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Abstract

Hybrid-redundant number representation has provided a flexible framework for digit-parallel addition in a manner that facilitates

area-time tradeoffs for VLSI implementations via arbitrary spacing of redundant digit positions within an otherwise nonredundant

representation. We revisit the hybrid redundancy scheme, pointing out limitations such as representational asymmetry, lack of

representational closure in certain adder implementations, and difficulties in subtraction and carry acceleration. Given the intuitiveness

of the hybrid redundancy concept and its potential for describing practically useful redundant number systems, we are motivated to

extend it within the framework of weighted bit-set encodings to circumvent the aforementioned problems. The extension is based mainly

on allowing negatively weighted bits (negabits), as well as standard posibits, to appear in nonredundant positions. Our extended hybrid

redundancy scheme provides for arbitrary spacing of redundant positions in symmetric digit sets, without any degradation in arithmetic

efficiency, while at the same time allowing low-latency subtraction by means of the same circuitry that is used for addition. Finally, we

describe how inverted encoding of negabits leads to the exclusive use of unmodified standard full/half-adder, counter, and compressor

cells, with no extra inverters, and to the direct applicability of conventional carry acceleration techniques in constant-time addition.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Implementation of arithmetic algorithms has been sub-
ject to continual improvement to allow greater speed and
to reduce VLSI area and power. The choice of number
system and its encoding has a major influence on achieving
such design goals. For example, the three well-known
binary number systems (i.e., signed magnitude, 1’s and 2’s
complement) offer different advantages and disadvantages,
and thus interesting tradeoffs [1]. Redundant number
systems [2,3], and associated encoding variations, enable
us to perform digit-parallel addition with a small constant
latency. Such redundant number systems may be used as

the primary mode of number representation in special
application settings or as intermediate or internal forms,
with attendant input conversion and output reconversion,
for general use.
A suitable encoding of a redundant digit set can further

improve the performance of redundant arithmetic opera-
tions. For example, a special encoding of double-carry
digits in [4] leads to improved latency, area, and power.
Other examples of encoding alternatives include represent-
ing a symmetric signed-digit in the interval ½�a; a� as a
signed magnitude, 1’s- or 2’s-complement digit [5] or as a
stored-transfer digit [6]. Encoding of an asymmetric signed-
digit in ½�2h�1; 2h � 1� in hybrid-redundant format [7]
constitutes yet another example. Various encodings may
exhibit different levels of efficiency in implementing the
same arithmetic algorithm. Theoretical studies, such as the
generalized signed-digit number systems [8], may open new
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horizons for explorations of encodings and implementation
techniques that enhance the performance of digital
arithmetic operations and systems [9,10].

The redundancy index r of a digit set ½�a;b� is defined as
the difference between the number of digit values (i.e.,
aþ bþ 1) and the radix r of the number system [8]. The
higher the redundancy index, the greater the number of bits
needed to faithfully represent each digit and often, the longer
the potential delays in digit-parallel arithmetic. In many cases,
a redundancy index of r ¼ 2 is adequate, and one never
needs to go beyond r ¼ 3, for carry-free addition in radices
higher than 2 [8]. However, proper choice of the redundancy
index r, coupled with suitable encoding of the resulting digit
set, may allow for a faster and/or more compact VLSI
realization. Such variations in redundancy indices and
associated digit-set encodings are the main focus of this
paper. Much of what we present deals, directly or indirectly,
with facilitating area-time tradeoffs in the VLSI implementa-
tion of arithmetic operations on redundant operands.

Stored-transfer representations [6,11], weighted bit-set
encodings for redundant digit sets [10], and representation
paradigms of high-radix signed-digit number systems [5] are
all motivated by area-time tradeoff concerns, improvement in
the representation coverage, speed of arithmetic, and/or
regularity in VLSI implementation. Similarly, hybrid-redun-
dant number systems introduced in [7], extended in [12] and,
based on [9], improved with regard to implementation in [13],
provide a framework for the efficient design and implementa-
tion of digit-parallel addition for a class of redundant number
systems. Briefly, a hybrid-redundant number is composed
mostly of normal, positively-weighted bits (posibits), with
some radix-2 positions holding redundant digits. The hybrid
signed-digit (HSD) number systems, as originally described in
[7], entailed a composition of nonredundant and redundant
positions as an alternative to fully redundant number systems
where redundancy appears in every digit position. But later
extension of the concept seems to have focused on fully
redundant number systems with a variety of redundant digit
sets [12]. Unfortunately, the design and implementation of a
rather general-purpose redundant arithmetic based on the
original notion and subsequent extension of hybrid redun-
dancy engenders some limitations, such as the following,
where the last two apply only to the extended form in [12]:

� Considerable difference in the range of positive and
negative numbers, leading to inefficiencies in the
implementation of subtraction.

