algorithm’. Proc. 7th IEEE Symp. on Computer Arithmetic, June
1985, pp. 16–19

19 Radhakrishnan, D.: ‘Low-voltage low-power CMOS full adder’, IEE
Proc., Circuits, Devices Syst., February 2001, 148, (1), pp. 19–24

20 Flynn, M.J., and Oberman, S.F.: ‘Advanced computer arithmetic
design’ (Wiley, 2001)

10 Appendix

This Appendix contains formal proofs of lemmas and theo-
rems appearing in the main body of the paper.

10.1 Proof of Lemma 1

To ensure that no new transfer is generated in step 3 of
Algorithm 1, the following inequalities should hold:

a� c0 � wi � b� cd�1
IET Circuits Devices Syst., Vol. 1, No. 1, February 2007
The minimum (maximum) pi value associated with the
choice tiþ1 ¼ c0 (tiþ1 ¼ cd21) in step 2 of Algorithm 1 is
a 2 c0þ rc0 (b 2 cd21þ rcd21). To ensure that all possible
pi values in [2a, 2b] can be decomposed to their corre-
sponding interim sum and transfer digit values, two con-
ditions must hold: (i) The position sum range [2a, 2b]
must be a subinterval of [a 2 c0þ rc0, b 2 cd21þ rcd21],
leading to the requirements c0 � ba/(r 2 1)c and
cd21 � db/(r 2 1)e; (ii) There should be no gap between
the maximum and minimum position sum values associated
with an arbitrary pair of consecutive transfer values cj

and cjþ1, leading to the condition b 2 cd21þ rcjþ 1 �
a 2 c0þ rcjþ1, which can be converted to
dj � 1þ (r 2 d)/r through replacing b 2 aþ 1 by rþ r,
cd21 2 c0 by d, and cjþ1 2 cj by dj. A

10.2 Proof of Lemma 2

Using the results of Lemma 1, a lower bound on dmin is
easily derived as

dmin ¼ lbðcd�1Þ � ubðc0Þ

¼ db=ðr � 1Þe � ba=ðr � 1Þc

� ðb� aÞ=ðr � 1Þ

¼ 1þ r=ðr � 1Þ

For an upper bound, assume that a ¼ u1(r 2 1)þ v1 and
b ¼ u2(r 2 1) 2 v2, where 0 � v1, v2 � r 2 2. Substituting
for b and a in the equality above and in r ¼ b 2 aþ 1 2 r
yields dmin ¼ u2 2 u1 and

r ¼ ðu2 � u1Þðr � 1Þ � ðv1 þ v2Þ þ 1� r

¼ ðr � 1Þðdmin � 1Þ � ðv1 þ v2Þ

Solving the latter equation for dmin and using the bounds for v1

and v2 leads to

dmin ¼ 1þ ðrþ v1 þ v2Þ=ðr � 1Þ

� 1þ ðrþ 2r � 4Þ=ðr � 1Þ

¼ 3þ ðr� 2Þ=ðr � 1Þ

Recalling the upper bound for dj from Lemma 1 and noting
that transfer values in T are distinct, we have 1 � dj � 1þ
b(r 2 dmin)/rc, leading to r � dmin. A

10.3 Proof of Theorem 1

The second component of the upper bound is obvious by
noting the maximum value 2(r 2 2) for v1þ v2 from the
definitions of v1 and v2. For the first component of the
bound, we resort to the equality dmin ¼ 1þ (rþ v1þ v2)/
(r 2 1), derived in the proof of Lemma 2, to obtain

v1 þ v2 ¼ dminðr � 1Þ � ðrþ r � 1Þ

Using the bound dmin � r from Lemma 2, and after some
manipulation, we obtain the desired bound v1þ v2 �

(r 2 2)(r 2 1) 2 1. A

10.4 Proof of Theorem 2

The conditions r ¼ 2 (which is assumed) and r � 3 (required
by corollary 2) lead to dmin ¼ 2 by corollary 1. As per the
definition of dmin (see Lemma 1), db/(r 2 1)e2 ba/
(r 2 1)c ¼ 2. Substituting rþ r 2 1þ a for b and 2 for r
converts the preceding equation to d(aþ 2)/(r 2 1)e ¼ ba/
(r 2 1)c þ 1. Letting v1 ¼ a mod(r 2 1), it is easy to see
109

that the last equation holds except when v1 ¼ r 2 2,
or a ¼ u1(r 2 1)þ r 2 2 and b ¼ (u1þ 2)(r 2 1)þ 1.
Therefore carry-free addition of Algorithm 1 is inapplicable
to digit sets [a, b] satisfying the latter equations if r ¼ 2. A

10.5 Proof of Theorem 3

According to Theorem 1, the condition (r 2 1) (r 2 2) .
v1þ v2 is necessary and sufficient for carry-free addition,
where v1 ¼ a mod(r 2 1) and v2 ¼ (2b)mod (r 2 1). For
r . 3, the condition always holds, given that
(r 2 1)(r 2 2) . 2(r 2 2) � v1þ v2. For r ¼ 3, the condition
reduces to v1þ v2 , 2(r 2 2), which always holds, except
when v1 ¼ v2 ¼ r 2 2. So the proof will be complete if we
show that for v1 ¼ r 2 2, we cannot have v2 ¼ r 2 2 for
any digit set [a, b] with r ¼ 3. For a ¼ u1(r 2 1)þ r 2 2
and r ¼ 3, we have b ¼ rþ r 2 1þ a ¼ 2þ rþ a ¼
110
u1(r 2 1)þ 2r ¼ (u1þ 3)(r 2 1) 2 (r 2 3); hence, r 2 3 is
seen to be the only possible solution for v2. A

10.6 Proof of Theorem 4

From d � dþ 1 and the upper bound for dmin from Lemma
2, we have d � min(1þ r, 4þ b(r 2 2)/(r 2 1)c), leading
to d � 4 for 3 � r � r and d � 3 for r ¼ 2. For a lower
bound, note that d ¼

P
0�j�d22dj. We thus obtain

1þ dr/(r 2 1)e � (d 2 1)(1þ b(r 2 d)/rc) by replacing d
with the lower bound for dmin from Lemma 2 and each dj

with the upper bound from Lemma 1. Assuming
r ¼ u(r 2 1) 2 v, where u . 0 and 0 � v � r 2 2, substi-
tution for r in the latter inequality results in
d 2 1 � (1þ u)/(1þ u 2 (uþ vþ d)/r) . 1, which is
equivalent to d � 3. A
IET Circuits Devices Syst., Vol. 1, No. 1, February 2007

