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Abstract 
 
 

In this paper, we propose a new class of 
interconnection networks, called “biswapped 
networks” (BSNs). Each BSN is built of 2n copies of 
some n-node basis network using a simple rule for 
connectivity that ensures its regularity, modularity, 
fault tolerance, and algorithmic efficiency. In 
particular, if the basis network is a Cayley digraph 
then so is the resulting BSN. Our proposed networks 
provide a systematic construction strategy for large, 
scalable, modular, and robust parallel architectures, 
while maintaining many desirable attributes of the 
underlying basis network that comprises its clusters. 
We show how key parameters of a BSN are related to 
the corresponding parameters of its basis network and 
obtain a number of results on internode distances, 
Hamiltonian cycles, and node-disjoint paths. We also 
discuss the relationship between BSNs and swapped or 
OTIS networks. 
 
 
1. Introduction 
 
 

The fact that Cayley (di)graphs and coset graphs are 
excellent models for interconnection networks, studied 
in connection with parallel processing and distributed 
computation, is widely acknowledged [1], [2], [5]. 
Many well-known interconnection networks are 
Cayley (di)graphs or coset graphs. For example, 
hypercube, butterfly, cube-connected cycles and 
honeycomb networks are Cayley graphs, while de 
Bruijn and shuffle-exchange networks are coset graphs 
[5], [8], [11], [12], [13], [14]. 

Much work on interconnection networks can be 
categorized as ad hoc design and evaluation. Typically, 
a new interconnection scheme is suggested and shown 
to be superior to some previously studied network(s) 
with respect to one or more performance or complexity 
attributes. Whereas Cayley (di)graphs have been used 
to explain and unify interconnection networks with 
many ensuing benefits, much work remains to be done. 
As suggested by Heydemann [5], general theorems are 

lacking for Cayley digraphs and more group theory has 
to be exploited to find properties of Cayley digraphs. 

In this paper, we propose a new class of 
interconnection networks called “biswapped networks” 
(BSNs) that are related to swapped or OTIS networks, 
previously proposed and studied by a number of 
researchers [4], [7], [10], [15]. A network in the new 
proposed class is built of 2n copies of some n-node 
basis network using a simple rule for connectivity that 
ensures its regularity, modularity, fault tolerance, and 
algorithmic efficiency. In particular, if the basis 
network is a Cayley (di)graph then so is the resulting 
BSN. Thus, the work presented here yields a 
systematic method for the construction of large, 
scalable, modular, and robust parallel architectures, 
while maintaining many desirable attributes of the 
underlying basis network that comprises its clusters. 
We show how key parameters a BSN are related to the 
corresponding parameters of its basis network and 
obtain results related to internode distances, 
Hamiltonicity, and node-disjoint paths. We also discuss 
the relations between BSNs and swapped [15] or OTIS 
[7] networks. 

Before proceeding further, we introduce some 
definitions and notations related to (di)graphs, Cayley 
(di)graphs in particular, and interconnection networks. 
For more definitions and basic results on graphs and 
groups we refer the reader to [3], for instance, and on 
interconnection networks to [6], [9]. 

A digraph Γ = (V, E) is defined by a set V of vertices 
and a set E of arcs or directed edges. Because we are 
interested in the use of graphs as parallel processing 
interconnection networks, we use the terms “vertex” 
and “node” interchangeably. Similarly, “edge” and 
“link” are fully equivalent in this paper. The edge set E 
is a subset of elements (u, v) of V × V. If the subset E is 
symmetric, that is, (u, v) ∈ E implies (v, u) ∈ E, we 
identify two opposite arcs (u, v) and (v, u) by the 
undirected edge [u, v] and the digraph Γ  becomes an 
undirected graph. When the type of graph is clear from 
the context, we may use (u, v) instead of [u, v]. 

