Double-least-significant-bits 2's-complement
number representation scheme with bitwise
complementation and symmetric range

B. Parhami

Abstract: A scheme is proposed for representing 2’s-complement binary numbers in which there
are two least-significant bits (LSBs). Benefits of the extra LSB include making the number rep-
resentation range symmetric (i.e. from —2 ! to 257! for k-bit integers), allowing sign change
by simple bitwise logical inversion, facilitating multiprecision arithmetic and enabling the trunca-
tion of results in lieu of rounding. These advantages justify the added storage and interconnect costs
stemming from the extra bit. Operation latencies show little or no change relative to conventional
2’s-complement arithmetic, thus making double-LSB representation attractive.

1 Introduction

Novel number representation systems continue to be of
much interest in computer arithmetic, with contributions
appearing regularly in the main forums of the field. Even
though commonly used representations (2’s complement
for fixed-point and ANSI/IEEE 754 standard for floating-
point numbers) have achieved ubiquity as interchange and
storage formats, there is still much room for innovation in
the design of internal number representation formats to
achieve speed, compactness and power efficiency in arith-
metic circuit implementations [1]. Furthermore, certain
application-specific integrated circuits and system-on-chip
designs that do not need to interface with other components
at the level of number representation formats can use any
format that best suits the application requirements. This is
where non-standard and exotic representations, such as log-
arithmic [2] and residue [3] number systems, find their
niches.

A scheme is proposed for representing 2’s-complement
binary numbers in which there are two least-significant
bits (LSBs). The extra LSB (ELSB) of such a double-LSB
(DLSB) representation serves several purposes. It makes
the number representation range symmetric, that is, from
=21 to 287! for k-bit integers instead of —2°' to
25~ — 1 for ordinary 2’s complement, allows numbers to
be negated by simple bitwise logical inversion, facilitates
multiprecision arithmetic and enables the truncation of
results in lieu of rounding. Furthermore, it allows unsigned
integer values in the range [0, 2*] to be represented faith-
fully, which is important in certain applications, such as
when residues modulo 2+ 1 are of interest; a standard
binary format of width k 4 1 bits leads to the wider range
[0, 2*1—1], covering values that are not proper
modulo-(2* 4 1) residues.

© The Institution of Engineering and Technology 2008
doi:10.1049/iet-cds:20070235
Paper first received 9th July and in revised form 10th October 2007

The author is with the Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106-9560, USA

E-mail: parhami@ece.ucsb.edu

IET Circuits Devices Syst., 2008, 2, (2), pp. 179-186

In a way, the DLSB representation combines the advan-
tages of 2’s-complement and 1’s-complement number rep-
resentation systems in terms of arithmetic efficiency. The
aforementioned advantages justify the added storage and
interconnect costs stemming from the extra bit. It is
shown that basic arithmetic operations can be performed
on DLSB numbers with little or no overhead in time and
circuit complexity compared with those for ordinary
2’s-complement numbers. This makes DLSB representation
attractive [4]. One application area, for which DLSB rep-
resentation appears to be a perfect match and does not
imply any redundancy, is also pointed out.

DLSB representation constitutes a redundant number
system [5, 6] that uses k+ 1 bits to represent a set of
values covering roughly the same range as k-bit unsigned
or 2’s-complement system. The redundancy is at the absol-
ute minimum of one bit, thus making the added cost trivial.
With the exception of —2%~ ! and 27, every value has two
different representations in DLSB format. This redundancy
proves beneficial in performing multiprecision arithmetic
operations and in rounding steps needed in real-number
arithmetic. With regard to circuit implementations, conven-
tional design strategies based on ordinary or positively
weighted bits (posibits denoted in diagrams by heavy dots
‘e”) and negatively weighted bits (negabits denoted in our
extended dot notation by small hollow circles ‘o’) can be
applied directly [7], thus allowing the use of standard,
fully developed and highly optimised arithmetic circuit
components, such as binary full adders, column compres-
sors and carry acceleration structures.

The rest of this paper is organised as follows. Section 2 is
devoted to the introduction of DLSB numbers and their fun-
damental properties, covering in particular the operations of
negation and conversion to/from ordinary 2’s complement.
In Section 3, addition and subtraction algorithms for the
DLSB representation format, including carry-save addition
of several DLSB numbers are discussed. Section 4 covers
the multiplication algorithms and associated hardware,
using serial or parallel (array or tree) implementations.
Section 5 deals with division and square rooting,
implemented through digit recurrence or convergence
methods. In Section 6, support operations, such as shifts
and rounding, that are needed in floating-point arithmetic,

179

are presented. Section 7 is devoted to multiprecision arith-
metic, using a generalised signed-digit (GSD) formulation.
Conclusions and directions for further research appear in
Section 8. A list of abbreviations and key notations is pre-
sented in Table 1 for ease of reference.

2 DLSB numbers

Consider an unsigned binary or 2’s-complement number
X = (Xp—1Xg—2 ... X1Xp - X—_1X_3 ... X_))wo and attach an
ELSB to it. The resulting DLSB unsigned or
2’s-complement (DLSB-2u or DLSB-2¢) number is shown
as X = (Xj—1Xp—2 ... X1Xo - X—1X—2 ... X—|X_)prspou OF
X = (xk_lxk_2 e XX X—1X—2 ... x_,|)_(_1)DLSB_20, with the
understanding that an underlined uppercase digit, separated
from the main part of the representation by a vertical bar,
has the same weight as the digit to its left. For convenience,
such a DLSB number is called a (k 4+ /)-bit number, even
though its representation really encompasses k + [+ 1 bits.

