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Abstract 

The clustering coefficient C of a network, which is a measure of direct connectivity between 

neighbors of the various nodes, ranges from 0 (for no connectivity) to 1 (for full connectivity). We 

define extended clustering coefficients C(h) of a small-world network based on nodes that are at 

distance h from a source node, thus generalizing distance-1 neighborhoods employed in computing the 

ordinary clustering coefficient C = C(1). Based on known results about the distance distribution Pδ (h) 

in a network, that is, the probability that a randomly chosen pair of vertices have distance h, we derive 

and experimentally validate the law Pδ (h)C(h) ≤ c log N / N, where c is a small constant that seldom 

exceeds 1. This result is significant because it shows that the product Pδ (h)C(h) is upper-bounded by a 

value that is considerably smaller than the product of maximum values for Pδ (h) and C(h). Extended 

clustering coefficients and laws that govern them offer new insights into the structure of small-world 

networks and open up avenues for further exploration of their properties. 
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1. Introduction 
Complex networks describe a wide range of 

systems in nature and society. They have 

recently attracted considerable interest because 

the complex networks are powerful models for 

unified analysis of a wide range of systems in 

society and nature. Complex networks are 

currently being studied across many fields of 

science (Barabási & Albert, 1999, Watts & 

Strogatz, 1998, Milgram, 1967, Newman, 2003). 

Undoubtedly, many systems in nature can be 

described by models of complex networks, 

which are structures consisting of nodes or 

vertices connected by links or edges. Examples 

are numerous. The Internet is a network of 

routers or domains. The World Wide Web 
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(WWW) is a network of websites. The brain is a 

network of neurons. An organization is a 

network of people. The global economy is a 

network of national economies, which are 

themselves networks of markets; and markets 

are themselves networks of interacting 

producers and consumers. Food webs and 

metabolic pathways can all be represented by 

networks, as can the relationships among words 

in a language, and topics in a conversation. 

Moreover, diseases are transmitted through 

social networks; and computer viruses 

occasionally spread through the Internet. Energy 

is distributed through transportation networks, 

both in living organisms, man-made 

infrastructures, and in many physical systems 

such as the power grids. The study of networks, 

in the form of mathematical graph theory, is one 

of the fundamental pillars of discrete 

mathematics, and during the twentieth century 

graph theory has developed into a substantial 

body of knowledge. So a network can look as a 

graph G = (V, E) which has a set V of N vertices 

or nodes and a set E of M edges or links, where 

each edge is defined by a pair of vertices 

(ordered pair, for directed graphs) (Newman, 

2003). Actually, a set of vertices and edges only 

construct the simplest type of network, but there 

are many constructing ways in which networks 

may be more complex than this. For instance, 

there may be more than one different type of 

vertex in a network, or more than one different 

type of edge. And vertices or edges may have a 

variety of properties, numerical or otherwise, 

associated with them. Taking the example of a 

social network of people, the vertices may 

represent men or women, people of different 

nationalities, locations, ages, incomes, or many 

other things. Edges may represent friendship, 

but they could also represent animosity, or 

professional acquaintance, or geographical 

proximity. They can carry weights, representing, 

say, how well two people know each other. They 

can also be directed, pointing in only one 

direction. Graphs composed of directed edges 

are themselves called directed graphs or 

sometimes digraphs, for short. A graph 

representing telephone calls or email messages 

between individuals would be directed, since 

each message goes in only one direction. 

Directed graphs can be either cyclic, meaning 

they contain closed loops of edges, or acyclic 

meaning they do not. Some networks, such as 

food webs, are approximately but not perfectly 

acyclic. 

Two models of actual complex networks 

have been studied extensively: the small-world 

model and the scale-free one. Our focus in this 

paper is on small-world networks that feature 

localized clusters connected by occasional 

long-range links, leading to an average distance 

between vertices that grow logarithmically with 

the network size N.  

The small-world phenomenon comes from 

the observation that individuals are often linked 

by a short chain of acquaintances. The 

small-world concept in simple terms describes 

the fact that despite their often large size, in 

most networks there is a relatively short path 

between any two nodes. The distance between 

two nodes is defined as the number of edges 

along the shortest path connecting them. 