� Inapplicability of conventional carry acceleration meth-
ods, and the associated highly optimized circuits, due to
the use of nonstandard adder cells.
� Inability to faithfully cover, as a representation para-

digm, almost all symmetric digit sets as well as many
other useful digit sets.
� Lack of representational closure of true hybrid-redun-

dant adders in both the original [12] and subsequently
improved [13] efficient adder cells.
� Increasing the likelihood of apparent overflow due to

tendency of addition operation to reduce the resultant
digit set in some implementations.

To circumvent these problems, which are more fully
explained in Sections 2 and 3 of the paper, and exploit
the strength of hybrid redundancy in facilitating arithmetic
system design with specific area-time tradeoff goals, we
reformulate and extend the hybrid redundancy scheme
within the framework of weighted bit-set encodings in
Section 4. Our quest for more efficient and VLSI-friendly
carry-free addition schemes for hybrid-redundant numbers
leads us to a scheme for the encoding of negabits (i.e.,
negatively weighted bits) in Section 5, where we explore
different functionalities for standard full-adders, with no
added elements (not even inverters), in the summation of
any collection of three negabits and posibits. This leads, in
Section 6, to new designs for efficient adder cells for both
nonredundant and redundant positions in a hybrid-
redundant representation. Section 7 shows the power of
extended hybrid redundancy scheme in deriving symmetric
hybrid-redundant number systems with arbitrary spacing
of redundant positions; a property that is vital to
exploitation of the main advantage of hybrid redundancy
(i.e., spacing of redundant digits to match the area-time
design goals). This is followed, in Section 8, by implemen-
tation details of an efficient, regular, and representationally
closed adder/subtractor for symmetric extended-hybrid-
redundant operands and conversion from 2’s-complement
representation in Section 9. Section 10 concludes the paper.
The extended dot notation used in this paper is described

in Table 1 for ease of reference. Posibit is an ordinary bit
with a value in f0; 1g, and its heavy-dot symbol is the same
as in standard dot notation commonly used in computer
arithmetic. Negabit is a negatively weighted bit, with a
value in f�1; 0g, as it is shown as a hollow circle
graphically. Finally, a ‘‘redundant dot’’ appears in any
position containing a value whose range is wider than a
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Table 1

The extended dot notation used throughout this paper

Symbol Name Meaning Example of use (8 radix-2 positions)

1 K Posibit Value in f0; 1g KKKKKKKK

2 � Negabit Value in f�1; 0g �KKKKKKK

3 s Redundant Value in ½�n; p� sKKKsKKK
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posibit or negabit and is usually realized through multiple
posibits and/or negabits. For example, a redundant
position holding a value in ½�1; 2� is realizable by one
negabit and two posibits. The latter three bits would
appear in a column corresponding to the radix-2 weight of
the redundant dot. When the latter substitution is made in
the third example of Table 1, the resulting dot-notation
diagram is said to be ‘‘3-deep,’’ meaning that the tallest
column of dots contains 3 posibits and/or negabits.
According to this terminology, an ordinary unsigned or
2’s-complement binary number, appearing in the first two
examples of Table 1, is 1-deep, and a carry-save or borrow-
save number is 2-deep.

2. Properties of ordinary hybrid redundancy

Hybrid-redundant (or partially redundant) number
systems are weighted radix-2 number systems with some
redundant radix-2 positions (holding a digit value from a
redundant digit set), but mostly nonredundant positions
(holding a posibit). Special practical cases, where the
redundant digit sets are limited to those representable by
two bits, have been studied in detail [12]. The redundant
digit sets for these cases are shown in Table 2, where we
have also included the notation used in [12], for ease of
reference and comparison, and added the last two entries
that also meet the restriction for 2-bit representation.
Another restriction, as explicated in [12], is that only
posibits are allowed in nonredundant positions.

