
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [CDL Journals Account]
On: 28 March 2009
Access details: Access Details: [subscription number 785022369]
Publisher Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Computer Science Education
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713734307

A puzzle-based seminar for computer engineering freshmen
Behrooz Parhami a

a Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA

Online Publication Date: 01 December 2008

To cite this Article Parhami, Behrooz(2008)'A puzzle-based seminar for computer engineering freshmen',Computer Science
Education,18:4,261 — 277

To link to this Article: DOI: 10.1080/08993400802594089

URL: http://dx.doi.org/10.1080/08993400802594089

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713734307
http://dx.doi.org/10.1080/08993400802594089
http://www.informaworld.com/terms-and-conditions-of-access.pdf


A puzzle-based seminar for computer engineering freshmen
1

Behrooz Parhami*

Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA,
USA

We observe that recruitment efforts aimed at alleviating the shortage of skilled
workforce in computer engineering must be augmented with strategies for retaining and
motivating the students after they have enrolled in our educational programmes. At the
University of California, Santa Barbara, we have taken a first step in this direction by
offering a required freshman seminar entitled ‘‘Ten Puzzling Problems in Computer
Engineering’’. This one-unit pass/not-pass gateway course, which is graded based solely
on attendance, introduces our students to some of the most challenging problems faced
by computer engineers in their daily professional endeavors and at the frontiers of
research. To accomplish this feat in a manner that is both understandable and appealing
to freshmen, the problems are related to popular mathematical and logical puzzles. Each
1-hour class session begins by introducing the students to puzzles of a particular kind
and letting them participate in formulating solutions. Historical context, background,
and general solution methods for the puzzles are then discussed by the instructor, who
finally proceeds to demonstrate how the puzzles and their solution strategies are related
to real technical challenges in computer engineering. The new course, which has been
offered twice already, is supported by a website containing complete lecture slides, class
handouts, and reference information.

Keywords: computer science and engineering education; freshman seminar; problem
complexity; problem-solving method; puzzle; puzzling problem

Introduction

Freshman seminars are being offered by many universities. Reasons for offering these
seminars are various. Some are aimed at helping students with the transition from high
school to college (Appalachian State University, 2008). Others strive to create ‘‘the
excitement and challenge of working in a small setting with a professor and fellow students
on a topic of special interest’’ (Princeton University, 2008). A third category aims at
introducing college freshmen to general challenges of college-level learning, resources
available to students, and important study skills (O’Connor & Williams, 2007). Still others
aim to present a sampling of milestones, achievements, and societal impacts of computing
and information sciences (University of California Santa Barbara, 2006).

Anecdotal evidence on the usefulness and effectiveness of freshman seminars has led to a
proliferation of such offerings in many institutions. In this paper, we report on the efforts and
designs for a fifth kind of freshman seminar within the Computer Engineering Program at the

*Email: parhami@ece.ucsb.edu

Computer Science Education

Vol. 18, No. 4, December 2008, 261–277

ISSN 0899-3408 print/ISSN 1744-5175 online

� 2008 Taylor & Francis

DOI: 10.1080/08993400802594089

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9



University of California, Santa Barbara (UCSB): one meant to introduce the students to the
most challenging problems faced in their selected field of study by practicing engineers who
design state-of-the-art products or processes and by researchers at the forefront of technology
(Parhami, 2008). Lecture topics are chosen such that they can be related to interesting
mathematical or logical puzzles, which lead off the discussion in each class session.

A complete syllabus for this course, along with teaching material for each of the 10
lectures, is available at the course’s website (Parhami, 2008). The teaching material for each
lecture comprises complete presentation files in PowerPoint and PDF formats, and URLs of
websites where additional information about the puzzles can be found. The PowerPoint
presentations contain a great deal of animation for revealing information gradually or
overlaying different components of a diagram. Because these animations are lost in the PDF
files, it is recommended that the PowerPoint files be used whenever possible. Online course
resources also include a four-slide handout (printable on two sides of a single sheet, with two
slides per page) that allows the students to participate in solving puzzles in the early part of
the lecture and makes it possible for them to take away some of the more challenging puzzles
for further enjoyment or sharing with friends and family outside the classroom.

The need for a gateway course

Much has been written about the shortage of skilled workforce in information technology
and the concomitant need to attract more students to computer science and engineering
programmes (Akbulut & Looney, 2007). The shortage has been attributed to the perceived
impact of the dot-com demise, company consolidations, and off-shoring. An anticipated
wave of retirements might worsen this already dire situation in the USA (National
Association of State Chief Information Officers, 2007). Similarly acute skill shortages are
being faced in Europe (Jain, 2007), Asia, and Australia. We maintain that attracting
students to computer science and engineering programmes, while necessary and helpful,
counteracts only one aspect of the problem. Retaining and motivating students once they
have chosen a computing major are other key aspects. Attention to student retention and
motivation has unfortunately been lacking in the curricula recommendations by
professional organisations such as IEEE Computer Society and ACM (IEEE-CS/ACM
Joint Task Force on Computing Curricula, 2002, 2006).