Milgram (1967) conducted a series of mail 

delivery experiments and found that an average 

of ‘six degrees of separation’ exists between 

senders and receivers. Small worlds were also 
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observed in the context of the Internet and the 

World Wide Web. To understand network 

structures that exhibit low degrees of separation, 

Watts and Strogatz (1998) conducted a set of 

rewiring experiments on networks, and observed 

that by rewiring a few random links in regular 

graphs, the average path length was reduced 

drastically (approaching that of random 

networks), while the clustering1 remains almost 

constant (similar to that of regular networks). 

This class of networks was termed small-world 

networks, and it emphasizes the importance of 

random links acting as short-cuts that contract 

the average path length of the network.  

Watts and Strogatz (1998) studied 

mechanisms via which a regular network can be 

transformed into a small-world network, with 

little or no change in the vertex-degree 

distribution, and quantified the parameters that 

characterize the resulting structures. Clustering 

is a main characterize of small-world network, 

for example, in social networks, a common 

property of is that cliques form, representing 

circles of friends or acquaintances in which 

every member knows every other member. This 

inherent tendency to cluster is quantified by the 

clustering coefficient (Strogatz, 1998), a concept 

that has its roots in sociology, appearing under 

the name ‘fraction of transitive triples’ (Milgram, 

1967). The definition of clustering coefficient 

will be introduced in the follow. 

The paper is organized as follows: In Section 

2 we give some preliminary knowledge 

including descriptions of the Cayley graph 

network model, the deterministic small-world 

model and clustering coefficient. In Section 3 

we present the definition of extended clustering 

coefficient. In Section 4, we describe the 

preliminary simulation results for parameter in 

complex network. In section 5, some formularies 

and deduction validate the correction of 

extended clustering coefficient in deterministic 

small-world model and Section 6 concludes the 

paper. 

2. Related Work 

2.1 Cayley Graph Network Models 
It is known that Cayley graphs are excellent 

models for interconnection networks (Akers & 

Krishnamurthy, 1989). Many well-known and 

practically useful interconnection networks are 

Cayley graphs. For example, hypercube and 

cube-connected cycle networks are Cayley 

graphs. In Xiao & Parhami (2006), we know that 

Cayley graphs can also serve as excellent 

models for small-world networks. 

Let G be a finite group and S a subset of G. 

The subset S is said to be a generating set for G, 

and the elements of S are called generators of G, 

if every element of G can be expressed as a 

finite product of the powers of the elements in S. 

In this case, we also say that G is generated by S. 

The Cayley digraph of a group G and the subset 

S of G, denoted by Cay(G, S), has the vertex set 

that is G and the arc set that is {(g, gs) | g ∈ G, s 

∈ S}. If S is a generating set of G, then we say 

that Cay(G, S) is the Cayley digraph of G 

generated by S. If 1 ∉ S (1 is the identity 

element of G ) and S = S –1, then Cay(G, S) is a 

simple (undirected) graph. For more definitions 

and basic results on graphs and groups we refer 

the reader to books on algebraic graph theory 

(Biggs, 1993). Unless noted otherwise, all 

graphs in the following are undirected graphs. 
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2.2 Clustering Coefficient 
One feature shared by small-world networks 

is that their clustering coefficients are fairly high 

compared with random networks (Watts & 

Strogatz, 1998). Clustering coefficient is defined 

as follows. Let a vertex v of G have k(v) 

neighbors; that is, v has degree k(v). These k(v) 

neighbors can potentially be connected via k(v) 

(k(v) – 1)/2 edges. The fraction of this maximum 

possible number of edges that actually exist 

between neighbors of v is its clustering 

coefficient Cv; the average of clustering 

coefficients over all v ∈ V is the clustering 

coefficient C of the network G. A network with 

C close to 1 may consist of highly connected 

clusters or cliques, perhaps with sparser 

connections between the local clusters. 

