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Abstract

Despite numerous interconnection schemes proposed for distributed multicomputing, systematic studies of classes of inter-
processor networks, that offer speed-cost tradeoffs over a wide range, have been few and far in between. A notable exception is the
study of Cayley graphs that model a wide array of symmetric networks of theoretical and practical interest. Properties established
for all, or for certain subclasses of, Cayley graphs are extremely useful in view of their wide applicability. In this paper, we obtain a
number of new relationships between Cayley (di)graphs and their subgraphs and coset graphs with respect to subgroups, focusing
in particular on homomorphism between them and on relating their internode distances and diameters. We discuss applications
of these results to well-known and useful interconnection networks such as hexagonal and honeycomb meshes as well as certain
classes of pruned tori.
© 2007 Elsevier Inc. All rights reserved.
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0. List of key notation

Unless explicitly specified, all graphs in this paper are undirected graphs.

• � • Subgroup relationship
• � • Normal subgroup relationship
•/• Set of (right) cosets
• × • Graph or set cross-product
(•,•) Edge
〈•〉 Group specified by its generators

•(i) The symbol “•” repeated i times
•−1 Inverse of group element
→ Mapping
∼= Isomorphic to
Γ,Δ,Σ Graphs or digraphs
φ Homomorphism
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1 Identity element of a group
Aut( ) Automorphism group
Cay( ) Cayley graph
Cos( ) Coset graph
dis( ) Distance function
D() Diameter of a graph
E( ) Edge set of a graph
G,H Groups

K,N Subgroups
S Generator set, subset of G

V ( ) Vertex set of a graph
wr Wreath product
Z Infinite cyclic group
Zq Cyclic group of order q

Z
q
d Elementary abelian d-group of order dq

1. Introduction

Since the emergence of parallel processing in the 1960s, numerous networks have been proposed for connecting
the processing nodes in distributed multicomputers, to the extent that a “sea of interconnection networks” is said to
exist [10]. An implication of this terminology is that new networks, or designers trying to make sense of the wide array
of options available to them, might drown in this sea. The study of one-of-a-kind networks, while useful in the sense
of broadening the designers’ repertoire, may be deemed counterproductive if various networks are not tied together by
means of realistic comparative evaluations. It is for these reasons that classes of networks offering cost-performance
tradeoffs within a wide range are extremely useful, because membership in the same class allows the application of
theoretical results to make the task of performance evaluation both tractable and meaningful.

The fact that Cayley (di)graphs and coset graphs are excellent models for interconnection networks, investigated in
connection with parallel processing and distributed computation, is widely acknowledged [1,2,4,6]. Many well-known
interconnection networks are Cayley (di)graphs or coset graphs. For example, hypercube (binary q-cube), butterfly,
and cube-connected cycles networks are Cayley graphs, while de Bruijn and shuffle-exchange networks are coset
graphs [4,13]. Other, lesser known, Cayley (di)graphs have been described in the technical literature and still others
await discovery. Cayley graphs also play an important role in studies relating the three network parameters of size,
node degree, and diameter. A recent review by Miller and Siran [8] reveals that roughly one-half of the largest known
undirected graphs, with node degree up to 16 and diameter up to 10, are derived from Cayley graphs.

Much work on interconnection networks can be categorized as ad hoc design and evaluation. Typically, a new
interconnection scheme is suggested and shown to be superior to some previously studied network(s) with respect
to one or more performance or complexity attributes. Whereas Cayley (di)graphs have been used to explain and
unify interconnection networks with many ensuing benefits [6], much work remains to be done. As suggested by
Heydemann [4], general theorems are lacking for Cayley digraphs and more group theory has to be exploited to find
properties of Cayley digraphs.

In this paper, we explore the relationships between Cayley (di)graphs and their subgraphs and coset graphs with
respect to subgroups, focusing in particular on homomorphism between them and on relationships between their
internode distances and diameters. We provide several applications of these results to well-known and useful inter-
connection networks such as hexagonal and honeycomb meshes as well as certain classes of pruned tori.