To investigate the theoretical properties of hybrid
redundancy, we relax the first restriction, namely, that of
2-bit redundant positions. Later, we present our main
extension by also relaxing the second restriction via
allowing negabits, as well as posibits, in nonredundant
positions.

Definition 1 (Posibit hybrid redundancy). A posibit hybrid-
redundant number system has k radix-2 positions num-
bered 0 to k � 1, from the least to the most significant
position. Each position may be nonredundant, holding a
posibit (i.e., a normal bit in ½0; 1�), or redundant with a digit
in ½�n; p�, where n; pX0 and nþ p41. The digit in radix-2
position i ð0piokÞ, whether nonredundant or redundant,
has the weight 2i.

We use posibit hybrid redundancy to emphasize that in
the original notion of hybrid redundancy, nonredundant
positions ought to hold a single posibit. At one extreme of
every position being redundant and using the same digit
set, hybrid redundancy coincides with radix-2 generalized
signed-digit (GSD) representations [8]. At the other
extreme of no redundant position, a posibit hybrid-
redundant number system represents unsigned binary
integers. Thus, the claim in [12] that 2’s-complement
numbers may be considered as a special case of ordinary
hybrid redundancy is not valid, given that the negatively
weighted sign position of a 2’s-complement number
violates the requirement for nonredundant positions.

Definition 2 (Periodic hybrid redundancy). A posibit hy-
brid-redundant number system is periodic if the separation
or distance between two consecutive redundant positions
remains constant, with the period h being one more than
the constant distance.

Thus, each radix-2h digit of a periodic hybrid-redundant
number system has h� 1 nonredundant radix-2 positions
and a single redundant radix-2 position. Definition 2 could
have been more general (e.g., by allowing multiple
redundant positions with varying digit sets in each period),
but we use this restricted definition to expose the
limitations implied in [7,12]. Prior applications of hybrid
redundancy (e.g., [14]), mainly in the design of multipliers,
have all used periodic subclasses that correspond to radix-
2h digit sets encoded by zero or more posibits followed or
preceded by a redundant digit. Such periodic hybrid-
redundant number systems can be viewed as efficient
encodings for special classes of GSD representations.
However, there exist useful GSD number systems, with
symmetric digit sets, that cannot be represented via posibit
hybrid redundancy. In such cases, we cannot exploit the
main benefits of hybrid redundancy, that is, area-time
tradeoff. For example, the radix-8 GSD representation
with digits in ½�5; 5� has no viable representation in posibit
hybrid redundancy (see Lemma 1 and Corollary 1 below).
We will show later that the subclass of symmetric posibit
hybrid-redundant representations is very limited and that
efficient implementations, based on the adder cells in
[12,13], exist only for fully redundant binary signed-digit
(BSD) and minimally redundant radix-4 number systems
(Corollary 3), both of which had been studied and used
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Table 2

Redundant radix-2 digit sets that are representable with 2 bits

Type of redundant digit Digit set: ½�n; p� Notation of [12] Redundancy index r

1 Binary signed-digit (BSD) ½�1; 1� SD 1

2 Stored double borrow (SDB) ½�2; 1� SD3f�g 2

3 Stored borrow or carry (SBC) ½�1; 2� SD3fþg 2

4 Stored carry (SC) ½0; 2� CS2 1

5 Stored double carry (SDC) ½0; 3� CS3 2

6 Stored double borrow (SDB) ½�2; 0� N/A 1

7 Stored triple borrow (STB) ½�3; 0� N/A 2
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prior to, and in contexts other than, hybrid redundancy.
We will focus on periodic hybrid redundancy. However,
much of what we present pertains to the processing of
single radix-2h digits. Therefore, our results may be applied
to nonperiodic cases, for the latter can be studied as a
weighted collection of digits with different radices (mixed-
radix positional number system).

Definition 3 (Periodic right-, left-, and free-hybrid redun-

dancy). In a hybrid-redundant number system of period h

(based on Definition 2), the position index for the
redundant radix-2 digit in ½�n; p� may be 0, h� 1, or 0o
goh� 1 ðmod hÞ. We refer to these variants as right-, left-,
or free-hybrid redundancy, respectively. Taking each
period of the hybrid-redundant representation as a radix-
2h GSD position, the corresponding digit set of a right-
hybrid-redundant representation is ½�n; 2h þ p� 2�, that of
a left-hybrid-redundant representation is ½�2h�1n; 2h�1pþ
2h�1 � 1�, and for a free-hybrid-redundant representation
with the redundant digit located in an arbitrary position g

is ½�2gn; 2gðp� 1Þ þ 2h � 1�.