2.3 Deterministic Small-World Models 
A great deal of previous research on 

small-world networks has been based on 

probabilistic methods, with a rather small 

number of researchers advocating deterministic 

models. The Cayley graph model used in our 

formulation has pedagogical value and can also 

be used for designing and analyzing 

communication and the other real networks. To 

understand the formulation of Cayley graph 

model, the reader needs a knowledge of 

elementary group theory (Biggs, 1993). To 

follow standard notation of group theory, where 

G stands for a group, we use Γ  to denote a 

graph. 

Let G be a finite group. Assume that Γ = 

Cay(G, S) for some generating set S of G, where 

1 ∉ S and S = S –1. Then Γ  is a Cayley graph of 

constant degree d = | S |. Thus, every vertex v of 

Γ has exactly d neighbors. Because Γ is 

symmetric, the clustering coefficient of every 

vertex is the same. Thus, we only need to 

consider the clustering coefficient of the vertex 1, 

the identity element of G. The set of neighbors 

of the vertex 1 is S. If s1, s2 ∈ S, then s1 and s2 

are adjacent if and only if there is s ∈ S such that 

s2 = s1s. Assume that H ⊆ S and H ∪ 1 is a 

subgroup of G. Then s1s2 ∈ H when s1, s2 ∈ H. 

Hence, there are at least | H | (| H | – 1)/2 edges 

among the set S of neighbors of the vertex 1. As 

a result, the clustering coefficient of Γ will be 

large if H can be chosen to be large. In contrast 

to the method of Watts and Strogatz (1998), we 

start from networks with small clustering 

coefficient and small average distance and 

proceed to increase the clustering coefficient by 

means of adding elements of G into S, while 

ensuring that the average distance remains small. 

In the following we consider an example. 

Let G = Z t
2  be an elementary commutative 

group of order 2t. Consider an integer l 

satisfying 1 ≤ l ≤ t. Define H = {(x1, x2, … , xl, 

0t–l) | (x1, x2, … , xl) ∈ Z t
2 } \ {0t}, where 0 t is 

the identity element of G and S = H ∪ {(x1, 

x2, … , xt) ∈ Z t
2  | only one of x1, x2, … , xt is 1}. 

Assume that Γ = Cay(G, S). One can easily 

verify that | H | = 2 l – 1 and | S | = 2 l + t – l – 1. 

Hence we obtain that the clustering coefficient 

of Γ is  

C = 
(2 1)(2 2)

(2 1)(2 2)

l l

l lt l t l

− −
+ − − + − −

    (S1) 

Let the diameter (maximum distance 

between any pair of vertices) of Γ be D (Γ) and 

N = 2 t. Then | G | = N and D (Γ) = t – l + 1 ≤ t = 

log2 N. Thus, the average distance of Γ is no 

greater than log2 N. Based on the result above, 

we can choose the value of l such that the 
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clustering coefficient C is large and the degree 

of Γ is still small. For instance, let a = (2 l – 1) / t 

be a constant. Substituting this value in equation 

(S1) leads to equation (2) of our paper 

C = 
( 1)

( )( 1)

at at

at t l at t l

−
+ − + − −

    (S2) 

As noted in the paper, C → a 2 / (a + 1)2 

when t→∞. By suitably choosing a, we can 

obtain different clustering coefficient for Γ, 

while maintaining a small vertex degree equal to 

at + t – l = (a + 1) log2 N – 1. 

One can choose S and H as subsets of G in 

many different ways, leading to diverse 

small-world network models. One can further 

add edges into Γ randomly and so obtain models 

of different real complex networks. 

3. Extended Clustering Coefficients 
Based on the definition of clustering 

coefficient, we extend the clustering coefficient 

of Watts and Strogatz (1998) in the following 

way. Define the h-neighbors of a vertex v as 

vertices of G that are at distance h (measured in 

number of hops) from v. Assume that v has kh(v) 

such h-neighbors, where k1(v) is the same as k(v) 

defined earlier (see Section 1). Then there can be 

at most kh(v) (kh(v) – 1)/2 edges connecting 

h-neighbors of vertex v. The fraction Cv (h) of 

allowable edges that actually exist between 

h-neighbors v is the h-clustering coefficient of v. 