Before proceeding further, we introduce some definitions and notations related to (di)graphs, Cayley (di)graphs
in particular, and interconnection networks. For more definitions and mathematical results on graphs and groups we
refer the reader to [3], for instance, and on interconnection networks to [7,10]. Unless noted otherwise, all graphs in
this paper are undirected graphs.

A digraph Γ = (V ,E) is defined by a set V of vertices and a set E of arcs or directed edges. The set E is a subset
of elements (u, v) of V × V . If the subset E is symmetric, that is, (u, v) ∈ E implies (v,u) ∈ E, we identify two
opposite arcs (u, v) and (v,u) by the undirected edge (u, v). Because we deal primarily with undirected graphs in
this paper, no problem arises from using the same notation (u, v) for a directed arc from u to v or an undirected edge
between u and v.

Let G be a (possibly infinite) group and S a subset of G. The subset S is said to be a generating set for G, and the
elements of S are called generators of G, if every element of G can be expressed as a finite product of their powers.
We also say that G is generated by S. The Cayley digraph of the group G and the subset S, denoted by Cay(G,S),
has vertices that are elements of G and arcs that are ordered pairs (g, gs) for g ∈ G, s ∈ S. If S is a generating set
of G, we say that Cay(G,S) is the Cayley digraph of G generated by S. When 1 /∈ S (1 is the identity element of G)
and S = S−1, the graph Cay(G,S) is a simple graph.
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Assume that Γ and Σ are two digraphs. The mapping φ of V (Γ ) to V (Σ) is a homomorphism from Γ to Σ if
for any (u, v) ∈ E(Γ ) we have (φ(u),φ(v)) ∈ E(Σ). In particular, if φ is a bijection such that both φ and the inverse
of φ are homomorphisms, then φ is called an isomorphism of Γ to Σ . Let G be a (possibly infinite) group and S a
subset of G. Assume that K is a subgroup of G (denoted as K � G). Let G/K denote the set of the right cosets of K

in G. The (right) coset graph of G with respect to subgroup K and subset S, denoted by Cos(G,K,S), is the digraph
with vertex set G/K such that there exists an arc (Kg,Kg′) if and only if there exists s ∈ S and Kgs = Kg′.

The following basic theorem, which can be easily proven, is helpful in establishing some of our subsequent re-
sults [14].

Theorem 1. For g ∈ G,S ⊆ G, and K � G, the mapping φ :g → Kg is a homomorphism from Cay(G,S) to
Cos(G,K,S).

2. An inequality for diameter

For any digraph Ω , D(Ω) denotes the diameter of Ω , defined as the longest distance between any pair of vertices
in Ω . The diameter of a network is important because it determines the worst-case communication latency. Addi-
tionally, in symmetric networks, the diameter is intimately related to the average internode distance, thus indirectly
dictating the average communication performance as well for the class of networks that are of interest in this paper.
Similar to Theorem 2 in [13], we have the following result.

Theorem 2. Assume that G is a finite group, K � G, Γ = Cay(G,S), and Δ = Cos(G,K,S) for some generating
set S of G, and let D(ΓK) denote the longest distance between vertices of K in Γ . Then, we have D(Γ ) � D(Δ) +
D(ΓK).

Proof. Let u be any element of G. We consider the distance dis(u,1) between u and the identity element 1. Given
that S is a generating set of G, we may assume that Ku = Ks1s2 . . . st for s1, s2, . . . , st ∈ S. Thus u = ks1s2 . . . st
for some k ∈ K . Since D(Δ) is the longest distance between pairs of vertices in Δ, we may assume that t � D(Δ).
On the other hand, we have dis(k,1) � D(ΓK) according to the definition of D(ΓK). Hence, we obtain dis(u,1) �
t + dis(k,1) � D(Δ) + D(ΓK). This leads to the desired conclusion D(Γ ) � D(Δ) + D(ΓK). �

We can apply Theorem 2 to some well-known interconnection networks. Although many results on these intercon-
nection networks are known, the unified treatment is still beneficial.

