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Abstract—Recently, Melhem presented a ”new” class of low-diameter

interconnection (LDI) networks in this journal [10]. We note that LDI networks are

the same as the previously known generalized de Bruijn graphs, point out an error

in the decomposition of LDI networks into permutations, and find that the correct

decomposition scheme is an instance of arc coloring for coset graphs. Hence, we

pursue a number of general results on arc coloring of coset graphs that can be

applied to this particular decomposition problem as well as within many other

contexts, including complete arc coloring and normality of coset graphs.

Index Terms—Arc coloring, Cayley graph, connected regular digraph, coset

graph, generalized de Bruijn digraph, group, network isomorphism.
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1 INTRODUCTION

CAYLEY (di)graphs and coset graphs have been advanced and
extensively studied as interconnection network models for parallel
processing [1], [2], [6]. For example, the well-known hypercube,
butterfly, cube-connected cycles, and honeycomb networks are
Cayley graphs, while de Bruijn and shuffle-exchange networks are
coset graphs [5], [6], [11], [13], [14], [15], [16], [17]. Throughout the
history of parallel processing, many interconnection schemes have
been rediscovered by researchers who were either unaware of
equivalent existing networks or else, due to notational differences
and the ad hoc nature of much of the work in the field, could not
relate their discoveries to prior efforts. This situation would
improve immensely if foundational studies were given more
attention and if Heydemann’s suggestion that more group theory
be used to find properties of Cayley digraphs and coset graphs [6]
were followed.

Melhem’s recent introduction of a class of low-diameter

interconnection (LDI) networks [10] constitutes an example of the

rediscoveries just mentioned. In this correspondence, we show that

LDI networks are isomorphic to the previously known generalized

de Bruijn graphs and point out an error in the method offered for

decomposing LDI networks into permutations. Noting that our

corrected decomposition scheme is an instance of arc coloring for

coset graphs, we pursue a number of general results on arc

coloring of coset graphs that can be applied to this particular

decomposition problem as well as within many other contexts,

including complete arc coloring and normality of coset graphs.

2 BACKGROUND AND DEFINITIONS

Before presenting our main points, we need some terminology and

notational conventions. Assume that � ¼ ðV ;EÞ is a connected

d-regular digraph, with loops or ði; iÞ arcs allowed, and let C ¼
fc1; . . . ; cdg be the set of arc colorings of �, where V ¼ f1; 2; . . . ; ng
is the vertex set and E is the arc set of �. Elements of C are

permutations on V such that ciðxÞ ¼ y iff ðx; yÞ is an arc of � with

color ci (see [5]). Now, let P ¼ hc1; . . . ; cdi be the permutation

group generated by C and CosðP; P1; CÞ be the coset graph of P

with respect to P1 and C, where P1 is the stabilizer of 1, the identity

element in P . Then, we have � ffi CosðP; P1; CÞ.
Assume that P ¼ P1g1 [ : . . . [ P1gn is a decomposition of right

cosets of P with respect to P1 such that 1gi ¼ i, i ¼ 1; 2; . . . ; n. Then,

the vertex set of CosðP; P1; CÞ is fP1g1; . . . ; P1gng and the arc set is

fðP1gi; P1gicÞ j c 2 C; i ¼ 1; 2; . . . ; ng. It is easily shown that Sn ¼
ðSnÞ1g1 [ . . . [ ðSnÞ1gn is a decomposition of right cosets of Sn with

respect to ðSnÞ1, where Sn is the symmetric group on V .
Informally, decomposition of an n-vertex d-regular digraph into

a set of d permutations means identifying disjoint subsets Ei of arcs

such that E ¼ [Ei, each subset Ei contains n arcs, and every node

has one incoming and one outgoing arc in any Ei. Such network

decompositions are of interest because the subsets correspond to

conflict-free routing steps with maximal throughput, under the

assumption that each node can handle one incoming and one

outgoing message at a time (single-port communication). They also

point to the network’s realizability by permutation networks. Note

that if we associate each subset Ei with a color, the preceding

decomposition corresponds to coloring of arcs using d different

colors so that each incoming (outgoing) arc for any given vertex

has a distinct color.
We refer the reader to [4] for additional background on graph

theory and group theory and to [9] and [12] for key notions of

interconnection networks.