We assume that Cv (h) = 1 when kh(v) = 1, which 

also covers the special case h = 0. The average 

of Cv (h) over all v ∈ G is the h-clustering 

coefficient C(h) of G. The 1-clustering 

coefficient C(1) is the clustering coefficient C as 

defined in Section 1. 

Thus, while the definition of clustering 

coefficient is based on the immediate 

neighborhood of vertices, extended clustering 

coefficient relates to a wider neighborhood 

defined by the distance parameter h. Using 

experimental data from a wide variety of actual 

complex networks, along with a deterministic 

model of small-world networks that we have 

developed, we seek to relate C(h) and the 

distance distribution Pδ (h) of a network, defined 

as the probability that a randomly chosen pair of 

vertices are at distance h from each other.  

Note that all distances referred to in this 

paper are shortest distances. However, in view 

of the results of Kim et al. (2002), distances 

obtained from a routing algorithm with localized 

decisions are not fundamentally different from 

shortest distances in complex networks. Thus, 

our results are expected to remain valid when 

this latter definition of distance is used in lieu of 

shortest distance. 

4. Experimental Analysis 
We start our experiments by investigating 

several small-world graphs such as NCSTRL 

graph, Linux graph and Silwood graph. In our 

experiments, data sets used for these 

experiments can be seen in appendix. For an 

N-vertex network with M edges, we have Pδ (0) 

= 1/N and Pδ (1) = 2M/N 2 > 1/N. Beyond h = 1, 

however, a precise expression for the value of 

Pδ (h) cannot be supplied, except in the case of 

certain regular networks. However, for many 

networks (small-world or otherwise), the value 

of Pδ (h) rises with h until it reaches a maximum 

value and then declines as the distance h gets 

closer to the network diameter D. This is 

confirmed experimentally for several complex 

networks of practical interest in Figures 1b, 2b, 

and 3b.  
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For extended clustering coefficients, the 

trend begins by a decrease in clustering, from 

C(0) = 1 to C(1) = C, and is then followed by 

further reductions. This is owing to the fact that 

as h increases, the number qh of nodes at 

distance h from a given node increases, and such 

nodes are apt to belong to several cliques; hence, 

the presence of many edges between them is 

quite unlikely. As h approaches D, however, a 

different effect may take hold. Consider, for 

example, one extreme case where each node in 

the network is at distance D from exactly one 

node (it has a single diametrically opposite 

node). This leads to C(D) = 1. In this same 

situation, C(D – 1) is likely to be large as well, 

given the common presence of multiple 

diametral paths to the same opposite vertex. 

Note that the preceding argument suggests that 

C(h) can be large when h approaches D; it does 

not imply that C(h) must be large in this case. 

Figures 1c, 2c, and 3c confirm these trends. 

Given the opposing trends of Pδ (h) (up, then 

down) and C(h) (down, then possibly up), one 

might be led to believe that the product Pδ (h) 

C(h) has an upper bound. Based on the evidence 

presented in Figures 1a, 2a, and 3a, we 

conjecture that this is in fact the case. That is, 

for a constant c in the vicinity of and seldom 

exceeding 1, we have: 

Pδ (h) C(h) ≤ c log N / N        (1) 

In the special case of h = 1, equation (1) 

implies Pδ (1) C(1) ≈ log N / N. We have Pδ (1) = 

2M/N 2 ≈ log N / N for small-world networks. 

This is consistent with C(1) = C being large for 

such networks.  

Figure 1a The plot of Pδ (h) C(h) versus h in the 
maximum component of NCSTRL graph (Newman, 

2001), with 6396 vertices and diameter of 31 

Figure 1b The plot of Pδ (h) versus h in ∆ 

Figure 1c The plot of C(h) versus h in ∆ 
Distance h 

C(h) 
 

Distance h 

Pδ (h) 
 