Example 1. Diameter of hypercube network. We know that the hypercube Qq = Cay(Z
q

2 , S), where S =
{0(i−1)10(q−i) | i = 1, . . . , q}. Let K = Z2. Then we have Δ = Cos(Zq

2 ,Z2, S), leading to D(Qq) � D(Δ) + 1
by Theorem 2. But Δ ∼= Qq−1 and thus D(Δ) � q − 1 by induction. Therefore we obtain D(Qq) � q . Since
dis(0(q),1(q)) = q , we have D(Qq) = q .

Example 2. Relating the butterfly network BFq to the de Bruijn network DBq

2 . Let N = Z
q

2 and K = Zq . Then, G =
Z2 wrZq is a semidirect product of N by K . Assuming S = {0(q)1,0(q−1)11}, from [13] we have Γ = Cay(G,S) =
BFq and Δ = Cos(G,K,S) = DBq

2 . Given that D(DBq

2) = q , we obtain the inequality D(BFq) � q + �q/2� by
Theorem 2. In fact, it is readily verified that D(BFq) = q + �q/2�.

3. Hexagonal torus networks

Let G = Z × Z, where Z is the infinite cyclic group of integers, and consider Γ = Cay(G,S) with S =
{(±1,0), (0,±1), (1,1), (−1,−1)}. It is evident that Γ is isomorphic to the hexagonal mesh network [9,12]. Fig-
ure 1 depicts a small part of an infinite hexagonal mesh in which the six neighbors of the center node (0,0) are shown.
A finite hexagonal mesh is obtained by simply using the same connectivity rules for a finite subset of the nodes located
within a regular boundary (often a rectangle or hexagon). In the latter case, wraparound links are sometimes provided
to keep the node degree uniformly equal to 6. In this paper, we deal mainly with hexagonal torus networks.
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Fig. 1. Connectivity pattern for hexagonal mesh network, where node (i, j) is connected to nodes (i ± 1, j), (i, j ± 1), (i + 1, j + 1), and
(i − 1, j − 1).

Let H = Zl × Zk , where Zl and Zk are cyclic groups of orders l and k respectively (l and k are both positive
integers). Assume that S is defined as in the preceding paragraph. Then Δ = Cay(H,S) is the hexagonal torus of
order lk. Let K = 〈l〉 × 〈k〉. Then Δ ∼= Cos(Z × Z,K,S) and so the hexagonal torus is a homomorphic image of the
infinite hexagonal mesh according to Theorem 1. Using the results on infinite hexagonal meshes, we may deal with
problems on hexagonal tori which are generally more difficult. Let Δ be defined as above. Then we have the following
result.

Proposition 1. For the hexagonal torus Δ of order lk with integers a and b, 0 � a < l, 0 � b < k, we have
dis((0,0), (a, b)) = min(max(a, b),max(l − a, k − b), l − a + b, k + a − b).

Proof. For (a, b) ∈ H = Zl ×Zk , we have (a, b) = (a− l, b−k) = (a− l, b) = (a, b−k). According to Proposition 2
in [14], we know that in the hexagonal mesh Γ , dis((0,0), (u, v)) is given by max(|u|, |v|) if u and v have the same
sign and by |u| + |v|, otherwise. Hence we have in Γ , dis((0,0), (a, b)) = max(a, b),dis((0,0), (a − l, b − k)) =
max(l − a, k − b),dis((0,0), (a − l, b)) = l − a + b, and dis((0,0), (a, b − k)) = k + a − b. Thus in the hexagonal
torus Δ, we have dis((0,0), (a, b)) = min(max(a, b),max(l − a, k − b), l − a + b, k + a − b). �
Remark 1. We have been unable to obtain a formula for the diameter of the hexagonal torus Δ as a function of l

and k. This constitutes a seemingly difficult open problem.