Example 1: The four-bit DLSB-2¢ number (10.11] 0)p sp-2c
denotes —2 4 1/2 + 1/4 = —1.25; the same bit string rep-
resents 2+ 1/2+1/4=2.75 as an unsigned DLSB
number.

Example 2: The four-bit DLSB-2u number (11.01]
Dprspou denotes 2+ 1+ 1/4 +1/4 =3.5; the same bit
string corresponds to —2+1+1/44+1/4=-0.5 as a
2’s-complement DLSB number.

Except where noted, our discussion will be limited to
integers; that is, k-bit DLSB numbers with (k 4 1)-bit rep-
resentations and the radix point at their extreme right.
However, all of our results can be extended trivially to
any fixed-point format.

Table 1: List of abbreviations and key notations

. positively weighted bit (posibit)

o negatively weighted bit (negabit)

2c binary 2's complement

2u binary unsigned

DLSB double LSB, used to refer to both the unsigned
and 2's-complement versions

DLSB-2¢ double LSB, 2's-complement

DLSB-2u double LSB, radix-2 unsigned

ELSB extra LSB (symbolically, ELSB is shown in
uppercase and underlined; e.g. Xo)

FA full adder (single-bit binary adder)

f value of the fractional part of a number to be
rounded to an integer

GSD generalised signed digit

h shift amount

k number of integer positions in a fixed-point
number

1 number of fractional positions in a fixed-point
number

LSB least-significant bit

MSB most-significant bit

ulp unit in least(-significant) position; 1 for integers

€ signal indicating that an incoming transfer will

be in [1, 2] rather than [0, 1]

OAND: OOR sticky bits used for floating-point rounding

180

Fig. 1 depicts the various representations of DLSB
numbers used in this paper. The ELSB can increase the
numerical value of a 2’s-complement number by ulp (unit
in least position, 1 for integers) making the number rep-
resentation range fully symmetric, that is, from —27' to
251 For example, the range of four-bit signed integers,
with five-bit DLSB representations, is from —8 to +8.
This symmetry is the first advantage of DLSB-2c represen-
tation over the ordinary 2’s-complement format. It means,
for example, that negation (sign change) can never lead to
overflow. Note that, in Fig. lc, the leftmost negabits
would change to posibits if unsigned numbers are
considered.

Except for the smallest and largest representable
DLSB-2¢ values, that is, —2* and +2* for integers, each
value has two different representations: one with
ELSB = 0 and the other with ELSB = 1. Thus, the DLSB
number system is redundant. The redundancy includes 0,
which has an all-Os and an all-1s representation in
DLSB-2c. This is one disadvantage of the proposed rep-
resentation and makes zero detection somewhat more diffi-
cult (similar to 1’s complement). In other words, a zero
detection circuit must be formed from an AND tree, to
detect the all 1s pattern, and an OR tree, whose complemen-
ted output signals the all Os pattern. Note that the represen-
tation of zero remains unique in DLSB-2u.

As in 1’s complement format, the alternate representation
of 0, which may be called ‘minus zero’, causes no problem
in arithmetic operations. In other words, +0 and —0
produce identical results when combined with other numeri-
cal values via standard arithmetic algorithms. The reader
can test this assertion, for example, by taking one of the
operands to be —0 in our subsequent discussion of addition
and other arithmetic algorithms.

The second advantage of DLSB representation is that the
negated form of a number can be obtained by bitwise logical
inversion, as justified by Theorem 1.

Theorem 1: The negation or 2’s complement of a DLSB-2¢
number is obtained by simply inverting all of its k£ + 1 bits.

Proof: The result is proved separately for two cases. Case
1: ELSB = 0. To change the sign of a 2’s-complement
number, normally all the bits are inverted and ulp is
added. Inverting the ELSB as part of the bitwise comple-
mentation process makes it 1, thus accomplishing this
required incrementation. Case 2: ELSB = 1: The core
part of the number (excluding ELSB) is one unit less
than the number’s true value, so its 1’s complement will
be one unit more than the correct 1’s complement for the
entire number. Because ELSB is set to 0 during bitwise
inversion, the correct 2’s complement of the number is
obtained. O

Core part of the number ELSB
Xio Xk2 - . . X2 x x| Xy (@) In symbolic form

I "7 (b) In block diagrams

O ®© @ 0 @ @ & #|e@ (c)lnextended dot notation
(two variants)
C e 6 & &6 & 0o o

°
- k >

Fig. 1 Representation of a k-bit DLSB number

IET Circuits Devices Syst., Vol. 2, No. 2, April 2008

Example 3: Bitwise inversion of (1011 | 0)prsp-2c, Which
represents —5, yields (0100|1)py sp-oc, one of the two rep-
resentations of +5.

Whereas with standard 2’s-complement representation,
the addition of 1 needed to change the sign of a number
causes no difficulty or extra delay when the complementa-
tion is immediately followed by a normal addition (the 1
is accommodated by setting the carry-in to 1), there are
computations in which the sign change or 2’s complementa-
tion does not come before an addition. It may also be the
case that an addition does follow the 2’s complementation,
but it already has a carry-in from a previous computation
step (as in multiprecision arithmetic) and thus cannot
accommodate another incrementation through setting c;,
to 1.

The following interpretation of DLSB numbers is useful
in designing or understanding some arithmetic algorithms.

Theorem 2: A DLSB-2u or DLSB-2¢ number can
be converted to an infinitely long binary unsigned or
2’s-complement number, respectively, by repeating the
ELSB infinitely many times to the right of the least-
significant position.