Example 1 (Variants of posibit hybrid redundancy). Table 3
shows examples of left-, right-, and free-hybrid-redundant
numbers with three radix-2h digits in dot notation. The dot
notation used is defined in Table 1.

Lemma 1 (Symmetry of digit sets associated with periodic

hybrid-redundant representations). For periodic radix-r ðr ¼
2h42Þ posibit hybrid-redundant representations with redun-

dant digit in ½�n;p�, there is no symmetric digit set for left-

or free-hybrid redundancy, while symmetric right-hybrid

redundancy is possible for all h41, provided the radix-r

redundant digit set is ½�a; a�, with a ¼ n ¼ pþ r� 2.

Proof. Consider a radix-r ðr ¼ 2hÞ hybrid-redundant digit
set D ¼ ½�2gn; 2gðp� 1Þ þ r� 1�, with the redundant digit

being in radix-2 position 0pgph� 1. For D to be
symmetric as D ¼ ½�a; a�, we must have 2gn ¼ 2gðp� 1Þ þ
2h � 1 or n ¼ p� 1þ ð2h � 1Þ=2g. Obviously, the latter
equation has integer solutions for n and p only if g ¼ 0 (i.e.,
right-hybrid), leading to a ¼ n ¼ pþ r� 2. &

Note that for h ¼ 1 and n ¼ p, where the left-, right-, and
free-hybrid categorization does not apply, the number
system is fully redundant and symmetric (e.g., BSD).

Corollary 1. There is no symmetric radix-r ðr ¼ 2hÞ posibit

hybrid-redundant number system with the digit set ½�a; a� for

aor� 2.

Corollary 2. A symmetric radix-r ðr ¼ 2hÞ right-hybrid-

redundant number system with redundant digits in ½�n;p� and

pX2, is over-redundant (i.e., the redundancy index r of its

radix-r digit set satisfies rXr). Furthermore the minimum

redundancy index for such a radix-r symmetric digit set is

r ¼ r� 3 and it occurs when p ¼ 0.

Corollary 2 shows that symmetric posibit hybrid
redundancy is possible only for highly redundant digit sets
satisfying rXr� 3, while, according to the results in [8],
rX3 (2) is always (in most cases) sufficient for carry-free
addition, and even r ¼ 1 allows limited-carry addition,
that is, carry-free addition with some look-back (see
Definition 4).
In a hybrid-redundant adder, the adder cell of a

redundant radix-2 position does not propagate the incom-
ing transfer (e.g., carry or borrow). Transfers generated by
redundant or nonredundant positions may ripple up to the
next redundant position, where they sink. This process is
depicted in Fig. 1, where the larger boxes representing
adder cells in redundant positions are intended to reflect
the greater complexity of those cells relative to adder cells
in nonredundant positions.
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Table 3

Variants of posibit hybrid redundancy, with s in ½�n;p�

Variant Dot notation Position g of s Radix-16 digit set

Left-hybrid sKKK sKKK sKKK 3 ¼ h� 1 ½�8n; 8pþ 7�

Right-hybrid KKKs KKKs KKKs 0 ½�n; pþ 14�

Free-hybrid KsKK KsKK KsKK 2ð0ogoh� 1Þ ½�4n; 4pþ 11�

. . .
th–1 t2 t1 t0thth+2

Sink Sink 

Redundant

adder cell

Redundant

adder cell

Nonredundant

adder cell

Nonredundant

adder cell

Nonredundant

adder cell

th+1

One period

Fig. 1. Schematic representation of an adder for right-hybrid-redundant numbers.
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To keep the complexity of adder cells in check, it is
desirable to restrict the cardinality of redundant digits to 4,
thus making them representable with 2 bits (i.e., the
minimum possible for a redundant digit). This constraint
leads to 1 bit of redundancy per radix-2h digit. Unfortu-
nately, such encoding efficiency is gained at the cost of
narrowing the spectrum of symmetric hybrid redundancy
to only one case besides the fully redundant BSD number
system, as is stated below.