4. Structure of pruned 3D tori

Let G be a (possibly infinite) group and S a subset of G and consider the problem of constructing a group G′′ and
its generating set S′′ such that G′′ = G as sets and S′′ ⊆ S, and a homomorphism φ :Γ ′′ → Γ , where Γ = Cay(G,S)

and Γ ′′ = Cay(G′′, S′′). It is shown in [14] that a number of pruning schemes, including the one studied in [11], are
equivalent to the construction above. Pruning of interconnection networks constitutes a way of obtaining variants with
lower implementation cost, and greater scalability [5]. If pruning is done with care, and in a systematic fashion, many
of the desirable properties of the original (unpruned) network, including (node, edge) symmetry and regularity, can be
maintained while reducing both the node degree and wiring density. We give new proofs of the construction above in
the following examples.

Example 3. Pruned three-dimensional toroidal network T1 of [5]. Let G = (〈a〉〈b〉)〈c〉 be the group generated by
the elements a, b, c, satisfying the relations ak = bk = ck = 1, ab = ba, c−1ac = b−1, c−1bc = a−1. Here, k is
even. Thus the group 〈a〉〈b〉 = 〈a, b〉 is a direct product of 〈a〉 and 〈b〉, and G is a semidirect product of 〈a, b〉
by 〈c〉. Let S = {a, a−1, c, c−1} and Δ1 = Cay(G,S). We now prove that Δ1 is isomorphic to the pruned three-
dimensional toroidal network T1 in [5], as shown in Fig. 2. In fact, let a1 = (1,0,0)T , b1 = (0,1,0)T , c1 = (0,0,1)T .
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Fig. 2. Pruned 3D torus network T1 [5]. To avoid clutter, wraparound links along X,Y , and Z directions are not drawn fully.

Fig. 3. Pruned 3D torus network T2 [5]. To avoid clutter, wraparound links along X,Y , and Z directions are not drawn fully.

It is easily shown that a1, b1, and c1 satisfy the same relations as those of Δ1; namely, ak
1 = bk

1 = ck
1 = 1, a1b1 = b1a1,

c−1
1 a1c1 = b−1

1 , c−1
1 b1c1 = a−1

1 . Hence the mapping a → a1, b → b1, c → c1 is an isomorphism of Δ1 to T1.

Example 4. Pruned three-dimensional toroidal network T2 of [5], depicted in Fig. 3. We obtain the results for the
network T2 in a manner similar to those for T1 of Example 3. Let G = 〈a, b〉〈c〉 be the group generated by the
elements a, b, c, satisfying the relations a2k = b2k = ck = 1, a2 = b2, (ab)k/2 = (ba)k/2 = 1, c−1ac = b, c−1bc = a.
Here k is even and 〈a, b〉 = 〈ab〉〈a〉 is a complex group. Let S = {a, a−1, c, c−1} and Δ2 = Cay(G,S). Then, the
mapping a → (1,0,0)T , b → (0,−1,0)T , c → (0,0,1)T is an isomorphism of Δ2 to T2.

5. Honeycomb torus networks

The authors of [11] studied the honeycomb torus network as a pruned 2D torus. They also proved that the honey-
comb torus network is a Cayley graph, without explicating its associated group. We filled this gap in [14], while also
showing why the side-length parameter k in [11] must be even. Let G = (〈c〉〈b〉)〈a〉 be the group generated by the
elements a, b, c, satisfying the relations ak = b2 = cl/2 = 1, bcb = c−1, aba−1 = c−1b, aca−1 = c−1. Here, k and l

are even integers. Thus the group 〈c〉〈b〉 = 〈c, b〉 is a semidirect product of 〈c〉 by 〈b〉, and G is a semidirect product of
〈c, b〉 by 〈a〉. Let S = {a, a−1, b} and Δ = Cay(G,S). We have shown in [14] that Δ is isomorphic to the honeycomb
torus network in [11].
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Fig. 4. Connectivity pattern for the honeycomb mesh network. Each node is labeled in two ways corresponding to its integer coordinates on the
grid (upper label) and the notation in Proposition 2 (lower label), with the associations being (0,1) = a, (1,0) = b, (2,0) = c.