Proof: The repetition process converts the integer (xz_;
Xp—p ... Xy X1 XolXo)pLsB-2c to the infinitely wide real
number (xk71 Xjp—2 ... X2 X1Xg. XO XO XO .. ')ZC with a k-bit
integral part. The equivalence of these two representations
becomes clear upon noting that ulp = ulp/2+ ulp/
44ulp/8+.... O

Example 4: The DLSB-2¢ numbers (1011 | 0)prsp-oc
and (10.10 | 1)prsp-ac, representing the values —5 and
—1.25, respectively, can be rewritten as the infinitely
wide 2’s-complement numbers (1011.0000...),. and
(10.101111 ..)ae.

The third advantage of DLSB representations is an
important one in floating-point arithmetic. When the result
of a floating-point operation has more precision that the
number representation format can accommodate, the extra
bits must be discarded and the remaining bits adjusted
through rounding. The rounding process is time consuming
and adds significant delay to the critical path of most
floating-point operations because, in the worst case, it
requires full carry propagation. The use of an ELSB
allows us to simply insert a 1 into ELSB when the rounding
algorithm calls for incrementation by 1. Details will be dis-
cussed in Section 6.

3 Addition and subtraction

Addition of two DLSB numbers, yielding a DLSB result, is
straightforward and can be done by an ordinary £-bit adder
as shown in Fig. 2. The following discussion applies to both
DLSB-2u and DLSB-2¢c numbers. The ELSB of one
operand is used as the adder’s carry-in and the ELSB of
the other is attached to the output as its ELSB. Carry-out
and overflow rules are exactly as in ordinary (unsigned or
2’s-complement) addition. Thus, the complexity of addition
is virtually unchanged relative to standard unsigned or
2’s-complement numbers.

Subtraction of DLSB-2¢ numbers is equally simple. The
subtrahend is negated, through bitwise logical inversion of
its k+ 1 bits, and the result added to the minuend as
above. The dashed oval box in Fig. 2 indicates where the
selective complementer might be placed to allow addition
or subtraction with the same k-bit adder. Because comple-
mentation does not require the use of the adder’s carry-in,

IET Circuits Devices Syst., Vol. 2, No. 2, April 2008

Cout Cin

Fig. 2 Addition of two DLSB numbers

a selective complementer can be used for each operand,
allowing us to compute any of the functions x + y, x — y,
—x 4y or —x —y with equal ease. The last of these func-
tions cannot be easily computed with ordinary 2’s comp-
lement; computing x + y and complementing the result is
not as efficient since it requires an extra complementer at
the output and involves carry propagation for the addition
of 1 to form the 2’s complement of x + y.

Carry-save addition of three DLSB numbers, to form two
numbers of the same type, is as fast as carry-save addition
with ordinary binary numbers and requires no extra hard-
ware. Fig. 3 shows the process in dot notation. Note that
for DLSB-2u inputs, all the dots in Fig. 3 will be posibits.
For DLSB-2c inputs, one of the two dots (marked with an
asterisk in Fig. 3) produced in the sign position is a
posibit, because it is the carry-out of a full adder with
three posibits as inputs. However, given that all arithmetic
in 2’s-complement number system is performed modulo
2%, replacing the posibit with a negabit will not affect the
correctness of the result. This is because such a replacement
reduces the wvalue of the output vector pair by
2Kk ly = ok,

If two DLSB numbers are to be added, producing a
normal unsigned or 2’s-complement result, that is, with
ELSB = 0, then the scheme shown in Fig. 4 can be
applied. Here, k& half-adders are used to convert the two
DLSB numbers into two ordinary unsigned or
2’s-complement numbers plus a carry-in for standard
two-operand addition. Note that in the case of
2’s-complement numbers, the leftmost carry bit (marked
with an asterisk in Fig. 4) can be viewed as a posibit or
negabit, as explained earlier. This addition scheme can be
used just before output or communication with other
digital subsystems that expect ordinary binary numbers. It

‘ rELSBs
O e o @ 0 0 @ o|&-.\‘ Three
O e e 0 0 0 @ o|o~\ " b input
words
oooooooo|o\

L e e 0 00 0 0|
"/ov’ e e e o"o‘|o¢—’
* L
k‘zooooooqo }TWO
output
ooooooo|o words

Extra bit ignored for 4-bit result

Fig. 3 Carry-save addition of three DLSB numbers

181

‘ ELSBs
Oe e 0000 0|0 }lnput
Ceeeee e oo words

-
O ® ® & 00 00 i 1) Output

XXX XX X XX -4 [words
O 6 & 6§ 6§ 6§ & 0«7
* J

Cin@® «----~

Fig.4 Two DLSB numbers transformed into conventional
numbers plus c;,

can also be used as a preprocessing step when the addition
of two DLSB numbers must be done with an externally sup-
plied carry-in; this external carry-in can then be appended to
the sum as its ELSB.

4 Multiplication

Multiplication of DLSB numbers by powers of 2 is done
through left shifts, just like ordinary 2’s-complement
numbers, with only a slight modification.

Theorem 3: A DLSB number can be multiplied by 2"
through / left shifts of the core part of the number, as is
done for standard unsigned or 2’s-complement numbers,
except that the value of ELSB, rather than 0, is shifted in.