Corollary 3 (Restricted symmetry with single redundancy

bit). In the case of single redundancy bit per radix-2h digit,
there are only two possible symmetric digit sets in right-

hybrid-redundant number system: fully redundant BSD and

minimally redundant radix-4.

Proof. Applying the constraint nþ pp3 (i.e., 2-bit encoding
of redundant digits) to the result of Lemma 1 (i.e.,
n ¼ pþ 2h � 2) leads to pp5

2
� 2h�1. Given that pX0, the

latter inequality holds only for hp2. The case h ¼ 1 leads to
n ¼ p ¼ 1 (i.e., fully redundant BSD). The case h ¼ 2 results
in p ¼ 0 and n ¼ 2 (i.e., minimally redundant radix-4). &

In constant-time addition of radix-r redundant numbers,
the sum digit in radix-r position i, is a function of the
operand digits in the same position i and at least those of
position i � 1 [8].

Definition 4 (Look-back). The number of consecutive
radix-2h operand digits in the right context of a radix-2h

position i, which contribute to the value of the sum digit in
position i, constitutes the look-back of position i.

For digit sets with rX3 and most cases of r ¼ 2 (a few
cases of r ¼ 2 and all cases of r ¼ 1), it has been shown
that the required look-back is 1 (2). In other words, the
sum digit in radix-2h position i is a function of four (six)
operand digits; the two operand digits in radix-2h position i

and the two in radix-2h position i � 1 (and the two in radix-
2h position i � 2) [8]. It is interesting to note that for the
minimally redundant case of r ¼ 1, the look-back of 2
leads to more complex addition schemes. Thus, the
representational cost reflected in rX3 may be more than
compensated for by the need for smaller look-back. The
few cases of r ¼ 2 which require a look-back of 2 are best
avoided, because they offer no advantage to compensate
for the more complex addition scheme.

Definition 5 (Partial look-back). When, depending on the
encoding and implementation (e.g., HSD in [7]), some bit
positions of a look-back digit do not contribute to the
derivation of a position sum, the look-back is said to be
partial.

The abstract view of a hybrid-redundant adder in Fig. 1
is based on a primary perception of complete separation of
adder cells for redundant and nonredundant positions. The
only connection between the two kinds of cells would be
through carry and/or borrow propagation. But Phatak
et al. have used a technique called equal-weight grouping
(EWG), which entrusts the higher bits of a digit in radix-2
position i � 1, together with lower bits of a radix-2 digit in
position i to a single adder cell in position i. This adder cell
has been shown to be less complex than one designed
without EWG. To investigate the consequences of EWG
for hybrid-redundant addition, we consider the 2-bit
representation of a redundant digit xi to be hxh

i xl
ii, with

xh
i and xl

i having the weights �2iþ1 and �2i, respectively.
We then define EWG formally as follows.

Definition 6 (Equal-weight grouping, EWG). The higher
weighted bit of a redundant digit in radix-2 position i � 1
has the same weight as the lower-weighted bit (only bit, in
the case of a nonredundant position) of the digit in position
i, thus constituting a group of 2 equally weighted bits,
regardless of bit polarities. EWG allows us to intermix the
processing of bits from various radix-2 positions in order to
obtain a more efficient hardware realization.

Definition 7 (Representationally closed addition). An addi-
tion scheme is representationally closed when the two
operands are from the same number system (i.e., the
equally weighted digits of the two operands belong to the
same digit set) and the value of the resultant sum digit, in
the corresponding digit-position, also belongs to the same
digit set. Furthermore, representational closure requires
that these identical digit sets all have the same encoding.

Representational closure is vital for general-purpose
arithmetic, where the same adder circuit is reused to
process the results of previous additions. But equal-weight
grouping, although simplifying adder cells in fully redun-
dant adders, does not always lead to representational
closure in true hybrid-redundant addition. For example,
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Position index

Position sum range

Equal-weight

Decomposition

Recomposition

i i – 2i – 1

[−4, 2] [−4, 2] [−4, 2]

[0, 2] + [–2, 0] [0, 2] + [–2, 0] [0, 2] + [–2, 0]

[–2, 2] [–2, 2] [–2, 2]

[–2, 0] + [0, 1] [–2, 0] + [0, 1] [–2, 0] + [0, 1]

[–2, 1] [–2, 1] [–2, 1]