Let G be a finite group and S a subset of G. The 
subset S is said to be a generating set for G, and the 
elements of S are called generators of G, if every 
element of G can be expressed as a finite product of 
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their powers. We also say that G is generated by S. The 
Cayley digraph of the group G and the subset S, 
denoted by Cay(G, S), has vertices that are elements of 
G and arcs that are ordered pairs (g, gs) for g ∈ G, s ∈ 
S. If S is a generating set of G then we say that Cay(G, 
S) is the Cayley digraph of G generated by S. If 1 ∉ S 
(1 denotes the identity element of G) and S = S –1, then 
Cay(G, S) is a simple graph 

Assume that Γ and Σ are two digraphs. The mapping 
φ of V(Γ) to V(Σ) is a homomorphism from Γ to Σ if for 
any (u, v) ∈ E(Γ) we have (φ(u), φ(v)) ∈ E(Σ). In 
particular, if φ is a bijection such that both φ and the 
inverse of φ are homomorphisms then φ is called an 
isomorphism of Γ to Σ. Let G be a finite group and S a 
subset of G. Assume that K is a subgroup of G 
(denoted as K ≤ G). Let G/K denote the set of the right 
cosets of K in G. The (right) coset graph of G with 
respect to subgroup K and subset S, denoted by Cos(G, 
K, S), is the digraph with vertex set G/K such that there 
exists an arc (Kg, Kg ′) if and only if there exists s ∈ S 
and Kgs = Kg ′. 

The following basic theorem, which can be easily 
proven, is helpful in establishing some of our 
subsequent results [14]. 
Theorem 1. For g ∈ G, S ⊆ G, and K ≤ G, the mapping 
φ: g → Kg is a homomorphism from Cay(G, S) to 
Cos(G, K, S).  

Unless explicitly specified, all graphs in this paper 
are undirected graphs. The notation used throughout 
this paper is listed in Table I for ease of reference. 
 
 
2. Definitions and Basic Properties 

Let Ω be any digraph with the vertex set V(Ω) = {h1, 
h2, . . . , hn} and the arc set E(Ω). The biswapped 
interconnection network Bsw(Ω) = Σ = (V(Σ), E(Σ)) is 
a digraph with its vertex and edge sets specified as: 
      V(Σ) = {〈0, p, g〉 , 〈1, p, g〉 | p, g ∈ V(Ω)} 
      E(Σ) = {(〈0, p, g1〉 , 〈0, p, g2〉), (〈1, p, g1〉 , 〈1, p, g2〉) 
| (g1, g2) ∈ E(Ω), p ∈ V(Ω)}  

      ∪ {(〈0, p, g〉 , 〈1, g, p〉), (〈1, p, g〉 , 〈0, g, 
p〉) | p, g ∈ V(Ω)} 

Intuitively, the definition postulates 2n clusters, each 
cluster being an Ω digraph: n clusters, with nodes 
numbered 〈0, cluster#, node#〉, form part 0 of the 
bipartite graph, and n clusters constitute part 1, with 
associated node numbers 〈1, cluster#, node#〉. Each 
cluster p in either part of Σ has the same internal 
connectivity as Ω (intracluster edges, forming the first 
set in the definition of E(Σ)). In addition, node g of 
cluster p in part 0/1 is connected to node p in cluster g 
of part 1/0 (intercluster or swap edges in the second set 
in the definition for E(Σ)). The name “biswapped 
network” (BSN) arises from two defining properties of 
the network just introduced: when clusters are viewed 
as supernodes, the resulting graph of supernodes is a 
complete 2n-node bipartite graph, and the intercluster 
links connect nodes in which the cluster number and 
the node number within cluster are interchanged or 
swapped. 

As an example, when Ω = C4 (the undirected cycle 
of order 4) constitutes the basis graph, Fig. 1 depicts 
the resulting Bsw(C4). Part 0 of the network is drawn at 
the top and part 1 at the bottom, with clusters 0-3 
positioned from left to right. 

 
Fig. 1.  An example 32-node biswapped network using the basis graph Ω = C4. 

Each line represents two directed edges in opposite directions. 
To avoid clutter, the node index 〈i, p, g〉 is shown as ipg. 

 
We could continue our presentation with directed 

networks, deriving results for undirected networks as 
special cases. However, because parallel processing 
interconnection networks are usually undirected, we 
focus on undirected graphs in the rest of this paper. For 
undirected biswapped networks, the definition of the 
edge set is simplified to: 
      E(Σ) = {(〈0, p, g1〉 , 〈0, p, g2〉), (〈1, p, g1〉 , 〈1, p, g2〉) 
| (g1, g2) ∈ E(Ω), p ∈ V(Ω)}  