As a case in point, aggregate data for computer engineering (CE) majors at UCSB
suggest that only about one-third of entering freshmen graduate in their major and that
nearly half have already left the CE major by the start of their third year (see Figure 1).
Part of this loss is attributable to the fact that freshmen are admitted to the CE pre-major,
and they are required to satisfy certain unit and grade-point requirements to advance to
the CE-major status. Additionally, some attrition due to students discovering that their
talents and interests lie in other disciplines (and thus opting for a change of major) is quite
natural and does not necessarily constitute a loss for the university or society. However, a
high attrition rate, combined with the challenge of attracting top-notch applicants to CE,
does not bode well for our discipline. A greater retention rate will improve the quantity
and quality of our graduates much more effectively than simply admitting more students,
as the latter approach would require digging deeper into the applicant pool.

Because of the need to master foundational and basic-science notions before dealing
with their real-world applications, college students in engineering and technology usually
do not come in full contact with their chosen discipline until the third year of their studies.
This situation is detrimental to keeping students motivated. Engineering freshmen simply
see their early college experience in the same vein as their high school coursework, given

262 B. Parhami

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9



that they are not presented with a context relating mathematics, physics, or even
programming courses to practical problems in their chosen fields of study. Many students
in computer science and engineering excel in mathematics, physics, and other such
subjects, but are averse to studying them in isolation; after all, they could have chosen a
basic science major if they were so inclined. Students who are less at ease with these
foundational topics suffer even more.

There is, therefore, a need to offer the entering freshmen a glimpse of the types of
problems that they will be facing as practicing engineers or as scientists at the frontiers of
research. Of course, one cannot discuss such problems in highly technical terms, given that
most freshmen would not be able to grasp the underlying ideas. This is where puzzles enter
the picture, allowing us to introduce the topics in a comprehensible and entertaining way.

The role of puzzles in instruction

Many engineering problems are puzzlelike. Pieces of the puzzle are provided to engineers
in the form of user/customer requirements, technological constraints, professional or
industrial codes, and market realities. The engineer must then craft a product or process
that either meets all these (often conflicting) demands or else provides partial solutions,
with clear justification of the tradeoffs made when meeting all of the specifications is not
possible. Even though all engineers deal with puzzlelike undertakings, computer engineers
seem to face a much greater share of such problems. Puzzling problems are, of course,
plentiful in the research arena, regardless of the discipline.

So, what exactly is a puzzling problem? In a very interesting resource for teaching of
physics, the authors use the term ‘‘puzzling problem’’ as an antithesis to problems that
‘‘can be solved only through long, complex calculations, which tend to be mechanical and
boring, and often drudgery for students’’ (Gnädig, Honyek & Riley, 2001). According to
this view, a puzzling problem may ask, ‘‘How high could the tallest mountain on Mars
be?’’ Others have used the term to refer to trick questions, or riddles, such as ‘‘Is it against
the law for a man to marry his widow’s sister?’’ or ‘‘How much dirt is there in a 3-meter by
3-meter square hole that is 2 meters deep?’’

In our usage here, a puzzling problem is either an innocent-looking problem that
reveals its depth and degree of difficulty when one begins to formulate a solution for it

Figure 1. Retention of entering freshmen in computer engineering by academic quarter (courtesy of
UCSB Office of Institutional Research and Planning).

Computer Science Education 263

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9



(e.g., rotate faces of a Rubik’s cube until each of the six faces is single-coloured), or a
tough-looking problem that is readily tamed with the correct insight (e.g., draw four
straight lines that connect all nine points in a 3 6 3 grid, without lifting your pen). The
use of puzzles has a long tradition in teaching of mathematics (see puzzle collections on the
website of the Center for Innovation in Mathematics Teaching. http://www.cimt.ply-
mouth.ac.uk/resources/puzzles/default.htm; and Parker, 1955). The author’s own experi-
ence, and relative success, in using puzzles to teach mathematics topics to elementary
school students (see ‘‘Math þ Fun!’’, a permanent website containing a number of
presentations on mathematics and technology topics: http://www.ece.ucsb.edu/*parha-
mi/math-plus-fun.htm) was instrumental in imagining and designing the freshman seminar
course described in this paper. Puzzles have also been advocated as teaching aids in other
disciplines: computer science (see Computer Science Unplugged, learning activities based
on games and puzzles for primary-aged children: http://csunplugged.org/index.php/en/;
Hill, Ray, Blair, & Carver, 2003; Levitin, 2003; Levitin & Papalaskari, 2002), operations
research (Müller-Merbach, 1975), and biology (Franklin, Peat & Lewis, 2003), to name a
few examples. Mathematical and logical puzzles have also been used as tools for honing
students’ problem-solving skills, regardless of the field of study (Averback, 1980).