Distance h 

log2 N / N 
 

Pδ (h) C(h) 
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Figure 2a The plot of Pδ(h) C(h) versus h in the 
maximum component ∆1 of Linux graph (Myers, 2003) 

with 5285 vertices and diameter of 17. See 
http://www.tc.cornell.edu/~myers/Data/SoftwareGraph

s/index.html 

Figure 2b The plot of Pδ (h) versus h in ∆1 

Figure 2c The plot of C(h) versus h in ∆1 

Figure 3a The plot of Pδ (h) C(h) versus h in the 
maximum component ∆2 of Silwood graph (Montoya & 
Sole, 2002) with 153 vertices and diameter of 6. See 

http://www.cosin.org/extra/data 

Figure 3b The plot of Pδ (h) versus h in ∆2 

Figure 3c The plot of C(h) versus h in ∆2 
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5. Model-Based Validation 
We now present additional evidence on the 

validity of equation (1), using a model of 

deterministic small-world networks that we have 

developed (Xiao & Parhami, 2006). In fact, it 

was through this model that we first became 

aware of the trend represented in equation (1) 

and experimentally confirmed in Figure 1-3. A 

review of our deterministic model, which is 

based on Cayley graphs (Biggs, 1993), has been 

provided above, where we also show that the 

model yields the clustering coefficient: 

C = 
( 1)

( )( 1)

at at

at t l at t l

−
+ − + − −

       (2) 

In this model, t = log2 N and a = (2l – 1)/t is a 

free tuning parameter that is related to the 

interconnection density, thereby affecting the 

value of C. Note that for very large networks (N, 

t → ∞), C tends to a2 / (a + 1)2 when a is a 

constant. By suitably choosing a, we can obtain 

different clustering coefficients, while 

maintaining a small vertex degree equal to at + t 

– l = (a + 1) log2 N – 1. 

Unlike actual networks for which the 

computation of C(h) is extremely difficult, our 

deterministic model is amenable to 

mathematical analysis that yields an 

approximate closed-form expression for the 

extended clustering coefficients. In our 

deterministic model, the number m of adjacent 

vertex pairs among the h-neighbors of any 

vertex is given by the expression: 

m = (2 l – 1) (2 l–1 – 1)
1

t l

h

−⎛ ⎞
⎜ ⎟−⎝ ⎠

     (3) 

On the other hand, the number kh(v) of 

h-neighbors of a vertex v is bounded as: 

(2 l–1)
1

t l

h

−⎛ ⎞
⎜ ⎟−⎝ ⎠

≤kh(v)≤(2 l–1) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

1h

lt
+ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
h

lt
 (4) 

Given that the extended clustering coefficient 

C(h) is proportional to m / (kh(v))2, we readily 

find: 

C (h) ≈ 1/
1

t l

h

−⎛ ⎞
⎜ ⎟−⎝ ⎠

            (5) 

In a companion paper (Xiao & Parhami, 2005), 

we have derived the distance distribution for 

small-world networks: 

Pδ (h) ≈ 
log N

h

⎛ ⎞
⎜ ⎟
⎝ ⎠

/ N              (6) 

Here, we have log N ≈ D. Because the diameter 

of our deterministic network model is D = t – l + 

1, we conclude:  

Pδ (h)≈
1t l

h

− +⎛ ⎞
⎜ ⎟
⎝ ⎠

/N =(t–l+1)
1

t l

h

−⎛ ⎞
⎜ ⎟−⎝ ⎠

/(hN)  (7) 

Equations (5) and (7) lead to: 

Pδ (h) C(h) ≤ c log N / N           (8) 

Equation (8) confirms our hypothesis in 

equation (1), thereby supplementing the 

previously supplied experimental evidence of its 

validity. 

6. Conclusion 
We have shown that extended clustering 

coefficients are generalizations of ordinary 

clustering coefficient and are governed by laws 

that are also generalizations of those pertaining 

to the latter. We have presented experimental 

and analytical evidence that the inequality 

Pδ (h)C(h) ≤ c log N / N holds for small-world 

networks. This result is significant because it 

shows that the product Pδ (h)C(h) is 

upper-bounded by a value that is considerably 
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smaller than the product of maximum values for 

Pδ (h) and C(h). Thus, extended clustering 

coefficients offer new insights into the structure 

of small-world networks and open up further 

avenues for exploration of their properties. 