Proof: Immediate upon noting that
2"+ Xo) = 2"y + X,2" -) + X,

The first term on the right is the left-shifted x, the second
term represents the 4 lowest bits of the shifted number
being set to X, and the last term is the ELSB of the
shifted number which has been left intact. This result can
also be justified based on Theorem 2. (]

Sequential multiplication of DLSB-2u or DLSB-2¢
numbers, using an adder of the type shown in Fig. 2, is
straightforward. The only difference with unsigned or
2’s-complement multiplication is that the accumulated
partial product is initialised to 0 or the multiplicand
v+ Yy, depending on the ELSB X, of the multiplier,
instead of to 0. The reason is evident from the identity

k=2

(y +Yo)x +Xo) = Xo(y + Xp) + Zzixi(y +Y,)
i=0

+ 2k_1xk—1()’ +Yy)

The first term on the right side, Xo(y + Y,), is accommo-
dated through initialisation, as stated above, and the remain-
ing terms x,(y + Yp), i = 0 to k — 1, are added /subtracted in
successive cycles following a right shift of the partial
product. Alternatively, the extra term Xy(y + Yy) can be
handled by an additional cycle at the beginning that is not
followed by a right shift of the partial product. Note that
the last term on the right is added for unsigned, and sub-
tracted for 2’s-complement, multiplication.

For k-bit DLSB-2u numbers, the product is in the range
[0, 2%¥], consisting of a 2k-bit core part in [0, 2% — 1] and
an ELSB in [0, 1]. The above-mentioned sequential multi-
plication algorithm automatically obtains the product in
this form and never leads to overflow. For k-bit DLSB-2c¢
operands, each in the range [—2°7!, 2*7'], the product is
in the range [—2%*72 2?*7?]. Again, the sequential algor-
ithm yields the correct DLSB-2c representation of the

182

result without the possibility of overflow or need for any
correction.

Tree and array multipliers can be derived based on the dot
notation of Fig. 5 representing the multiplication of two
four-bit DLSB-2u numbers using the identity

(y+Yp)x+ X)) =xy+Xoy+ Yox + X ¥,

As can be seen in Fig. 5, the height of the partial-products
matrix has been increased by 2 (from 4 to 6 in this
example). For some word widths %, this added height
might result in one extra level of carry-save addition in
the Wallace or Dadda tree needed to reduce the partial pro-
ducts to two before the final carry-propagate addition. The
only exception to the maximum of one extra level occurs
in the uninteresting case of k= 3, where reducing five
partial products to two requires three levels of carry-save
addition, whereas 3-to-2 reduction needs only one level.

In an array multiplier, the extra two rows of dots,
depicted near the bottom of Fig. 5, can be accommodated
by supplying them as inputs to the top row of cells which
normally receive Os [1]. Thus, no extra hardware is
needed in the presence of such unused additive inputs.
The increase in the length of the critical path, and thus the
effect on latency, is negligible.

Multiplication of DLSB-2¢ numbers can be performed by
adapting the Baugh—Wooley [8], or modified Baugh—
Wooley [9], method. Only the more efficient modified
Baugh—Wooley method which is based on complementing
the entire AND term x;_,y; or x;y,—; rather than just the
literal y; or x; will be considered. Fig. 6 shows the multipli-
cation process for DLSB-2¢ numbers using the modified
Baugh—Wooley method. The 2k — 2 hollow circles (at the
top and left side of the triangle) through which heavy
dashed lines have been drawn are complemented and two
1 terms, shown in boldface, are added just to the left of
the triangle. These complemented terms are then treated
as posibits during the partial-products reduction process.
A similar transformation is applicable to the two negabits
corresponding to Xy, and Yox;—_: they are complemen-
ted, a special —1 term is inserted in the next higher column
(to cancel the effect of replacing Xyy;—1 and Yyx;—, with
their complements 1 — Xpy,—; and 1 — Yyx;—,, respect-
ively), treating the complemented terms as posibits, and
removing the 1 and —1 terms from column k. With these
provisions, the DLSB-2c multiplication has fundamentally
the same latency and complexity as DLSB-2u
multiplication.

Thus far, the multiplier (x, Xo) has been used in its orig-
inal form. If Booth’s recoding on the multiplier is used, then
the multiplication process becomes even simpler. A
required result for multiplication with Booth-recoded

— e ELSBs
o 0o 0 o|o vyl
o 0o 0 o|o x| Xy
/6"6’"6"6'{. Xo Yo
o 0 @
e o 0 o T *
‘9. @ & 0
o 0o 00 Xoy
o 0o 00 Yox
oooooooo|o Product

Fig.5 Dot notation for 4 x 4 multiplication of DLSB-2u
numbers

IET Circuits Devices Syst., Vol. 2, No. 2, April 2008

P ELSBs
Ce e e e e e ole y| Yo
Ce e e e e e ele x| Xo
1"8 0-0-0-0-0-0-C @ 6 © 0 0 0 8[6-—- X,
Qe e e 60000000 0
NN 7 .
D e e e e 00000 0N
. " oo 00000 0%y
Vommmeeen N e
O . ® 0 0 0 0 06 ¢
N A k+2
Xy e o 0 o0 ¢
DY S
N 0 e e e
This 1 is cancelled NN
out (see the text) """ 1 b”
p /(O’/D
0y mmmmmmme o
Yox _________ . k
EEEEEEREEEREEEEEEERID Product

2k

Fig.6 Dot notation for k x k multiplication of DLSB-2c
numbers

multiplier is first proved. Based on this result, any
2’s-complement multiplication scheme that begins with
Booth’s recoding is virtually unchanged for DLSB-2u or
DLSB-2c¢ numbers.

Theorem 4: A DLSB number can be recoded, using radix-2
or radix-4 Booth’s recoding scheme, by simply considering
its ELSB X, as being x_; (i.e. ELSB is used as the context
within which the LSB is recoded). The resulting recoded
version of the multiplier will have the same width as
when the number does not have an ELSB; viz. k radix 2
or [k/2] radix-4 digits for DLSB-2¢ and possibly one
more digit for DLSB-2u.