Proposition 2. In [14], we introduced the infinite honeycomb network as a Cayley graph of a different infinite group.
Let G = (〈c〉〈b〉)〈a〉, where 〈c〉 and 〈a〉 are infinite cyclic groups, and c, b, a satisfy the relations b2 = 1, bcb = c−1,
aba−1 = c−1b, aca−1 = c−1. Let S = {a, a−1, b} and Δ∞ = Cay(G,S). Then Δ∞ is isomorphic to the infinite
honeycomb network (see Fig. 4).

Now let N = 〈ak〉〈cl/2〉, where k and l are even integers. We can easily verify that N � G. Construct the quotient
group G′ = G/N and let S′ = {Na,Na−1,Nb}; the graph Cay(G′, S′) is isomorphic to the honeycomb torus network.
Thus the honeycomb torus is a homomorphic image of the infinite honeycomb network by Theorem 1.

For the infinite honeycomb network Δ∞ any element of G can be expressed as the product cj blai , where l is 0 or 1
and j and i are integers. We obtained in [14] the distance formula between vertices 1 (the identity of G) and cj blai ,
as stated in the following theorem.

Theorem 3. In the infinite honeycomb network Δ∞, when |i| � |2j + l|, we have dis(1, cj blai) = |4j + l +
1
2 [(−1)i+l − (−1)l]|; otherwise, dis(1, cj blai) = |i| + |2j + l|.

In [14] we proved that Theorem 3 has the following corollary.

Corollary 1. In the infinite honeycomb network Δ∞, the distance between nodes (x, y) and (u, v) is given as follows:
if |v−y| � |u−x|, then dis((x, y), (u, v)) equals |2(u−x)+ 1

2 [(−1)u+v −1]| when x +y ≡ 0 mod 2, and |2(x −u)+
1
2 [(−1)u+v+1 −1]|, otherwise. In the remaining case corresponding to |v −y| � |u−x|, we have dis((x, y), (u, v)) =
|u − x| + |v − y|.

Using Theorem 3 and Corollary 1, we obtain a result on the diameter of the honeycomb torus network Δ, which
generalizes Theorem 3 in [11] which states that D(Δ) = l when l = k.

Theorem 4. For the honeycomb torus network Δ, we have D(Δ) = max(l, (l + k)/2).

Proof. We consider the two cases of l > k and l � k separately.
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Case 1. l > k. From Theorem 3, we have dis(1, cl/4) = l when l/2 is even and dis(1, c(l−2)/4ba) = l if l/2 is odd.

Case 2. l � k. From Theorem 3, we have dis(1, cl/4ak/2) = (l + k)/2 when l/2 is even and dis(1, c(l−2)/4bak/2) =
(l + k)/2 if l/2 is odd.

By Corollary 1, in the infinite honeycomb network, dis(1, (j, i)) equals |2j + 1
2 [(−1)i+j − 1]| if |i| � |j |, and

|i| + |j | otherwise. Hence, we easily verify that D(Δ) � max(l, (l + k)/2) in the honeycomb torus network Δ. The
desired conclusion of the theorem follows from Cases 1 and 2 above. �
6. Properties of pruned tori

As an application of our construction, we consider the pruned three-dimensional toroidal network T1 in Example 3
further in this section. We shall derive a formula of the distance between the identity element 1 and the vertex aibj cl ,
where 0 � i, j, l < k. Theorem 3 in [5] pertaining to T1 is a direct corollary of this formula.