      ∪ {(〈0, p, g〉 , 〈1, g, p〉) | p, g ∈ V(Ω)} 
We need a few more notational conventions in what 

follows. For any graph Γ, the number of its nodes is 
denoted as |Γ|. The degree of a node g in Γ is degΓ(g). 
The distance between nodes g1 and g2 in Γ is given by 
distΓ(g1, g2). The diameter of Γ, that is, the maximum 
distance between any two nodes in Γ, is D(Γ). We first 
prove the following results on the basic parameters of 
Σ = Bsw(Ω). 
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Theorem 2. Let Σ = Bsw(Ω). Then: 
    (1) |Σ| = 2 |Ω|2     
    (2) degΣ(〈i, p, g〉) = degΩ(g) + 1  
    (3)  distΣ(〈i, p1, g1〉, 〈i, p2, g2〉) equals distΩ(g1, g2) 
if p1 = p2 ; otherwise, it equals distΩ(p1, p2) + distΩ(g1, 
g2) + 2 
    (4) distΣ(〈0, p1, g1〉, 〈1, p2, g2〉) = distΩ(p1, g2) + 
distΩ(p2, g1) + 1 
Proof. Omitted.  
Corollary 1. The diameter of Bsw(Ω) = Σ is related to 
the diameter of the basis network Ω by the equality 
D(Σ) = 2D(Ω) + 2. 

Proof. Omitted.  
Based on Theorem 2, we can easily obtain a routing 

algorithm for a biswapped network, assuming the 
availability of a routing algorithm for the basis graph 
Ω. Assume that the latter routing algorithm is a 
distributed one, using the local function nextΩ(g1, g2) to 
obtain the first intermediate node in the routing path 
from g1 to g2. Then, the algorithm shown in Fig. 2 can 
be used to derive the first intermediate node on a 
shortest routing path from node 〈i, p1, g1〉 to node 〈j, p2, 
g2〉 in Bsw(Ω) = Σ. 
 

 
function nextΣ(〈i, p1, g1〉, 〈j, p2, g2〉) 
if i = j  then // i = j; routing in the same part 
      if p1 = p2 and g1 = g2 
      then return 〈i, p1, g1〉  // destination has been reached 
      else 
            if g1 = g2  
            then return 〈1 – i, g1, p1〉 // g1 = g2 and p1 ≠ p2 
            else return 〈i, p1, nextΩ(g1, g2)〉 // g1 ≠ g2 
            endif 
      endif 
else // i ≠ j; routing between parts 
      if p1 = p2 and g1 = g2 
      then return 〈j, p1, g1〉    
      else 
            if g1 = p2    
            then return 〈j, g1, p1〉// 〈j, g1, p1〉 = 〈1 – i, g1, p1〉 
            else return 〈i, p1, nextΩ(g1, p2)〉 
            endif 
      endif 

endif 
Fig. 2.  Optimal routing function for a biswapped network Bsw(Ω) based on the optimal  

routing function NextΩ(g1, g2) for its basis network Ω. 
 

It is readily seen that the routing function NextΣ 
defined above is optimal, that is, it leads to shortest-
path routing, if the routing function NextΩ is optimal. 
 
 
3. Hamiltonicity and Disjoint Paths 
 
 

A Hamiltonian cycle of a graph is a cycle that visits 
each node exactly once. A graph is Hamiltonian if it 
contains a Hamiltonian cycle. Hamiltonicity is a useful 
property for interconnection networks. One of our main 
results in this paper is that if the basis graph Ω is 
Hamiltonian, then so is the resulting biswapped 
network. 
Theorem 3. If the basis graph Ω is Hamiltonian, then 
so is the graph Bsw(Ω) = Σ. 
Proof.  Let {0, 1, . . . , n – 1, 0} represent a 
Hamiltonian cycle of the basis graph Ω. Then, the 

following is a Hamiltonian cycle of the graph Σ 
beginning and ending at node 〈0, 0, 0〉:  
 