Proof: Normally, Booth’s recoding of the multiplier is done
by considering x_; = 0. Based on Theorem 2, the equival-
ent number which has infinitely many digits of value X to
the right of its LSB can be recoded. Given that identical
digits appearing in sequence are converted to Os as a
result of recoding, setting x_; to the ELSB X, yields the
same result. If X, =0, then x_; = 0 will not affect the
recoding process. If Xy, = 1, recoding with x_; = 1 adds 1
to the core part. In both cases, the recoded multiplier has
a value equal to the original multiplier x + Xj. O

Example 5: Consider the multiplier (1011|0)py sp.2¢, Which
represents —5. The radix-2 Booth-recoded version of this
multiplier is ("1 1 0 ~1)uo, and its radix-4 recoded
version is ("1 ~Dgu. Likewise, the multiplier
(1011|1)prsBp-2c, representing —4, becomes (1 1 0 0)yyo
or ("1 0)gur. In either case, no extra time or hardware is
needed to perform the multiplication by x + X, compared
with that of an ordinary unsigned or 2’s-complement multi-
plier x.

5 Division and square rooting

Division by powers of 2 is done through right shifts, as for
normal unsigned or 2’s-complement binary numbers, with
only a slight modification.

Theorem 5: A DLSB number can be divided by 2" through /
right shifts of its core part, as is done for ordinary unsigned
or 2’s-complement numbers, with the new ELSB set to the
logical AND of its original value and all the 4 bits that are
shifted out.

IET Circuits Devices Syst., Vol. 2, No. 2, April 2008

Proof: Immediate from the following
127"+ X)) = 272" [27"x) +xmod 2" + X))
= 127"+ 27" (x mod 2" + X))
= 127"+ 127" (5 152 X1 %0l X520

Only if the DLSB-2u number within the parentheses is
equal to 2”, that is, all of its digits are 1s, the ELSB of the
result should be set to 1. O

Digit-recurrence division [10], whether in its simple
radix-2 (non-)restoring version or in its high-radix
implementations, is basically an MSD-first operation. So,
in principle, using the interpretation of Theorem 2, one
should be able to divide DLSB numbers using essentially
the same algorithms as wused for wunsigned or
2’s-complement division. This is indeed the case.

Example 6: Consider dividing 34 = (100010]|0)prspou by
6 = (101|1)pLspou, using the restoring binary algorithm.
The quotient digits (beginning with the initial or Oth partial
remainder 100010]0), are g, = 1 (first remainder = 010100
0), g1 =0 (second remainder = 101000|0) and ¢y =1
(third remainder = 100000|0). Thus, the quotient (101),,
and the final remainder (100),, are obtained. It is worth
noting that in a subtraction performed to obtain the trial
difference, a DLSB number is subtracted from, or its
bitwise complement added to, an ordinary binary number.
An ordinary adder can perform this operation, without creat-
ing an ELSB at the output. This is readily understood by con-
sidering the adder of Fig. 2, with its input x not having an
ELSB. The ELSB of the dividend is taken into consideration
only in the final cycle.

The only complication arises for basic non-restoring div-
ision, where shifting over Os is disallowed. In this algorithm,
the sign of the partial remainder determines the next quoti-
ent digit as well as the next operation to be performed
(addition or subtraction), with 0 considered positive.
Because 0 has two DLSB-2c representations, one with posi-
tive and the other with negative sign, direct implementation
of this division algorithm may necessitate a final correction
step to bring the remainder to within the allowed range.
However, Sweeney—Robertson—Tocher (SRT) or high-
radix division algorithms with redundant quotient digit
sets work fine with little or no modification, because they
rely only on a few most-significant digits of the partial
remainder for selecting the next quotient digit.

Both versions of convergence division, that is, division
by reciprocation [11] or by repeated multiplications [12],
are also directly applicable and in fact become slightly
faster in view of the fact that the 2’s complementation
step required to determine the next multiplicative factor is
carry-free with DLSB-2¢ numbers. In division by repeated
multiplications, for example, after an initial table lookup
to determine an approximate reciprocal of the divisor d,
both the dividend z and the divisor d are multiplied by a
sequence of multipliers, the first of which is the approxi-
mate reciprocal and each subsequent one is the 2’s comp-
lement of a previous result. As discussed in Section 4, the
required multiplications may become slightly more compli-
cated with DLSB-2¢ numbers. However, the removal of the
addition step needed for 2’s complementation with ordinary
2’s-complement numbers more than makes up for the loss in
multiplication speed.

As in convergence division with ordinary binary oper-
ands, the two multiplications needed for each iteration can

183

be pipelined. In this case, the removal of the addition step
for 2’s complementation helps keep the pipeline full at all
times, leading to even better performance.

Considerations for square rooting, both through digit recur-
rence and by convergence, are quite similar to those for div-
ision. Again the simpler 2’s complementation process
(required for the second equation below) helps improve the
performance of the following square-rooting algorithm for
computing ./z based on the Newton—Raphson method

D = 05040 4 70
YD — 00 400y

In the convergence method above, which requires three
multiplications per iteration, y will tend to 1//z and x to /z.

6 Floating-point arithmetic

Our discussion of floating-point arithmetic with DLSB
numbers must include conversion of a DLSB significand
to an internal extended-precision representation, alignment
preshift (for addition or subtraction), normalisation postshift
and rounding [1].

Suppose that a DLSB integer (x;—1xt—> - . . X1X0|Xo)pLSB
must be extended to maintain its & integer bits and addition-
ally to have / fractional bits internally. This is easily accom-
plished by replicating the ELSB in the / fractional bits as
well as in the new ELSB at position —/. That is

(k1 Xp—z - X1 %01 X)prsp = (X 1X—z - - - %1% - XoXp
- Xl X0)pLse

The transformation above, which is easily deduced from
Theorem 2, is represented graphically in Fig. 7a, using
our extended dot notation. The dashed arrows represent
direct copying of bits or blocks of bits.