Fig. 2. Addition of fully redundant SDB operands with equal-weight grouping.
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Figs. 2 and 3 represent, by means of digit-set conversion
[15], a fully SDB-redundant and a true SDB-hybrid-
redundant addition. Composition of two SDB digits results
in the interval ½�4; 2�, whereas that of two posibits pro-
duces ½0; 2�. The processes of decomposition (e.g., ½�4; 2�
¼ 2� ½�2; 0� þ ½0; 2�) and recomposition (e.g., ½�2; 0�þ
½0; 1� ¼ ½�2; 1�) are self-explanatory. As is evident from
Figs. 2 and 3, the negabits of operands in position i � 1,
contribute to the generation of negabits in position i. This
causes a representational shift which, owing to the addition
of fully redundant operand, remains hidden in Fig. 2, but
that is clearly visible in Fig. 3. It is easy to see that the same
representationally shifted behavior occurs for true SDC-
hybrid-redundant addition with redundant digits in ½0; 3�,
while a direct adaptation of an addition scheme based on
the adder cells given in [4] for the same number system
would be representationally closed. Also representationally
closed addition of true SDB-hybrid operands is certainly
possible (e.g., [16]). The sink functionality of position i

may be seen in Fig. 3, where carry propagation starts at
position i þ 1.

The fully redundant SDB-hybrid addition of Fig. 2 is
based on digit set conversion of [13], where the resultant
digit may assume any value of the original digit set ½�2; 1�.
But an adder cell for the same purpose, offered in [12], does
not preserve the operand’s digit set and produces digit
values in ½�1; 1�. A brief assessment of the consequences of
this reduction in digit sets is offered below.

Definition 8 (Digit set preservation). The digit set of a
number representation is preserved under an arithmetic
operation if the result digit may assume all the values in the
digit set.

Example 2 (Impact of digit set nonpreservation). The digit
set conversions of Figs. 2 and 3 preserve the digit set
½�2; 1�. But the addition scheme of [12] for SDB-hybrid
digits reduces the digit set ½�2; 1� to ½�1; 1�, as noted in [13].
Briefly, with the scheme in Figs. 2 and 3, two �1 redundant
digits in position i are converted to �1 1 (in positions i þ 1
and i) via equal-weight grouping, leading to a digit �2 in
position i þ 1. On the other hand, the addition scheme of

[12] decomposes the resulting �2 digit into �1 0, thereby
affecting position i þ 2.

A drawback of the digit-set nonpreserving addition
scheme, mentioned in Example 2, is that addition of most
significant digits may signal a false overflow. The digit-set
preserving scheme may also signal an apparent overflow
[17], but this is less likely.

3. Realization of hybrid-redundant adders

The adder presented by Phatak and Koren for BSD-
hybrid-redundant operands (first entry in our Table 2, [7]
Fig. 1), with its redundant radix-2 positions utilizing the
adder cell of [18], requires 42 (32) transistors for redundant
(nonredundant) positions. Phatak and Koren’s corre-
sponding design for redundant radix-2 positions with
SDB or SCB redundant digits (second and third entries
in our Table 2, [12], Fig. 3a), requires seven multiplexers, a
few gates, and several inverters. An analysis of the latter of
these two adders shows that the effect of equal-weight
grouping is to produce a representationally shifted result in
which the redundant position moves from i at the input to
i þ 1 at the output (see also the explanations following
Definition 7 in Section 2). The foregoing discussion
suggests that for designing a true SDB-hybrid-redundant
adder that is representationally closed, specialized adder
cells (besides the multiplexer-based design cited above) are
needed for isolated redundant positions and immediately
higher-weighted nonredundant positions. A high-level
design for such adders is offered in [16].
Aoki et al. [9] have shown that an augmented (4; 2)-

compressor, with some input/output inverters, can be used
for redundant positions of a BSD-hybrid-redundant adder.
Kornerup has used such augmented (4; 2)-compressors not
only for the redundant position, as above, but also in place
of the multiplexer-based cell of Phatak and Koren (see [13],
Sections 4.1 and 4.2). However, none of these modifica-
tions leads to representational closure when applied to a
true hybrid-redundant adder. Aoki et al. [9] have also
shown that standard full-adders, augmented by suitable
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Position index

Position sum range

Equal-weight

Emitted transfer
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Fig. 3. Addition of true SDB-hybrid-redundant operands with equal-weight grouping.
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input/output inverters, may receive and produce negabits
as well as posibits. This obviates the need for special cell
designs for nonredundant positions of a hybrid-redundant
adder. The inverters in the carry chain will cancel each
other out, but the inverters needed for inputs and sum
negabits lead to some overhead when compared with
unmodified full-adders.