The puzzling nature of CE problems is best captured by two recent articles. In an
informative article, Lauren Aaronson (2006) demonstrates the relationship between the
immensely popular Sudoku puzzles and the NP-complete class of computational problems
which arise in practically important application domains such as scheduling, network
routing, and gene sequencing. In another insightful article, Brian Hayes (2007) deals with
mechanisms for rearranging train cars in railroad yards, showing how these mechanisms
relate to stacks, queues, and other data structures and associated algorithms. These two
sources were used as bases for two of the 10 lectures in the course described herein (see
Appendices 7 and 9).

The 10 course lectures

In Appendices 1–10, the 10 lectures of the course are discussed briefly. For each lecture, a
figure is supplied which contains example puzzles as well as one key computer engineering
idea related to the puzzles. Appendix headings match the lecture titles, which are also
listed in Table 1 alongside the puzzles used, for ease of reference.

The format of lectures is as follows. At the beginning of each class session, the
instructor introduces a simple puzzle and asks the students to try to solve it. Students are

Table 1. List of discussion topics and the associated puzzles.

Lecture title Lead puzzle

Lecture 1 Easy, hard, impossible! Collatz’s conjecture
Lecture 2 Placement and routing Houses and utilities
Lecture 3 Satisfiability Making change
Lecture 4 Cryptography Secret messages
Lecture 5 Byzantine generals Liars and truth tellers
Lecture 6 Binary search Counterfeit coin
Lecture 7 Task scheduling Sudoku
Lecture 8 String matching Word search
Lecture 9 Sorting networks Rearranging trains
Lecture 10 Malfunction diagnosis Logical reasoning

264 B. Parhami

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9

http://www.cimt.plymouth.ac.uk/resources/puzzles/default.htm
http://www.cimt.plymouth.ac.uk/resources/puzzles/default.htm
http://www.ece.ucsb.edu/~parhami/math-plus-fun.htm
http://www.ece.ucsb.edu/~parhami/math-plus-fun.htm
http://csunplugged.org/index.php/en/


called upon to explain their answers and solution strategies. Next, somewhat more difficult
or elaborate versions of the puzzle are introduced and students are again asked to solve
them. As the students work on these harder puzzles, hints are revealed on the screen to
help them along. This puzzles segment constitutes roughly one-third of the class duration.

In the second segment of the lecture, the instructor provides some background (origin,
historical context, variations) on the puzzles and why they are deemed interesting. She or
he then introduces general solution methods for the puzzles.

The third and final segment of each lecture (roughly one-third of the class duration) is
spent discussing why the puzzles are relevant or similar to computer engineering problems
and how solution methods for the puzzles can be adapted to these engineering and
research endeavors.

Part of the first class session is devoted to introducing the course, describing its
requirements, and defining the nature of puzzling problems. The discussion part of this
first lecture is thus shorter than a typical session. Similarly, the tenth lecture is a bit shorter
to accommodate the administration of instructor and course evaluation surveys, which is a
requirement for every course taught at UCSB.

Implementation and future plans

The course described in the preceding pages has already been offered twice (Parhami,
2008) at UCSB under the title ‘‘ECE 1: Ten Puzzling Problems in Computer Engineering’’.
The two offerings, in spring 2007 and spring 2008, had 41 and 32 enrolled students,
respectively, along with a number of students who just sat in. A formal evaluation of the
course, in terms of its outcomes and curricular impacts, should be conducted after the
course has been offered a few more times and the early enrollees have passed through
upper-division courses in their major.