For alignment preshift by /4 bits, two cases are distin-
guished. For 4 <, where [is the precision increase for
the internal representation, shifting is done with sign exten-
sion at the left end and ELSB extension at the right. This is
depicted in Fig. 7b and can be easily accomplished by pre-
cision extension followed by ordinary 2’s-complement
shifting. For & > I, 2’s-complement shifting is done with
the provision that all the bits shifted off the right end
are ANDed together to yield the value for the ELSB
(Fig. 7c). This operation is called ‘sticky AND’ in

ELSB .

k (a) Precision
O 800000 | ° extension

aTTETeTEEEEeTt "’*:‘\
IO A RN S
O ® © & 6 ¢ & ¢ ¢ ¢ ¢ o o

—]_>
k (b) Alignment
0000060 00 right shift

AEREN forh <1

O ----0
‘r//l
»
i
I
i
i
I
i
i
I
i
i
)

\
I
i
\
)
i
\
)
|
»

(c) Alignment
right shift
for h>1

Fig. 7 Graphical representation of precision extension and
alignment preshift for DLSB numbers

184

analogy with the OR operation performed for the ‘sticky’
bit in ordinary floating-point arithmetic. The latter bit is
called the ‘sticky OR’ bit for clarity. Note that if the align-
ment right shift is preceded by precision extension and has
the provision for sticky AND on the bits that are shifted out
from the right end, the correct operation is performed in
both cases 7 < /and h > |[.

Normalisation shifts are essentially multiplication and
division by powers of 2 which are already discussed in
Sections 4 and 5 (Theorems 3 and 5). The only additional
consideration is that, in the case of right shifts, the sticky
AND is performed past bit position —/ rather than past pos-
ition 0, as specified in the statement of Theorem 5.

Next, the round-to-nearest-even operation is discussed in
detail. Other rounding modes are similar. Assume that an
extended-precision DLSB operand (x;—iX;—5. . .X1Xo.
X_1X—p...x—JX_)pLsg 1s to be rounded to an integer
(Xp—1X—2 ... x1x0|Xo)pLsg. Note that the rounded value
has exactly the same bits as the interim result in positions
k — 1 down to 0; the only thing that needs to be determined
for proper rounding is the value of the ELSB X, in the
rounded result. Thus, rounding of DLSB numbers can be
considerably faster than ordinary rounding performed for
unsigned or 2’s-complement binary numbers.

Assuming that the fractional part (x_1x_5 ... x_;|JX_))pLsB
of the extended-precision interim result has the value f in
[0, 1], the round-to-nearest-even rounding scheme can be
defined as follows

1 1
Rounddowniff<§ oriff:E and x, =0

1 1
Roundupiff>§ oriff:i and x, =1

Note that, because of the ELSB, the ‘fractional’ part f can
equal 1, but the rules just given handle this case properly
as well.

Rounding down is done by simply chopping the frac-
tional part, which is always positive, and setting X, to
0. Rounding up is accomplished by discarding the fractional
part and setting X, to 1. All that remains is to show how the
three conditions /<< 1/2, > 1/2 and f = 1/2 are tested.

Let us designate x_; as the ‘round bit’ and define the
sticky OR and sticky AND bits as follows

oo =0iff x_) =x3=---=x_;,=X_,=0

O.ANDZ 1 iffx72 =.x73 =~~~=x71217121

These sticky bits can be formed based on the bits x_,
through X_; of the interim result when needed. In many
cases, however, only the two sticky bit values, oor and
oanD, Need to be kept in lieu of these / bits. With round
and sticky bits as defined above, the conditions become

1
f<§iffx_1:0andUAND:O
1
>—iff x_, =1and o5, =
Z'ff 1 1 and oo =1

1
f= 2 otherwise

The ability to do rounding with no carry propagation, at the
cost of maintaining an extra sticky bit (which is not needed
with conventional binary numbers), is an important advan-
tage of DLSB number representation.

The advantages above are not limited to bit-parallel arith-
metic. In a companion paper [13], the author has shown how
the use of DLSB representation solves one of the problems

IET Circuits Devices Syst., Vol. 2, No. 2, April 2008

in pipelined, digit—serial arithmetic. In on-line arithmetic
[14], redundant operands enter arithmetic units one digit
at a time, beginning from their most significant ends, with
the result digits also produced one at a time, after a short
operation-dependent latency. Thus, if at the end of the
output generation, it is discovered that the output should
be rounded up (based on the residual that is observed), the
change cannot be incorporated in the output, which has
already moved downstream in the pipeline and partially
processed by other units. The use of ELSB remedies this
problem, as it allows us to properly increment the output,
in order to produce its correctly rounded value, by simply
attaching an appropriate ELSB value at the least-significant
end of it.

7 Multiprecision arithmetic

Consider the representation of large unsigned integers in
radix 2F, with each radix-2* digit being a DLSB-2u
number. The radix-2* digit set used is thus [0, 2%]. The
result is an unsigned-digit redundant representation system
with the redundancy index p = 1; it uses an extra digit
value, 2, compared with the conventional radix-2* rep-
resentation based on the digit set [0, 2 — 1]. As shown in
Fig. 8, the resulting g-word representation can be viewed
as a gk-position hybrid-redundant number [15, 16]; most
digits are binary digits in [0, 1], with every kth digit being
redundant with a value in [0, 2]. In the rest of this section,
arithmetic algorithms on such hybrid redundant numbers
are briefly discussed.