Additionally, different shapes for the variations 

of C(h) and Pδ (h)C(h), exemplified by Figure 

1-3, can be used to categorize small-world 

networks in order to facilitate their study. 
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Appendix: 
Data Sets Used for Experimental Results 
For the data on software graphs, see  

http://ww.tc.cornell.edu/~myers/Data/SoftwareG

raphs/index.html 

For the data on biological graphs, see 

http://www.cosin.org/extra/data 

 
 

Network grassland littlerock silwood 

N (log2 N) / N N (log2 N) / N N (log2 N) / N 
Vertices 

88 0.07340 183 0.04107 153 0.04743 

Diameter 6 4 6 

 Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) 

h = 1 0.03579 0.6097 0.021821 0.14616 0.3281 0.04796 0.03139 0.5019 0.01575 

h = 2 0.11834 0.1044 0.012355 0.56266 0.1217 0.06848 0.17011 0.0845 0.01437 

h = 3 0.20977 0.0789 0.016551 0.28956 0.0970 0.02809 0.26049 0.0592 0.01542 

h = 4 0.26829 0.0231 0.006197 0.00162 0.9670 0.00157 0.45700 0.0064 0.00292 

h = 5 0.18939 0.0410 0.007765    0.07843 0.0001 7.8E-6 

h = 6 0.17842 0.0617 0.011009    0.00258 0 0 

 
 

Network ythan elegans helico 

N (log2 N) / N N (log2 N) / N N (log2 N) / N 
Vertices 

153 0.04743 314 0.02642 710 0.01334 

Diameter 4 15 9 

 Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) 

h = 1 0.06589 0.2675 0.01763 0.00739 0.6689 0.00494 0.00555 0.3915 0.00217 

h = 2 0.48292 0.0960 0.04636 0.04143 0.0530 0.00220 0.05246 0.0282 0.00148 

h = 3 0.42300 0.0249 0.01053 0.04092 0.0773 0.00316 0.18910 0.0190 0.00359 
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h = 4 0.02819 0.1804 0.00509 0.13101 0.0350 0.00459 0.40280 0.0048 0.00193 

h = 5    0.10260 0.0271 0.00278 0.25290 0.0017 0.00043 

h = 6    0.16432 0.0044 0.00072 0.08311 0.0116 0.00096 

h = 7    0.13419 0.0056 0.00075 0.01264 0.3659 0.00462 

h = 8    0.13970 0.0029 0.00041 0.00139 0.6276 0.00087 

h = 9    0.09574 0.0016 0.00015 0.00006 0.8235 0.00005 

h = 10    0.07511 0.0007 0.00005    

h = 11    0.03763 0.0003 0.00001    

h = 12    0.02151 0.0001 2.2E-6    

h = 13    0.00580 9.9E-5 5.7E-7    

h = 14    0.00244 0 0    

h = 15    0.00020 0 0    

 
 

Network linux abiword mysql 

N (log2 N) / N N (log2 N) / N N (log2 N) / N 
Vertices 

5285 0.00234 1035 0.00967 1480 0.00712 

Diameter 17 12 16 

 Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) 