Puzzling problems in computer engineering are not limited to the 10 presented in
Table 1 and the appendices of this paper. Thus, the following additional topics are
under consideration. These topics may replace some of the current topics or be used to
create a pool of lectures from which the instructor can pick 10 topics for any given
offering of the course. This would create added flexibility for the instructor, allowing
him or her to tailor the course material to the specific focal points of a particular CE
programme. In the following, possible puzzles are listed in parentheses at the end of
each paragraph:

. Computational geometry (Eppstein, 2008): What becomes of lines, circles, and other
shapes when rendered with pixels and how to recover the original forms from their
digitised versions. (Visual tricks and optical illusions)

. Loss of precision (Parhami, 2000): Seemingly simple computations that produce
utterly wrong results. (Logical paradoxes and absurdities)

. Secret sharing (Shamir, 1979): How to give parts of a secret to n people so that any m
of them can cooperate to discover the secret, whereas any group of m 7 1 or fewer
people cannot do so. (Anonymous complainer or whistle-blower)

. Amdahl’s law (Parhami, 2005): Why improving only one aspect of a system’s
behavior may not lead to significant improvement in its overall performance. (River
and bridge crossings)

. Predicting the future (Sloane, 1974): How a system can learn from past events in
order to make good guesses that improve its future performance. (Determining the
next term in a series)

Computer Science Education 265

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9



. Circuit-value problem (Greenlaw, Hoover & Ruzzo, 1995): Example of a problem
that has polynomial-time solution but that cannot be efficiently parallelised. (Parallel
addition based on the carry-select principle)

. Maps and graphs (Feeman, 2002): Problems in digital representation
and manipulation of maps of various kind. (Map/graph colouring and graph
properties)

In the course of evaluating this paper for publication, one of the referees suggested that
the puzzles used for the proposed course could have value as assignments in other courses,
perhaps with a programming component. Thus, the website for our freshman seminar may
be viewed as a resource for instructors of other courses. The same referee envisaged a
workshop or wiki, through which ideas about suitable topics of discussion are exchanged,
with each participant contributing puzzles in his/her own computing subdiscipline. In this
spirit, the author would welcome suggestions from computer science and engineering
instructors and from other interested parties.

Note

1. For more information on this seminar course, see its website at: http://www.ece.ucsb.edu/*
parhami/ece_001.htm

References

Aaronson, L. (2006). Sudoku science: A popular puzzle helps researchers dig into deep math. IEEE
Spectrum, 43(2), 16–17.

Akbulut, A.Y., & Looney, C.A. (2007). Inspiring students to pursue computing degrees.
Communications of the ACM, 50(10), 67–71.

Appalachian State University (2008). Welcome to freshman seminar. Retrieved October 31, 2008,
from: http://www.freshmanseminar.appstate.edu/firstconnections.html

Averback, B. (1980). Problem solving through recreational mathematics. San Francisco: W.H.
Freeman and Company.

Eppstein, D. (2008). The geometry junkyard. Retrieved October 31, 2008, from: http://www.ics.uci.
edu/*eppstein/junkyard/

Feeman, T.G. (2002). Portraits of the earth: A mathematician looks at maps. Providence, RI:
American Mathematical Society.

Franklin, S., Peat, M., & Lewis, A. (2003). Non-traditional interventions to stimulate discussion:
The use of games and puzzles. Journal of Biological Education, 37(2), 79–84.

Gnädig, P., Honyek, G., & Riley, K. (2001). 200 puzzling physics problems, with hints and solutions.
Cambridge, UK: Cambridge University Press.

Greenlaw, R., Hoover, H.J., & Ruzzo, W.L. (1995). Limits to parallel computation: P-completeness
theory. New York: Oxford University Press.

Hayes, B. (2007). Trains of thought: Computing with locomotives and box cars takes a one-track
mind. American Scientist, 95(2), 108–113.

Hill, J.M.D., Ray, C.K., Blair, J.R.S., & Carver, C.A. Jr. (2003). Puzzles and games: Addressing different
learning styles in teaching operating systems concepts. ACM SIGCSE Bulletin, 35(1), 182–186.

IEEE-CS/ACM Joint Task Force on Computing Curricula (2002). Computing curricula 2001:
Computer science. New York: IEEE Computer Society Press.

IEEE-CS/ACM Joint Task Force on Computing Curricula (2006). Computer engineering 2004:
Curriculum guidelines for undergraduate degree programs in computer engineering. New York:
IEEE Computer Society Press.

Jain, B. (2007, September 12). IT skills shortage costing Europe ‘‘billions’’. ZDNet Technology News.
Retrieved October 31, 2008, from: http://news.zdnet.com/2110-9595_22-6207460.html

Levitin, A. (2003). Introduction to the design & analysis of algorithms. Reading, MA: Addison-
Wesley.

266 B. Parhami

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9

http://www.ece.ucsb.edu/~parhami/ece_001.htm
http://www.ece.ucsb.edu/~parhami/ece_001.htm
http://www.freshmanseminar.appstate.edu/firstconnections.html
http://www.ics.uci.edu/~eppstein/junkyard/
http://www.ics.uci.edu/~eppstein/junkyard/
http://news.zdnet.com/2110-9595_22-6207460.html


Levitin, A., & Papalaskari, M.-A. (2002). Using puzzles in teaching algorithms. Proceedings of the
ACM SIGCSE Conference on Computer Science Education, 292–296.