In Section 6, we will show that by inverted encoding of
negabits, to be introduced in Section 5, the combining of
posibits in a nonredundant position and the incoming
borrow or carry can indeed be delegated to a conventional,
unmodified full-adder. The benefits of such a design are the
use of highly optimized standard full-adder cells (e.g.,
[19–21]) and the possibility of carry acceleration within
multiple nonredundant positions by means of ordinary
binary carry-lookahead circuits (again, readily available in
highly optimized forms); neither of these benefits is
applicable when realizing hybrid-redundant adders with
specialized adder cells.

4. WBS encodings and hybrid redundancy

Weighted bit-set (WBS) encoding of a redundant
number system [10] has a fixed number of radix-2 posi-
tions, each holding a collection of zero or more equally
weighted posibits and negabits. WBS encoding allows the
representation of any GSD digit set, including those of
hybrid-redundant systems. Furthermore, aperiodic hybrid-
redundant number systems, not covered by the GSD
paradigm, can also be represented by WBS encoding. For
example a posibit-hybrid-redundant number, as in Defini-
tion 1, can be represented by a WBS encoding, where
nonredundant positions hold a posibit and there is a
collection of n negabits and p posibits in redundant
positions, representing ½�n;p�. Canonical WBS encodings,

where each redundant radix-2 digit set is 3-valued and a
proper subset of ½�2; 2�, are particularly useful for efficient
constant-time addition. All the variants of posibit hybrid-
redundant numbers of Table 2 may be represented by
canonical WBS encoding (see Table 4).

Definition 9 (WBS encoding, redundancy pattern, and

canonical encoding). A WBS encoding O has k radix-2
positions, where each position i ð0pipk � 1Þ holds pi ðX0Þ
posibits and ni ðX0Þ negabits representing the digit set
½�ni;pi�. The cardinality of O equals the value of the
(possibly redundant) radix-2 number M ¼ ðmk�1mk�2

. . .m1m0Þ2, where mi ¼ pi þ niX0 is the bit multiplicity of
position i. The redundancy pattern of O is defined as the
possibly redundant radix-2 number R ¼ ðrk�1rk�2 . . .
r1r0Þ2, where ri ¼ mi � 1. The encoding is canonical if
1pmip2 (or 0prip1), for all i, i.e., the digit set in each
radix-2 position is ½�2; 0�, ½�1; 0�, ½�1; 1�, ½0; 1�, or ½0; 2�,
which is representable by two equally weighted negabits,
one negabit, a pair of one posibit and one negabit, one
posibit, or two posibits, respectively. Given that mip2, a
canonical encoding is a 2-deep WBS encoding, unless all
mi ¼ 1, where the encoding is 1-deep and nonredundant.

The unusual option of mi ¼ 0, possibly leading to
noncontiguous number systems, has been studied in [10],
but is irrelevant to hybrid redundancy. Any k-position
posibit hybrid-redundant number system (see Definition 1)
may be represented by a k-position WBS encoding, where
the latter has a posibit (ni negabits and pi posibits) in
position i, corresponding to radix-2 position i of the former
with a nonredundant (redundant) digit set ½0; 1� ð½�ni; pi�Þ.

Example 3 (WBS encoding). A 6-deep WBS encoding of a
9-position posibit-hybrid-redundant number system, with
three redundant digit sets ½�3; 3�, ½�5; 0�, and ½�2; 2� from
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Table 4