h = 1 0.00081 0.33301 0.00027 0.00321 0.4901 0.00157 0.00383 0.3305 0.00126 

h = 2 0.04767 0.06361 0.00303 0.02709 0.0669 0.00181 0.06244 0.0796 0.00497 

h = 3 0.15141 0.01921 0.00291 0.10691 0.0307 0.00328 0.18590 0.0243 0.00452 

h = 4 0.27863 0.00465 0.0013 0.23474 0.0089 0.00290 0.19607 0.0134 0.00263 

h = 5 0.27115 0.00130 0.00035 0.24933 0.0038 0.00095 0.11787 0.0110 0.00130 

h = 6 0.156678 0.00079 0.00012 0.21003 0.0020 0.00042 0.08641 0.0118 0.00102 

h = 7 0.06248 0.00126 7.87E-05 0.10807 0.0462 0.00499 0.10237 0.0143 0.00146 

h = 8 0.02079 0.00152 3.17E-05 0.04598 0.2120 0.00974 0.11104 0.0106 0.00118 

h = 9 0.00712 0.01979 0.00014 0.01263 0.2861 0.00361 0.07841 0.0077 0.00060 

h = 10 0.00233 0.26923 0.00063 0.00196 0.2681 0.00053 0.03580 0.0182 0.00065 

h = 11 0.00069 0.52121 0.00036 0.00004 0.9290 0.00004 0.01352 0.0268 0.00036 

h = 12 0.00018 0.63878 0.00011 1.9E-6 1 1.9E-6 0.00474 0.3974 0.00188 

h = 13 3.46E-5 0.61215 2.12E-5    0.00128 0.6713 0.00086 

h = 14 9.17E-6 0.5776 5.29E-6    0.00028 0.7133 0.00020 

h = 15 1.43E-6 0.81818 1.17E-6    0.00004 0.8097 0.00003 

h = 16 4.3E-7 0.875 3.76E-7    1.8E-6 0.6667 1.2E-6 

h = 17 7.16E-8 1 7.16E-8       
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Networks xmms vtk NCSTRL 

N (log2 N) / N  N (log2 N) / N N (log2 N) / N 
Vertices 

971 0.01022 771 0.01244 6396 0.00198 

Diameter 17 11 31 

 Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) Pδ (h) C(h) 

h = 1 0.00383 0.3637 0.00139 0.00457 0.5124 0.00234 0.00078 0.79621 0.00062 

h = 2 0.02105 0.0740 0.00156 0.04686 0.0676 0.00317 0.00284 0.25672 0.00073 

h = 3 0.06371 0.0355 0.00226 0.16215 0.0178 0.00289 0.00547 0.17345 0.00095 

h = 4 0.13053 0.0125 0.00163 0.28570 0.0098 0.00280 0.01170 0.10203 0.00119 

h = 5 0.16721 0.0067 0.00112 0.27918 0.0025 0.00070 0.02383 0.06241 0.00149 

h = 6 0.16653 0.0049 0.00082 0.16089 0.0011 0.00018 0.04506 0.03802 0.00171 

h = 7 0.15524 0.0050 0.00078 0.04758 0.0111 0.00053 0.07529 0.02076 0.00156 

h = 8 0.12190 0.0056 0.00068 0.01116 0.0253 0.00028 0.10631 0.01397 0.00149 

h = 9 0.08075 0.0069 0.00056 0.00176 0.0180 0.00003 0.12810 0.00909 0.00116 

h = 10 0.04634 0.0370 0.00171 0.00013 0.1739 0.00002 0.13281 0.00703 0.00093 

h = 11 0.02444 0.1720 0.00420 6.7E-6 0.6667 4.4E-6 0.12287 0.00594 0.00073 

h = 12 0.01124 0.3492 0.00393    0.10300 0.00539 0.00055 

h = 13 0.00479 0.3788 0.00181    0.08012 0.00711 0.00057 

h = 14 0.00171 0.4487 0.00077    0.05759 0.01043 0.00060 

h = 15 0.00055 0.4854 0.00027    0.03874 0.02055 0.00080 

h = 16 0.00016 0.4614 0.00007    0.02526 0.04302 0.00109 

h = 17 0.00001 0.8333 8.3E-6    0.01581 0.09419 0.00149 

h = 18       0.00992 0.18115 0.00180 

h = 19       0.00610 0.31991 0.00195 

h = 20       0.00371 0.45606 0.00169 

h = 21       0.00216 0.57063 0.00123 

h = 22       0.00123 0.65030 0.00080 

h = 23       0.00067 0.70962 0.00047 

h = 24       0.00033 0.77422 0.00025 

h = 25       0.00017 0.80562 0.00014 

h = 26       7.28E-5 0.80565 5.87E-5 

h = 27       3.97E-5 0.81525 3.23E-5 

h = 28       1.61E-5 0.82742 1.34E-5 

h = 29       5.28E-6 0.88391 4.67E-6 

h = 30       1.37E-6 0.93998 1.29E-6 

h = 31       1.96E-7 0.83333 1.63E-7 
   



XIAO, WEI, CHEN, QIN and PARHAMI 

JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING 381 

References 
[1] Akers S.B. & Krishnamurthy, B. (1989). A 

group theoretic model for symmetric 

interconnection networks. IEEE 

Transactions on Computers, 38(4):555-566  

[2] Barabási, A.-L. & Albert, R. (1999). 