Müller-Merbach, H. (1975). The role of puzzles in teaching combinatorial programming. In B. Roy
(Ed.), Combinatorial programming: Methods and applications (pp. 379–386). Boston, MA: D.
Reidel Publishing Company.

National Association of State Chief Information Officers (2007). State IT workforce: Here today,
gone tomorrow? US NASCIO’s National Survey of the States. Lexington, KY: NASCIO.

O’Connor, M., & Williams, J. (2007). Freshman seminar instructor training manual. Temple
University, Office of the Vice Provost. Philadelphia: Temple University.

Parhami, B. (2000). Computer arithmetic: Algorithms and hardware designs. New York: Oxford
University Press.

Parhami, B. (2005). Computer architecture: From microprocessors to supercomputers. New York:
Oxford University Press.

Parhami, B. (2008). Ten puzzling problems in computer engineering. Retrieved October 31, 2008,
from: http://www.ece.ucsb.edu/*parhami/ece_001.htm

Parker, J. (1955). The use of puzzles in teaching mathematics. Mathematics Teacher, 48, 218–227.
Princeton University (2008). The program of freshman seminars in the residential colleges. Retrieved

October 31, 2008, from: http://www.princeton.edu/pr/pub/fs/
Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612–613.
Sloane, N.J.A. (1974). Find the next term. Journal of Recreational Mathematics, 7(2), 146.
University of California, Santa Barbara (2006). Computer science at the crossroads: Achievements

and challenges. Retrieved October 31, 2008, from: http://www.freshsem.ucsb.edu/seminars
20052006/spring2006/int94jn.php

Computer Science Education 267

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9

http://www.ece.ucsb.edu/~parhami/ece_001.htm
http://www.princeton.edu/pr/pub/fs/
http://www.freshsem.ucsb.edu/seminars20052006/spring2006/int94jn.php
http://www.freshsem.ucsb.edu/seminars20052006/spring2006/int94jn.php


Figure 2. Problems that are equally simple to describe and comprehend can be vastly different in
difficulty. Certain very hard problems are of great practical importance.

Appendix 1. Easy, hard, impossible!

Three number sequences are specified, using very similar structures (see Figure 2). The first sequence
leads to the determination of the greatest common divisor for two numbers, and participating
students need a couple of minutes to realise this. The second is the Fibonacci sequence. Because this
sequence does not end, the students are asked to think about how to determine the jth term or the
first term that exceeds a given integer L. It is fairly unlikely that the students can come up with a
method to solve this problem in class (excluding, of course, the obvious method of computing the
terms, one by one, until the desired term has been reached). Once the formula for the jth Fibonacci
number is revealed, the students appreciate its beauty and how it saves a great deal of time compared
with the brute-force solution. The third example, Collatz’s sequence (Feinstein, 2006), looks no
harder than the first two. When, after some interaction in class, the students are told that no one
knows whether all starting numbers lead to the same ending in this sequence, they find it difficult to
believe. Near the end of the lecture, it is shown that solving Collatz’s conjecture is intimately related
to the programme termination (halting) problem. Presentation of two other innocent-looking but
computationally hard problems, the subset sum problem and the travelling salesperson problem,
concludes the lecture.

Reference

Feinstein, C. A. (2006). The Collatz 3nþ1 conjecture is unprovable. Retrieved October 31, 2008, from:
http://arxiv.org/PS_cache/math/pdf/0312/0312309v16.pdf

268 B. Parhami

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9

http://arxiv.org/PS_cache/math/pdf/0312/0312309v16.pdf


Appendix 2. Placement and routing

Imagine two utility companies and five houses. Is it possible to connect each utility to every house in
a manner that the 10 lines drawn do not intersect? Students quickly discover that a solution does
exist, not only with five houses but with any number of houses that require connection to two
utilities. In graph theoretic terms, the complete bipartite graph K2,n is planar (see Figure 3). What
about the case of three houses and three utilities? A few minutes of experimentation convinces the
students that this classic form of the puzzle has no solution, although they may not be able to
provide a convincing proof; they just know that they keep getting stuck when they try to draw the
last line. Presentation of a simple and elegant proof for the nonplanarity of K3,3, using Euler’s
formula for planar graphs (The Geometry Junkyard, 2005) reinforces this intuition. Nonintersecting
connections are also required for circuits that must be deposited (‘‘printed’’) on a surface. If the six-
vertex graph K3,3 is nonplanar, then there is little hope that the very intricate connections of a typical
electronic circuit can be drawn without intersecting each other. This leads to a discussion of
multilayer printed circuits (such as a two-sided printed circuit board) and the flexibility provided by
more than two layers on modern PC boards and integrated circuit chips.