Theorem 5. For T1 we have dis(1, aibj cl) = min(i, k − i) + min(j, k − j) + min(l, k − l) if l > 0. When l = 0, we
have dis(1, aibj ) = min(i, k − i) + min(j, k − j) + 2 if j > 0 and min(i, k − i) otherwise.

Proof. It is evident that dis(1, ai) = min(i, k − i), since ai = (a−1)k−i . Let j > 0. Because aibj = aica−j c−1, we
have dis(1, aibj ) = min(i, k − i) + min(j, k − j) + 2. Now, assuming l > 0, we have:

aibj cl = aica−j cl−1 = aic−1a−j cl+1 for 0 � i, j < k. (1)

Continuing with the assumption l > 0, we have:

min
(
min(l − 1, k − l + 1),min(l + 1, k − l − 1)

) = min(l − 1, k − l − 1) = min(l, k − l) − 1. (2)

Thus, considering both (1) and (2), we obtain dis(1, aibj cl) = min(i, k−i)+min(j, k−j)+min(min(l−1, k− l+1),

min(l + 1, k − l − 1)) + 1 = min(i, k − i) + min(j, k − j) + min(l, k − l). �
Corollary 2. For the network T1 with k � 4, we have D(T1) = 3k/2.

Finally, we show that Theorem 2 in [5] does not hold in general. The following example shows that the pruned
three-dimensional toroidal network T1 of Example 3 is not edge-symmetric in general.

Example 5. Consider the case of k = 4 and let A = Aut(T1) be the automorphism group of T1. We show that there
is no σ ∈ A such that σ(1) = 1 and σ(c) = a. Similarly, we show that there is no τ ∈ A such that τ(1) = a and
τ(c) = 1. Hence T1 is not edge-symmetric for k = 4. In fact, we show that the assumption σ ∈ A, such that σ(1) = 1
and σ(c) = a leads to a contradiction. Since the edge (1, c) is in the cycle C = {1, c, c2, c3} and the edge (1, a) is only
in the cycle A′ = {1, a, a2, a3},C is mapped to A′ by σ . Hence, σ(c2) = a2 and σ(c3) = a3. Now consider the cycle
B = {a, ac, ac2, ac3}. Since σ(1) = 1 and (1, a) is an edge, (1, σ (a)) is also an edge. This implies that σ(a) equals c

or c−1. Let σ(a) = c; the case of σ(a) = c−1 is similar. Since (a, ac) is an edge, (c, σ (ac)) is also an edge. Because
the cycle B cannot be mapped to the cycle C by σ , we have σ(ac) = ca or ca−1. Given that (c2, c2a) is an edge
and σ(c2) = a2, (a2, σ (c2a)) is also an edge. Therefore, σ(c2a) equals a2c or a2c−1. Since c2a = ac2, {a, ac, c2a}
is in the cycle B . But, {σ(a), σ (ac), σ (c2a)} is not in any cycle of order four. This is a contradiction.

7. Conclusion

In this paper, we have derived new relationships between Cayley (di)graphs and their subgraphs and coset graphs
with respect to subgroups, focusing in particular on homomorphism between them and on relating their internode
distances and diameters. We have also demonstrated the applications of these results to well-known and useful in-
terconnection networks, including hexagonal and honeycomb tori and related networks. Because of the generality of
these theorems, we expect that they will find many more applications.
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We are currently investigating the applications of our method to the problems related to routing and average in-
ternode distance in certain subgraphs of honeycomb networks. We also aim to extend our results to other classes
of networks as well as to other topological properties of networks. Such improvements and extensions, along with
potential applications in the following areas will be reported in future:

• Load balancing and congestion control.
• Scheduling and resource allocation.
• Fault tolerance and graceful degradation.

These constitute important practical problems in the design, evaluation, and efficient operation of parallel and distrib-
uted computer systems.
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