3 LDI NETWORKS AND THEIR DECOMPOSITION

An n-node, d-regular LDI network [10], LDIðn; dÞ, has its nodes

numbered 0 to n� 1, with an arc leading from node i to node j iff

j ¼ idþ amod n, for some a in f0; 1; . . . ; d� 1g. LDI networks,

presented as “new” interconnections in [10], correspond precisely

to generalized de Bruijn digraphs [3], [7], [8]. Moreover, the

decomposition of LDI networks into permutations is incorrectly

specified in [10]. For example, by (2) of [10], which becomes ck ¼
fhi; idþ amod ni j i ¼ 0; 1; . . . ; n� 1 and a satisfying k ¼ bi=dc þ
amod dg using our notation, the 0th permutation is c0 ¼
fh0; 0i; h3; 0i; . . .g for LDIð7; 2Þ and c0 ¼ fh1; 4i; h8; 4i; . . .g for

LDIð10; 4Þ. These c0 sets clearly do not represent permutations.
To derive a correct decomposition, let h ¼ gcdðn; dÞ, the greatest

common divisor of n and d. Also, let i ¼ ðn=hÞtþ r, where t 2
f0; 1; . . . ; h� 1g and r 2 f0; 1; . . . ; n=h� 1g. Then, the d permuta-

tions ck, k ¼ 0; 1; . . . ; d� 1, may be defined as:

ck ¼ fhi; idþ k� tmod niji ¼ 0; 1; . . . ; n� 1g:

In fact, for 0 � a < b < h and 0 � ra; rb < n=h, we have ðrb � raÞd 6¼
ðb� aÞmod n and, thus, ðna=hþ raÞdþ k� a 6¼ ðnb=hþ rbÞdþ k
�bmod n. Thus, our revised ck do represent permutations.
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Note that fck j k ¼ 0; . . . ; d� 1g is an arc coloring of LDIðn; dÞ,
that is, a mapping that assigns one of d colors to each arc such that
the arcs incoming to or outgoing from any vertex have different
color assignments. This motivates us to look at arc colorings for
d-regular digraphs.

4 ARC COLORING OF COSET GRAPHS

We start by proving the following result:

Lemma 1. The coset graph of Sn with respect to ðSnÞ1 and C, viz.
CosðSn; ðSnÞ1; CÞ, is isomorphic to � ¼ CosðP; P1; CÞ.

Proof. Define the correspondence f : P1gi ! ðSnÞ1gi, i ¼ 1; 2; . . . ; n.
Clearly, f is a bijective mapping. Let P1gic ¼ P1gj for some j.
Then, f : P1gj ! ðSnÞ1gj ¼ ðSnÞ1gic and, so, f preserves adja-
cencies. Similarly, we can prove the f�1 also preserves
adjacencies. The conclusion that f is an isomorphism from �
to CosðSn; ðSnÞ1; CÞ follows. tu

By Lemma 1, we know that any connected regular digraph �
can be expressed as a coset graph of the form CosðSn; ðSnÞ1; CÞ.
Now, let S ¼ ðSnÞ n

Sn
i�1ðSnÞi. Then, we have the following:

Lemma 2. A coset graph � ¼ CosðSn; ðSnÞ1; CÞ is isomorphic to a
connected regular digraph � ¼ CosðP; P1; CÞ with P ¼ hCi iff � is
connected and CC�1 � 1 [ S.