〈0, 0, 0〉 →〈1, 0, 0〉 → 〈1, 0, n – 1〉 → . . . → 〈1, 0, 2〉 
→ 〈1, 0, 1〉 →〈0, 1, 0〉 → 〈0, 1, n – 1〉 → . . . → 〈0, 1, 
2〉 → 〈0, 1, 1〉 →〈1, 1, 1〉 → 〈1, 1, 0〉 → . . . → 〈1, 1, 3〉 
→ 〈1, 1, 2〉 →〈0, 2, 1〉 → 〈0, 2, 0〉 → . . . → 〈0, 2, 3〉 → 
〈0, 2, 2〉 →. . . →〈1, n – 2, n – 2〉 → 〈1, n – 2, n – 3〉 → 
. . . → 〈1, n – 2, 0〉 → 〈1, n – 2, n – 1〉 →〈0, n – 1, n – 
2〉 → 〈0, n – 1, n – 3〉 → . . . → 〈0, n – 1, 0〉 → 〈0, n – 
1, n – 1〉 →〈1, n – 1, n – 1〉 → 〈1, n – 1, n – 2〉 → . . . 
→ 〈1, n – 1, 1〉 → 〈1, n – 1, 0〉 →〈0, 0, n – 1〉 → 〈0, 0, n 
– 2〉 → . . . → 〈0, 0, 1〉 → 〈0, 0, 0〉  

Figure 3 shows the constructed Hamiltonian cycle 
for a biswapped network.  

We next consider the problem of node-disjoint paths 
between certain pairs of nodes in a biswapped network. 
We have the following. 
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Fig. 3.  A Hamiltonian cycle in a biswapped network whose basis graph Ω is Hamiltonian (n = 5).  
Within each cluster, only links belonging to the cluster’s Hamiltonian cycle are shown.  

To avoid clutter, part numbers are not represented in node indices. Cluster index appears  
at the top and node index within cluster at the bottom inside the circles. 

 
Theorem 4. If the basis graph Ω is connected, p1 ≠ p2, 
and degΩ(g) = δ, then there are δ + 1 node-disjoint 
paths between the nodes 〈i, p1, g〉 and 〈i, p2, g〉 in 
Bsw(Ω) = Σ. 
Proof. Omitted.  

Note that Theorem 4 is quite strong in that it requires 
merely that Ω be connected. The following result 
shows that if Ω is δ-connected, then Bsw(Ω) will be (δ 
+ 1)-connected. 
Theorem 5. If the basis graph Ω is connected, and if 〈i, 
p1, g1〉 and 〈i, p2, g2〉 are two nodes in Bsw(Ω) = Σ, with 
g1 ≠ g2, such that there are δ node-disjoint paths 
between g1 and g2 in Ω, then there are δ + 1 node-
disjoint paths between the nodes 〈i, p1, g1〉 and 〈i, p2, 
g2〉 in Σ. 
Proof. Omitted.  
 
 
4. Relationship with Swapped Networks 
 
 

We begin by defining a swapped network. For the 
sake of regularity, our definition is slightly different 
from that in [10] and [15]. 

Let Ω be any digraph with the vertex set V(Ω) = {h1, 
h2, . . . , hn} and the edge set E(Ω). The swapped 
interconnection network based on Ω, that is, Sw(Ω) = Γ 
= (V(Γ), E(Γ)), is a graph with its vertex and edge sets 
specified as: 
      V(Γ) = {〈p, g〉 | p, g ∈ V(Ω)} 
      E(Γ) = {(〈p, g1〉 , 〈p, g2〉) | (g1, g2) ∈ E(Ω), p ∈ 
V(Ω)} ∪ {(〈p, g〉 , 〈g, p〉) | p, g ∈ V(Ω)} 

Note that the difference between this definition and 
that in [10] and [15] is that the case p = g is not 
excluded from the second set in the definition of E(Γ); 
in other words, here we postulate that the swap link 
associated with a node 〈p, p〉 in Sw(Ω) is a self-loop, 
whereas in the original definition of [10] and [15], 
node 〈p, p〉 lacks a swap link and thus has a node 
degree that is one less than that of node 〈p, g〉 with p ≠ 
g. The swapped network based on a regular n-node, 
degree-d network Ω has n2 nodes of degree d + 1. 

Because the class of Cayley graphs exhibits many 
desirable properties and also includes a significant 
fraction of all networks that have been found useful in 
parallel processing, we next consider biswapped 
networks built from basis networks that are Cayley 
graphs. It would indeed be quite an accomplishment if 
we could establish that biswapped networks thus 
formed are themselves Cayley graphs, because this 
would mean that certain desirable properties of the 
basis network are inherited by the composite 
biswapped network (we have already shown that 
Hamiltonicity is in fact transferred from the basis 
network to the biswapped network). In what follows, 
we will show that a Cayley-graph basis network does 
indeed lead to a biswapped network that is a Cayley 
graph. 