Emergence of scaling in random networks. 

Science, 286: 509-512  

[3] Biggs, N. (1993). Algebraic Graph Theory. 

Cambridge Univ. Press  

[4] Kim, B.J., Yoon, C.N., Han, S.K., & Jeong, 

H. (2002). Path finding strategies in 

scale-free networks. Physical Review E, 65: 

027103  

[5] Milgram, S. (1967). The small world 

problem. Psychology Today, 1: 61-67  

[6] Montoya, J.M. & Sole, R.V. (2002). Small 

world patterns in food webs. Journal of 

Theoretical Biology, 214: 405-412  

[7] Myers, C.R. (2003). Software systems as 

complex networks: Structure, function, and 

evolvability of software collaboration 

graphs. Physical Review E, 68: 046116  

[8] Newman, M.E.J. (2001). Scientific 

collaboration networks. I. Network 

construction and fundamental results. 

Physical Review E, 64: 016131  

[9] Newman, M.E.J. (2003). The structure and 

function of complex networks. SIAM 

Review, 45: 167-256  

[10] Watts, D.J. & Strogatz, S.H. (1998). 

Collective dynamics of ‘small-world’ 

networks. Nature, 393: 440-442  

[11] Xiao, W.J. & Parhami, B. (2006). Cayley 

graphs as models of deterministic 

small-world networks. Information 

Processing Letters, 97: 115-117  

[12] Xiao, W.J. & Parhami, B. (2005). On 

conditions for scale-freedom in complex 

networks. Working Paper  

 

Wenjun Xiao received the Ph.D degree in 

mathematics from Sichuan University, People’s 

Republic of China, in 1989. Currently, he is a 

professor in the School of Computer Science 

and Engineering, South China University of 

Technology, Guangzhou, People’s Republic of 

China. His research interests include discrete 

mathematics, parallel and distributed computing, 

complex networks, and software architecture. 

He has published more than 50 papers in 

journals and conferences on these topics since 

1985. 

 

Wenhong Wei, Weidong Chen and Yong Qin 

are Ph.D candidates in the School of Computer 

Science and Engineering, South China 

University of Technology, Guangzhou, People’s 

Republic of China. Their research interests 

include parallel and distributed computing and 

networks. 

 

Behrooz Parhami received the Ph.D degree in 

computer science from the University of 

California, Los Angeles, in 1973. Presently, he is 

a professor in the Department of Electrical and 

Computer Engineering, University of California, 

Santa Barbara. His research deals with parallel 

architectures and algorithms, computer 

arithmetic, and reliable computing. In his 

previous position with Sharif University of 

Technology in Tehran, Iran (1974-1988), he was 

also involved in the areas of educational 

planning, curriculum development, 

standardization efforts, technology transfer, and 

various editorial responsibilities, including a 



Extended Clustering Coefficients: Generalization of Clustering Coefficients in Small-World Networks 

  JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING 382

five-year term as editor of Computer Report, a 

Farsilanguage computing periodical. Dr. 

Parhami’s technical publications include more 

than 220 papers in journals and international 

conferences, a Farsi-language textbook, and an 

English/Farsi glossary of computing terms. 

Among his latest publications are two 

graduate-level textbooks on parallel processing 

(Plenum, 1999) and computer arithmetic 

(Oxford, 2000), and an introductory textbook on 

computer architecture (Oxford, 2005). Dr. 

Parhami is a fellow the IEEE and the IEEE 

Computer Society, a chartered fellow of the 

British Computer Society, a member of the 

ACM, and a distinguished member of the 

Informatics Society of Iran, for which he served 

as a founding member and president from 

1979-1984. He also served as chairman of the 

IEEE Iran Section (1977-1986) and received the 

IEEE Centennial Medal in 1984. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