Proof. Assume that � ¼ CosðSn; ðSnÞ1; CÞ ffi �, where � ¼
CosðP; P1; CÞ is a connected regular digraph with P ¼ hCi.
Then, P1gic 6¼ P1gic1, where c; c1 2 C and c 6¼ c1. Consequently,
by virtue of i ¼ 1gi , cc�1

1 62
Sn
i�1 g

�1
i P1gi ¼

Sn
i�1 Pi, and thus

cc�1
1 2 S. Hence, CC�1 � 1 [ S. Conversely, if � is connected

and CC�1 � 1 [ S, then ðSnÞic 6¼ ðSnÞic1 and, so, Pic 6¼ Pic1,
where c; c1 2 C and c 6¼ c1. Thus, by Lemma 1, � is isomorphic
to the connected regular digraph � ¼ CosðP; P1; CÞ, where
P ¼ hCi. tu

According to Lemma 2, in order to study connected regular
digraphs, we only need to study special kinds of connected coset
graphs CosðSn; ðSnÞ1; CÞ with CC�1 � 1 [ S. In the discussion to
follow, all regular digraphs considered are connected.

N o w , s u p p o s e t h a t � ¼ CosðSn; ðSnÞ1; DÞ a n d � ¼
CosðSn; ðSnÞ1; CÞ are two regular digraphs, where DD�1; CC�1 �
1 [ S: Consider the mapping �: ðSnÞ1gi ! ðSnÞ1g�ðiÞ, where
�ðiÞ ¼ i�, i ¼ 1; 2; . . . ; n. Then, ðSnÞ1g�ðiÞ ¼ ðSnÞ1gi� by 1gi ¼ i and
we can prove the following:

Theorem 1. The mapping � is an isomorphism from � to � iff ðSnÞiD ¼
ðSnÞi�C��1 for i ¼ 1; 2; . . . ; n.

P r o o f . C o n s i d e r t h e m a p p i n g �: ðSnÞ1gi ! ðSnÞ1g�ðiÞ,
i ¼ 1; 2; . . . ; n. Assume that ðSnÞ1gid ¼ ðSnÞ1gk, d 2 D. Then,
� preserves adjacency iff there exists ci 2 C such that

ðSnÞ1g�ðkÞ ¼ ðSnÞ1g�ðiÞci, that is, ðSnÞ1gk� ¼ ðSnÞ1gi�ci, since
ðSnÞ1g�ðiÞ ¼ ðSnÞ1gi�. This yields ðSnÞ1gid ¼ ðSnÞ1gi�ci��1. Thus,
we find that � preserves adjacency iff ðSnÞ1giD � ðSnÞ1gi�C��1,
that is, iff ðSnÞiD � ðSnÞi�C��1. Similarly, we can prove that ��1

preserves adjacency iff ðSnÞi�C��1 � ðSnÞiD for i ¼ 1; 2; . . . ; n.
Consequently, � is an isomorphism from � to � iff ðSnÞiD ¼
ðSnÞi�C��1 for i ¼ 1; 2; . . . ; n. tu

Corollary 1. The mapping � is an automorphism of � iff ðSnÞiC ¼
ðSnÞi�C��1 for i ¼ 1; 2; . . . ; n.

Let G ¼ Autð�Þ be the automorphism group of �. Then, by
Corollary 1, G ¼ f� 2 Sn j ðSnÞiC ¼ ðSnÞi�C��1, for i ¼ 1; 2; . . . ; ng.
Let A ¼ f� 2 Sn j �C��1 ¼ Cg. Then, A � G, that is, A is a
subgroup of G.

As an application of Theorem 1, we consider the problem of
complete coloring of regular digraphs. Let � ¼ CosðSn; ðSnÞ1; DÞ be
a connected regular digraph. According to [5], C � Sn is a
complete coloring of � if hCi ¼ Sn and � ffi �, where � ¼
CosðSn; ðSnÞ1; CÞ is a connected regular digraph. Thus CC�1 �
1 [ S and � ffi CosðSn; ðSnÞ1; C�Þ for � 2 Sn. By Theorem 1, we
know that C � Sn is a complete coloring of � iff ðSnÞiD ¼ ðSnÞiC,
i ¼ 1; 2; . . . ; n, CC�1 � 1 [ S, and hCi ¼ Sn. Let T ¼

Tn
i�1ðSnÞiD. If

C � T , CC�1 � 1 [ S, and jCj ¼ jDj, then we have ðSnÞiD ¼
ðSnÞiC: Therefore, we have arrived at the following result:

Theorem 2. The set C � Sn is a complete coloring of � iff C � T ,

CC�1 � 1 [ S, jCj ¼ jDj, and hCi ¼ Sn.