Consider now the addition of two such multiprecision
numbers (x¢~ 1, x©72 . x©) and y=0%"h, y(gfz),

,v®). For simplicity, it is assumed that the two
numbers are composed of the same number g of words,
but this does not have to be the case. According to the
rules of GSD addition for this radix-2 stored-carry
number system [6], the transfer digit from one segment to
the next higher segment is in [0, 2]. To ensure that transfers
are absorbed and further propagation is avoided, each
segment must anticipate whether its incoming transfer
digit value will be in [0, 1], the lower subrange or in [1,
2], the upper subrange. The required anticipation logic con-
sists of a single two-input AND gate, because the transfer
into segment i can exceed 1 only when D, = y}fll‘: 1.
To see that a transfer digit of 2 is impossible when 2+
W2, <1, assume, without loss of generality, that
xi2 =0 and y§{?, = 1. Then, the value of x' is at most
2571 (which occurs when all other bits including the
ELSB are 1s), whereas the value of y> does not exceed
2% Thus, the addition x4y leads to a maximum sum
of 28+ 257! which implies a carry of at most 1 into the
next segment.

It is now easy to see that parallel processing can be readily
applied to the addition of g-segment numbers. For each
segment i, a position sum x +y + g, in [0, 27" 4 17 is
computed, where &; is the anticipation signal for the transfer
into segment i; g; = 1 means that the incoming transfer will
be in [1, 2]. The position sum is a (k 4 2)-bit binary number
PP p PP, where pii), = 1, occurring very rarely,
indicates a transfer value of 2. Because one unit of an

Digit in [0, 2]
Digits in [0, 1] [
C® ® ® @ @ 00 ° 0 0 0 0 0 0 0 0 0 O e 0 0
: L] L]
+—— k-bit segment ——
£ segments: ¥, L " 2™

Fig. 8 Multiprecision DLSB representation interpreted as a
hybrid-redundant number system

IET Circuits Devices Syst., Vol. 2, No. 2, April 2008

Table 2: Speed and cost penalties of DLSB over 2's
complement for integer arithmetic

Arithmetic circuit Extra latency Added complexity

adder 0 0
multioperand adder 0 0
subtractor 0° 0

serial multiplier <1 cycle negligible
Booth multiplier 0 0

tree multiplier <FA delay <2k FA cost

array multiplier negligible 0

serial divider <1 cycle negligible
convergence divider 0° same as multiplier
serial square rooter <1 cycle negligible

convergence square rooter 0° same as multiplier

%In this case, not only there is no speed penalty but the circuit
may be faster

incoming transfer in the upper subrange [1, 2] has already
been accommodated in the position sum via adding &;1,
the remainder of it, which is in [0, 1], can be attached as
the new ELSB, just like an incoming transfer in the lower
subrange [0, 1]. Thus, the addition process is completed by
taking p .. p{"p§ as the main part and &; @ pf~ " as the
ELSB. Note that for &; = 0, p{ " is stored directly as the
ELSB, whereas for ¢; = 1, the complement of p' " (which
is the same as one less that the two-bit binary number
P PpT Y s stored). This represents a simple variation on
the stored-transfer number representation scheme, whereby
a transfer digit from a position 7 to the next higher position
i + 1 is not combined with the interim digit value in that pos-
ition, but is rather saved alongside with it [17].

Signed multiprecision numbers can be represented and
processed in a number of ways. One way is to use
2’s-complement representation for the gk-digit number as
a whole. A second way is to use DLSB-2¢ numbers as the
k-bit segments, leading to radix-2* GSD representation
with the signed digit set [—2°"!, 27 ']. The transfers will
now be in [—1, 1] but parallel processing in addition is
still feasible with suitably modified rules. The Ilatter
scheme directly corresponds to hybrid signed-digit rep-
resentations as proposed in [15].

8 Conclusion

To summarise, DLSB-2c number representation has at least
four advantages compared with the ordinary
2’s-complement representations.

1. Symmetric number range (no overflow on negation).

2. Negation by bitwise inversion (carry-free).

3. Rounding by truncation and setting of ELSB
(carry-free).

4. Simple parallel multiprecision arithmetic (carry-free).

Given that basic arithmetic operations on DLSB-2c
numbers are at most marginally slower or more complex
than those for ordinary 2’s-complement numbers, the result-
ing overhead in circuit complexity and the one-bit redun-
dancy in number representation may be justifiable by the
advantages listed above.

Table 2 summarises the comparative claims made in the
preceding pages with regard to extra latency and added
circuit complexity for integer arithmetic operations as one

185

moves from ordinary 2’s complement to DLSB represen-
tation. The entries for tree and array multipliers in
Table 2 need some elaboration. For tree multiplier, the
partial-products reduction tree will have to include two
additional %-bit carry-save adders, with its depth potentially
increasing by one level. For array multiplier, lack of a cost
penalty is because of the use of additive inputs to accommo-
date the extra two rows of bits. Such additive inputs are
present in nearly all modern array multiplier designs in
order to render the design of cells more uniform for VLSI
realisation. In the case of convergence division, the com-
parison depends on the type of multiplier used (it is
almost always a tree multiplier). Floating-point operations
have more favourable comparisons in view of the faster
and less complex rounding operation with DLSB represen-
tation. Even though detailed implementation studies are
needed to determine under what conditions DLSB
numbers might be beneficial, addition of this technique to
the repertoire of arithmetic system designers does provide
them with new design options and trade-off tools.