Reference

The Geometry Junkyard. (2005). Nineteen proofs of Euler’s formula: V7E þ F ¼ 2. Retrieved
October 31, 2008, from: http://www.ics.uci.edu/*eppstein/junkyard/euler/

Figure 3. Connecting utilities to houses with lines that do not cross is akin to connecting points on
a circuit board with wires that do not overlap. Modern integrated circuits and circuit boards have
multiple layers of wiring and are thus not limited by the non-intersection requirement.

Computer Science Education 269

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9

http://www.ics.uci.edu/~eppstein/junkyard/euler/


Appendix 3. Satisfiability

Making change for a certain sum of money using a designated number of coins can be formulated in
terms of a Diophantine equation with constraints (see Figure 4a). Such equations involving integer-
valued variables may or may not have solutions (be ‘‘satisfied’’), but when they do, they usually
admit a family of solutions. After allowing the students to work on this puzzle and find at least one
solution, they are introduced to the tree-search method for finding all possible solutions. This leads
into a discussion of brute-force solution strategies and why some problems do not admit more
efficient solution methods (NP-complete problems, in complexity theory parlance). The special case
of Diophantine equations with two-valued (0 and 1) or Boolean variables is introduced as practically
important for generating tests for logic circuits and other application domains. Of course, freshmen
have not yet studied logic circuits, so outputs of the AND, OR, and NOT logic elements are defined
by algebraic, rather than Boolean, equations. For example, the output f of the circuit shown in
Figure 4b is given by the algebraic equation ab þ (1 7 b)(1 7 c)(1 7 d), where ‘‘þ’’ represents
addition rather than logical OR. In this small example, it is easy to see that the equation is satisfied
for a ¼ b ¼ 1 (c and d do not matter) or b ¼ c ¼ d ¼ 0 (a does not matter).

Reference

Roussel, O. (2008). The SAT game. Retrieved October 31, 2008, from: http://www.cril.
univ-artois.fr/*roussel/satgame/satgame.php? level¼1&lang¼eng

Figure 4. Satisfiability is an important problem in many areas of computer engineering. Other than
the puzzles listed here, students are introduced to an interactive online game based on satisfiability
(Roussel, 2008).

270 B. Parhami

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9

http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php? level=1&lang=eng
http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php? level=1&lang=eng
http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php? level=1&lang=eng
http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php? level=1&lang=eng


Appendix 4. Cryptography

The simplest codes for secret communication, substitution ciphers, provide a good source of
engaging puzzles (see Figure 5). Students participate in decoding a few simple substitution and other
ciphers, before being introduced to their weaknesses. Though decoding such ciphers may take hours
by hand, or prove impossible in some cases, programmed solution methods (using a combination of
exhaustive search and statistical analyses based on the frequencies of letters, letter pairs, triplets, and
so on) make decoding simple and thus limit their practical value. Students are shown pictures of a
few interesting cipher machines, including the ancient cylindrical device composed of rotating
wheels, and the German Enigma whose very sophisticated code was broken by a team of British
mathematicians led by Alan Turing (Sale, 2008). Key-based ciphers are then introduced and their
encoding and decoding algorithms discussed, including those of the data encryption standard (DES).
Such ciphers are less vulnerable to statistical attacks, especially if the key is fairly long. However, the
need for regular change in keys (for the same reason as password changes) creates the burden of key
interchange among communicating parties and possible breach of security during exchange. This has
led to public-key cryptography. The lecture ends by showing how public-key cryptography works
and how it enables the use of electronic signatures for authentication.

Reference

Sale, T. (2008). The Enigma Cipher Machine. Retrieved October 31, 2008, from: http://
www.codesandciphers.org.uk/enigma/index.htm

Figure 5. Secret communication has been of interest since ancient times. Modern computers
controlling sensitive data banks or e-commerce sites use encryption to ensure data integrity and
privacy.