Let H be a finite group and S a generator set of H, 
with Ω = Cay(H, S) and H × H the direct product of the 
group H and itself. Let G = (H × H)〈t〉  =  〈t〉(H × H) be 
a semidirect product of the group H × H by the cyclic 
group 〈t〉, where t is an element of order 2, and t(p, g)t 
= (g, p) for any p, g ∈ H. Let S ′ = {(1, s) | s ∈ S} ⊆ H 
× H and  T = S ′ ∪ {t}. Suppose that ∆ = Cos(G, 〈t〉, T) 
is the coset graph of the group G with respect to the 
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subgroup 〈t〉 and the generator set T. Then we have the 
following result. 
Theorem 5. The graph ∆ defined in the preceding 
paragraph is isomorphic to the swapped network 
Sw(Ω) = Γ. 
Proof. The correspondence φ: 〈t〉(p, g) → 〈p, g〉 is a 
mapping from ∆ to Γ. Moreover, for p, g, q, h ∈ H, 
(〈t〉(p, g), 〈t〉(q, h)) is an edge of the graph ∆ if and only 
if either there is an element s ∈ S such that h = gs and 
p = q or 〈t〉(q, h) =  〈t〉(p, g)t =  〈t〉(g, p). This is 
equivalent to saying that (〈p, g〉, 〈q, h〉) is an edge of 
the graph Γ. Hence, we have ∆ ≅ Γ.  

Let us consider a concrete example to illustrate the 
result of Theorem 5. Let Ω = Cay(Zn, S), with S = 
{±1}. Then, G = (Zn × Zn) 〈t〉 = 〈t〉 (Zn × Zn), with S ′ = 

{(0, ±1)} and T = S ′ ∪ {t}. Let ∆ = Cos(G, 〈t〉, T). 
Then, ∆ ≅ Sw(Ω) = Γ through the mapping φ: 〈t〉 (p, g) 
→ 〈p, g〉. 

By Theorem 5, there is a homomorphism from the 
biswapped network Bsw(Ω) to the swapped network 
Sw(Ω). This is depicted in Fig. 4 for an example 
network. 

Let Ψ = Cay(G, T) be the Cayley graph of the group 
G and the generator set T . Then we may prove the 
following result in a manner similar to Theorem 5.  
Theorem 6. The graph Ψ = Cay(G, T), with G and T as 
defined in the paragraph preceding Theorem 5, is 
isomorphic to the biswapped network Bsw(Ω) =Σ . ■ 

 

 
Fig. 4.  The 32-node biswapped network with the basis graph Ω = C4 is homomorphic to the  

16-node swapped network using the same basis graph, with the latter being identical to  
its counterpart in [10] if all the self-loops are removed. 

 
 
5. Conclusions 
 
 

In this paper, we have provided a number of general 
results on a new class of interconnection networks 
called “biswapped networks.” A biswapped network is 

composed of 2n copies of an n-node basis network 
using a simple rule for connectivity that ensures its 
regularity, modularity, fault tolerance, and algorithmic 
efficiency. In particular, if the basis network is a 
Cayley (di)graph then so is the associated biswapped 
network. Biswapped networks provide us with a 
systematic method for constructing large, scalable, 
modular, and robust parallel architectures, while 
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maintaining many desirable attributes of the underlying 
basis network that comprise their clusters. We showed 
how key parameters of a biswapped network are 
related the corresponding parameters of its basis 
network and obtained results related to distances 
between nodes, Hamiltonicity, and node-disjoint paths. 
We also discussed the relations between the new 
networks and the known swapped or OTIS networks.   

Results in this paper bring some closure to the topic 
of swapped or OTIS networks, which as previously 
defined (or even with the modified form introduced at 
the beginning of Section 4) lack full symmetry. 
Biswapped networks are completely symmetric and 
offer twice as many nodes as the corresponding 
swapped networks with the same node degree and with 
a unit increase in network diameter. Because of the 
generality of our theorems, we expect that they will 
find many more applications than those discussed here. 

We are currently investigating the applications of 
our method to the problems related to routing and 
average internode distance in certain subclasses of our 
networks. These results, along with potential 
applications in the following areas will be reported in 
future: 

• Load balancing and congestion control  
• Scheduling and resource allocation 
• Fault tolerance and graceful degradation 

These constitute important practical problems in the 
design, evaluation, and efficient operation of parallel 
and distributed computer systems. 
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