Fig. 1 is a complete digraph Kþ4 with loops, whose coset graph
representation is CosðP; P1; DÞ, with P ¼ hð1234Þi hð13Þi,
P1 ¼ hð24Þi, D ¼ fð1234Þ; ð1432Þ; ð13Þ; ð24Þg. T h e g r a p h
CosðS4; ðS4Þ1; CÞ in Fig. 2 is a complete coloring of the one in
Fig. 1, where C ¼ fð1234Þ; ð132Þ; ð143Þ; ð24Þg.
Remark 1. Finding an efficient algorithm for determining whether

a regular digraph possesses a complete coloring is an open
problem worthy of further research.

Let us now consider another application of Theorem 1 to the
problem of normality of Cayley digraphs. Let P be a finite group
and C � P . The Cayley digraph CayðP;CÞ of P with respect to C

has the vertex set P and the arc set fðg; gcÞ j g 2 P; c 2 Cg. Now, let
X ¼ CayðP;CÞ, G ¼ AutðXÞ, and LðP Þ be the left regular
transformation group. The Cayley graph X is called normal if
LðP Þ is a normal subgroup of G. Letting L ¼ LðP Þ; we have
X ffi CosðL;L1; CÞ, the coset graph of L with respect to L1 and C,
where 1 is the identity of P . We have L1 ¼ e, the identity of L.
By Theorem 1, we have G ¼ f� 2 Sn j ðSnÞiC ¼ ðSnÞi�C��1 for
i ¼ 1; 2; . . . ; ng, where n ¼ jP j. Let AutðP;CÞ ¼ f� 2 AutðP Þ j C� ¼
Cg: We can now establish the result of Theorem 3 directly from the
following proposition:
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Fig. 1. CosðP; P1;DÞ, with P ¼ hð1234Þi hð13Þi, P1 ¼ hð24Þi, D ¼ fð1234Þ; ð1432Þ;
ð13Þ; ð24Þg.

Fig. 2. CosðS4; ðS4Þ1; CÞ, with C ¼ fð1234Þ; ð132Þ; ð143Þ; ð24Þg, is a complete

coloring of the digraph in Fig. 1.
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Proposition 1. If P ¼ hCi, then we have A ¼ LðP ÞAutðP;CÞ, where

A ¼ f� 2 Sn j �C��1 ¼ Cg.
Proof. We first note that, according to [18], NGðLðP ÞÞ ¼

LðP ÞAutðP;CÞ: Since P ¼ hCi, we have A � NGðLðP ÞÞ. On

the other hand, we also have LðP ÞAutðP;CÞ � A. Thus,

A ¼ LðP ÞAutðP;CÞ. tu
Theorem 3. If P ¼ hCi, then X is normal iff G ¼ A.

We conclude this section with an example.

Example 1. The complete graph K4 is normal as a Cayley graph

of the group Z2 � Z2. Let C ¼ fð12Þð34Þ; ð13Þð24Þ; ð14Þð23Þg,
P ¼ hCi. Then , P ffi Z2 � Z2, X ¼ CayðP;CÞ ¼ K4, G ¼
AutðXÞ ¼ S4: Let � 2 G, then �C��1 ¼ C and, thus,

� 2 A ¼ f� 2 S4 j �C��1 ¼ Cg. Hence, X ¼ K4 is normal as

the graph CayðP;CÞ.

5 CONCLUSION

This study was motivated by a class of low-diameter interconnec-

tion networks presented by Melhem [10]. We have shown that LDI

networks are identical to the previously known generalized de

Bruijn graphs, exposing and correcting an error in the proposed

decomposition of such networks into permutations. In addition,

we have shown that the corrected decomposition is an instance of

arc coloring of coset graphs. This led us to the derivation of some

general results on arc coloring of coset graphs, whose applications

include complete arc colorings and normality of coset graphs.
Finding an efficient algorithm for constructing a complete arc

coloring for a coset graph is an interesting open problem. We

believe that our results will find additional applications in network

design and evaluation and plan to pursue a number of problems in

this regard.
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