Computer Science Education 271

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9

http://www.codesandciphers.org.uk/enigma/index.htm
http://www.codesandciphers.org.uk/enigma/index.htm


Appendix 5. Byzantine generals

The setting for ‘‘liars and truth-tellers’’ puzzles (Saka, 2007) is introduced and a few easy to
moderately hard puzzles are solved with student participation (see Figure 6). Then, the presence of a
third tribe, the ‘‘randoms’’, is postulated. Members of this new tribe lie occasionally, rather than
consistently. Puzzles then show that randoms are much harder to deal with than liars. This leads
naturally into a discussion of Byzantine generals camped outside an enemy city and communicating
via messengers in their attempt at reaching agreement on a course of action: attack or retreat.
Because some of the generals may be traitors who send inconsistent messages in their attempt to
confuse the loyal generals, a protocol is needed to ensure that all loyal generals obey the
commanding general if he is loyal or else they all decide on the same course of action (does not
matter whether they attack or retreat in this case). A partial attack would be disastrous, because the
enemy is too strong to be defeated with partial force. Near the end of the lecture, it is shown how the
Byzantine generals problem represents the difficulty of reaching agreement (needed, e.g., in
transaction processing) in a distributed computing environment.

Reference

Saka, P. (2007). How to think about meaning. New York: Springer.

Figure 6. The Byzantine generals problem adds a twist to the ‘‘liars and truth-tellers’’ puzzle.
Traitorous generals (representing malicious or worst-case failures in interconnected systems) lie, but
not consistently, and are thus harder to deal with than consistent liars (detectable when in minority).

272 B. Parhami

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9



Appendix 6. Binary search

Imagine being presented with three gold coins, one of which is known to be a counterfeit that is
lighter than the two genuine coins. How can you identify the counterfeit coin by means of a balance
(that allows you to determine whether two things weigh the same) only once? More complicated
versions of this puzzle postulate that the counterfeit coin is different, but not necessarily lighter.
Students participate in solving several such puzzles before being shown how the solution method
subdivides the search space until a single candidate remains (Du & Hwang, 2000). This leads to a
discussion of binary search algorithm for finding an item within a sorted or ordered list of items
(Figure 7). Examples include finding the name of a student in the class roster and looking up a word
in a dictionary. It is then mentioned that this method, though quite efficient for a static list, creates a
heavy overhead of maintaining the sorted order of the list when it is highly dynamic. In the extreme
case when updates and searches alternate, an unordered list with linear search or an ordered list with
binary search have comparable performance characteristics. Binary search trees are then introduced
as a way to make both searches and updates efficient. The lecture concludes by showing how the
binary search technique can be used in other contexts, such as finding a root of an equation.

Reference

Du, D-Z. Hwang, F. K. (2000). Combinatorial group testing and its applications (2nd ed.). Singapore:
World Scientific.

Figure 7. In solving counterfeit-coin puzzles, one uses a divide-and-conquer process to pinpoint the
counterfeit coin, much as one converges to a sought element in binary search of a sorted list.

Computer Science Education 273

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9



Appendix 7. Task scheduling

Mini and standard versions of Sudoku, a puzzle that has become quite popular in recent years (seeWeb
Sudoku, a website offering free online Sudoku games in four levels of difficulty: easy, medium, hard,
evil. http://www.websudoku.com/), are introduced (see Figure 8) and students spend a few minutes on
filling the puzzle entries. Easy and difficult Sudoku puzzles are characterised and methods for solving
them outlined. The problem of scheduling is introduced in terms of assigning required computer
engineering courses to different quarters, while ensuring that a per-quarter unit limit is honoured and all
prerequisites for each course are taken before the course. The constraints for entries in Sudoku puzzles
are likened to those present in task scheduling (Aaronson, 2006). It is noted that scheduling theory
predates electronic computing. Job shop scheduling, where machines in a shop must be used with great
efficiency in completing tasks that require various amounts of time on different machines, produced
much of the basic theory that is in use today. Scheduling of trucks and other resources entails similar
techniques. Different types of tasks (unit-time or arbitrary, with or without release times and deadlines),
task interdependence (reflected in a task graph), scheduling discipline (preemptive versus
nonpreemptive), and criteria for judging the quality of a schedule are discussed briefly. The difficulty
of optimal scheduling, and the consequent need for heuristics, is discussed and a list-scheduling scheme
is presented via an example as a representative class of heuristics.

Reference

Aaronson, L. (2006). Sudoku science: A popular puzzle helps researchers dig into deep math. IEEE
Spectrum, 43(2), 16–17.

Figure 8. The constraints to be satisfied when solving a Sudoku puzzle are quite similar to
constraints encountered in scheduling dependent tasks on a multiprocessor system.