There is one particular application for DLSB represen-
tation where the ELSB can be viewed as an absolute
requirement, rather than as a liability. This application
arises in residue number system representations with a
modulus of the form 2% + 1. Examples of such RNS rep-
resentations abound, and only one recent contribution is
cited as a representative example [18]. The residues for
such a modulus belong to the range [0, 2], thus requiring
at least k4 1 bits in any radix-2 representation. Using the
DLSB format in this context [19] presents definite advan-
tages over another well-studied and widely used represen-
tation in which a particular code is reserved for 0 and
each of the 2* non-zero residues is represented in a
‘diminished-one’ format, that is, as one unit less than its
true value. Whereas the latter scheme, first proposed by
Leibowitz [20] and subsequently developed and used by
many others, has been shown to be preferable to straight
binary representation, it does lead to some complications
because of the need for detecting special cases and
making adjustments in the results of arithmetic operations.
Using the DLSB format not only removes these problems,
but also allows the use of standard arithmetic components.

One drawback of the proposed representation is that it
yields two codes for 0. However, this is only a minor incon-
venience in zero detection and does not affect the validity
of the arithmetic algorithms all of which properly deal
with —0 as 0. In fact, there is a positive side to this dual rep-
resentation. The round-to-nearest-even algorithm, discussed
at the end of Section 6, rounds down positive values in
[0, 0.5] to +0 and rounds up negative values in [—0.5, 0]
to —0. Thus, the sign of zero can be viewed as carrying
useful information in these cases. Of course, when a
unique representation of 0 is prescribed, as in ANSI/IEEE
standard format, automatic conversion from —0 to +0
must take place.

Other directions for further research include logic-
level and circuit-level comparisons based on actual
implementations to assess the cost-effectiveness of the pro-
posed approach in greater detail than that shown in Table 2.

186

Extension to other algorithms and implementation strategies
(such as the use of additive multiply modules for multipli-
cation) might also be attempted.

9 Acknowledgment

A preliminary version of this paper was published in the
Proceedings of the International Conference on Signal and
Image Processing [4]. The author is indebted to Stephan
Johansson for his assistance during the early development
of these ideas.

10 References

1 Parhami, B.: ‘Computer arithmetic: algorithms and hardware designs’
(Oxford University Press, New York, 2000)

2 Coleman, J.N., Chester, E.L., Softley, C.I., and Kadlec, J.: ‘Arithmetic
on the European logarithmic microprocessor’, [EEE Trans. Comput.,
2000, 49, pp. 702—715

3 Omondi, A., and Premkumar, B.: ‘Residue number systems: theory
and implementation’ (Imperial College Press, London, 2007)

4 Parhami, B., and Johansson, S.: ‘A number representation scheme with
carry-free rounding for floating-point signal processing applications’.
Proc. Int. Conf. Signal and Image Processing, 1998, pp. 90—92

5 Avizienis, A.: ‘Signed-digit number representation for fast parallel
arithmetic’, IRE Trans. Electron. Comput., 1961, 10, pp. 389—-400

6 Parhami, B.: ‘Generalized signed-digit number systems: a unifying
framework for redundant number representations’, [EEE Trans.
Comput., 1990, 39, pp. 89-98

7 Jaberipur, G., and Parhami, B.: ‘Stored-transfer representations with
weighted digit-set encodings for ultrahigh-speed arithmetic’, IET
Circuits Devices Syst., 2007, 1, pp. 102—-110

8 Baugh, C.R., and Wooley, B.A.: ‘A two’s complement parallel array
multiplication algorithm’, [EEE Trans. Comput., 1973, 22,
pp. 1045-1047

9 Dadda, L.: ‘Fast multipliers for two’s complement numbers in serial
form’. Proc. 7th IEEE Symp. Computer Arithmetic, 1985, pp. 57-63

10 Ercegovac, M.D., and Lang, T.. ‘Division and square root:
digit-recurrence algorithms and implementations’ (Kluwer, Boston, 1994)

11 Ferrari, D.: ‘A division method using a parallel multiplier’, /[EEE
Trans. Comput., 1967, 16, pp. 224-226

12 Flynn, M.J.: ‘On division by functional iteration’, [EEE Trans.
Comput., 1970, 19, pp. 702-706

13 Parhami, B.: ‘On producing exactly rounded results in digit—serial
on-line arithmetic’. Proc. 34th Asilomar Conf. Signals, Systems, and
Computers, 2000, pp. 889—-893

14 Ercegovac, M.D., and Lang, T.: ‘On-line arithmetic: a design
methodology and applications’. Proc. IEEE Workshop on VLSI
Signal Processing, 1988, pp. 252—-263

15 Phatak, D.S., and Koren, I.: ‘Hybrid signed-digit number systems:
a unified framework for redundant number representations with
bounded carry propagation chains’, I[EEE Trans. Comput., 1994, 43,
pp- 880—891

16 Phatak, D.S., Goff, T., and Koren, I.: ‘Constant-time addition and
simultaneous format conversion based on redundant binary
representations’, [EEE Trans. Comput., 2001, 50, pp. 1267—1278

17 Jaberipur, G., Parhami, B., and Ghodsi, M.: ‘A class of stored-transfer
representations for redundant number systems’. Proc. 35th Asilomar
Conf. Signals, Systems, and Computers, 2001, pp. 1304—1308

18 Cao, B., Chang, C.-H., and Srikanthan, T.: ‘A residue-to-binary
converter for a new five-moduli set’, IEEE Trans. Circuits Syst. I,
2007, 54, pp. 1041-1049

19 Jaberipur, G.: ‘A one-step modulo 2" + 1 adder based on double-LSB
representation of residues’, CSI J. Comput. Sci. Eng., to appear in
2008

20 Leibowitz, L.M.: ‘A simplified binary arithmetic for the Fermat
number transform’, [EEE Trans. Acoust. Speech Signal Process.,
1976, 24, pp. 356—359

IET Circuits Devices Syst., Vol. 2, No. 2, April 2008