274 B. Parhami

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9

http://www.websudoku.com/


Appendix 8. String matching

Word search puzzles are among the most familiar for students, because they are used extensively in
K–12 grades as learning tools. Teachers may create (using free services on the Internet; see Discovery
Education’s Puzzlemaker, a website with online tool for creating word search and other puzzles.
http://puzzlemaker.discoveryeducation.com/) word search puzzles containing key terms and concept
from a recent lesson in order to reinforce student learning. The word search puzzle shown in Figure 9
was created in this way. An interesting version of the word search puzzle does not provide a word list
but rather supplies clues as to what must be located (for example, names of four countries in
Europe). Such puzzles, though more interesting and challenging, are combinations of standard word
search and crossword puzzles and are thus less relevant to the topic of string matching. After noting
that 2D word search puzzles can be readily converted to 1D string matching problems via unrolling
the 2D structure in row-major, column-major, or diagonal order, the problem of finding a pattern
string within a data string is introduced. The brute-force approach (sliding window algorithm) to
string matching is discussed and the need for more efficient algorithms is established. The two
approaches of preprocessing the pattern to derive a finite-state machine for an O(n)-step algorithm,
and preprocessing the data string to generate various indices for subsequent use with different
patterns are introduced. Some Google searches are performed to accentuate the practical application
of indexing for speeding up searches.

Figure 9. Finding a short string (pattern) in a much longer string (data) is like finding a needle in a
haystack. The naı̈ve sliding-window algorithm can be improved upon in many ways.

Computer Science Education 275

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9

http://puzzlemaker.discoveryeducation.com/


Appendix 9. Sorting networks

Sorting or rearranging train cars, using various types of attached side tracks, produces many
interesting puzzles (Hayes, 2007). A few simple puzzles, such as sorting the numbered cars of
Figure 10a, so that car 1 is attached to the locomotive and car 4 is at the end of the train, are presented
to students and several minutes are allowed for their solution. Then, it is observed that a stub (lead)
acts as a stack or last-in, first-out (LIFO) structure, while a siding is capable of acting as a queue or
first-in, first-out (FIFO). Implications of these observations on the sorting algorithm are discussed.
The puzzle segment of the lecture culminates in a train passing puzzle: two trains must pass each other
on a single track using a siding that can hold only one car or one locomotive, and nothing else. The
parallel sorting problem of Figure 10b is then introduced. Labelled train cars are on numbered
parallel tracks, one car per track, and after a number of compare–exchange steps, each car must
appear on the track bearing the same label. A compare–exchange step lets a pair of cars straight
through if they appear in proper order and exchanges their tracks if they are out of order. This leads
naturally into topic of sorting networks built of two-input sorters (comparators) as building blocks. It
is noted that synthesis and verification of sorting networks is nontrivial. The 0–1 principle (Parhami,
1999) is introduced as a design and verification aid and is applied to a few simple example networks.

References

Hayes, B. (2007). Trains of thought: Computing with locomotives and box cars takes a one-track
mind. American Scientist, 95(2), 108–113.

Parhami, B. Introduction to parallel processing: Algorithms and architectures. New York: Plenum
Press.

Figure 10. Rearranging train cars using stubs (leads), sidings, turnaround loops, and Wye
interchanges leads into a discussion of sorting algorithms and sorting networks.

276 B. Parhami

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9



Appendix 10. Malfunction diagnosis

Logical reasoning is used to derive information about the health of a distributed computing system
from local testing outcomes. This topic is introduced via a puzzle in which a group of people sharing
a common skill or attribute try to determine if there are any impostors among them. For example,
medical doctors (MDs) may ask specialised questions of a person in order to determine whether she
or he is a legitimate MD or an impostor. Suppose that the diagnostic power of such a question is
100%, meaning that an MD can determine for sure whether another person is an MD. In the
simplest case, each person asks one question of a single person, as depicted in the circular
arrangement of Figure 11. The students readily determine that a single impostor is always correctly
identified by analysing the outcomes of the n questions, whereas two or more impostors would create
a problem. After posing a number of other puzzles of this type, the instructor relates the puzzle to
malfunction diagnosis in distributed multicomputer systems (Somani, Agarwal & Avis, 1987) where
each machine is capable of testing a number of other machines and the diagnostic syndrome (a string
of 0s and 1s representing the test outcomes) is used to identify the malfunctioning unit(s) via
deduction or by consulting a syndrome dictionary. Deriving malfunction diagnostic capabilities from
a testing graph, and the inverse problem of designing a suitable testing graph for a desired diagnostic
capability, are then discussed.

Reference

Somani, A. K., Agarwal, V. K. & Avis, D. (1987). A generalized theory for system level diagnosis.
IEEE Transactions on Computers, 36(5), 538–546.

Figure 11. Malfunction diagnosis requires logical reasoning based on test outcomes. The problem
is akin to identifying all the randoms among a group of truth-tellers and randoms (see Appendix 5).

Computer Science Education 277

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
9
:
5
2
 
2
8
 
M
a
r
c
h
 
2
0
0
9