Canonical WBS encoding of some posibit-hybrid-redundant number systems

Posibit hybrid-redundant number system WBS encoding with 3 radix-16 digits

Composition (digit pattern) nþ p g

1 1 BSD in ½�1; 1�, 3 posibits 2 3

2 1 SDB digit in ½�2; 1�, 3 posibits 3 0

3 1 SBC digit in ½�1; 2�, 3 posibits 3 1

4 1 SC digit in ½0; 2�, 3 posibits 2 3

5 1 SDC digit in ½0; 3�, 3 posibits 3 2

6 1 digit in ½�2; 0�, 3 posibits 2 3

7 1 digit in ½�4; 2�, 3 posibits 6 1

8 1 digit in ½�8; 8�, 3 posibits 16 0
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left to right, respectively, is represented at the top of Fig. 5.
The overall range of the representable numbers is ½�ð3�
26 þ 5� 23 þ 2� 20Þ, 28 þ 27 þ 3� 26 þ 25 þ 24 þ 22þ
21 þ 2� 20� ¼ ½�234; 632�, with the cardinality M ¼ 867.
The redundancy pattern is R ¼ ð005004003Þ2 ¼ 355 ¼
M � 29.

An equivalent k-position canonical WBS encoding exists
if Mp2kþ1 � 1 [10], where M is the dynamic range of the
source posibit-hybrid-redundant number system. The
conversion to a canonical encoding, that is reducing the
number of bits in all the k radix-2 positions to at most 2, is
possible through the transformations outlined in Fig. 4. See
[10] for additional details.

Example 4 (Canonical WBS encoding). Fig. 5 depicts the
transformation steps for converting the 6-deep, 9-position
WBS encoding at the top to an equivalent 2-deep WBS
encoding at the bottom. Note that, owing to a singular
negabit in position 3, the 2-deep encoding no longer
corresponds to a posibit-hybrid-redundant number system.

Based on the practical restriction of redundant digit sets
to those representable by 2 bits, and in view of the fact that
efficient addition schemes exist for redundant number
systems represented by 2-deep WBS encodings [16], we are

motivated to explore the characteristics of periodic posibit-
hybrid-redundant number systems representable by 2-deep
WBS encodings.

Lemma 2. The digit set of a periodic radix-2h posibit hybrid-

redundant number system O with the redundant digit ½�n;p�
in position g ð0pgph� 1Þ is representable by a 2-deep h-

position WBS encoding iff nþ pp2h�g.

Proof. The digit set of O is ½�2gn; 2gðp� 1Þ þ 2h � 1�
(Definition 3) and its cardinality should not exceed the
maximum possible cardinality of a 2-deep h-position WBS
encoding (i.e., 2hþ1). Therefore 2gðp� 1Þ þ 2h � 1þ 2gnþ
1p2hþ1, lead to nþ pp2h�g. &

Example 5 (Canonical WBS encodings for posibit-hybrid-

redundant number systems). Table 4 depicts canonical WBS
encodings for some radix-16 ðh ¼ 4Þ posibit-hybrid-redun-
dant number systems. The first five entries coincide with
those of Table 2. Note that in deriving the canonical WBS
encoding for the posibit-hybrid-redundant number system
of row 7, using the transformations of Fig. 4, the original
posibits are not preserved. In all the other cases, however,
the pale (dark) dots exactly represent the digit set
corresponding to the original redundant (nonredundant)
positions.

Table 4 shows that all posibit-hybrid-redundant number
systems of Table 2 are representable by 2-deep WBS
encodings. These canonical representations may be alter-
natively regarded as hybrid-redundant number systems
with all redundant positions meeting the constraint nþ p ¼
2 (BSD, SC, or in ½�2; 0�). Other hybrid-redundant number
systems with redundant digits of wider range (e.g., those in
the last two entries of Table 4), when represented by
canonical WBS encoding, can be alternatively regarded as
having more redundant positions, all with nþ p ¼ 2.
Therefore, one can design representationally closed adders
for any posibit-hybrid-redundant system, meeting the
condition of Lemma 2, based on the adder cells of Fig. 1
in [7]; directly for BSD and SDB hybrid-redundant and
posibit nonredundant positions, and designed similarly for
other cases of Table 2 (see Section 6). Note, however, that
needing such a wide variety of adder cells is a disadvantage
in VLSI design, which favors regularity.
Posibit hybrid redundancy does not allow single negabits

in nonredundant positions. The third entry of Table 4, with
a single negabit in its WBS encoding may appear to
contradict this claim. However, one must note that in the
implementations offered in [12], this single negabit together
with a posibit in the next higher position forms an SBC
digit in the same (redundant) position as the negabit, and is
thus not considered or manipulated by itself as a non-
redundant radix-2 digit. Because a negabit represents the
nonredundant radix-2 digit set ½�1; 0�, we are motivated to
extend hybrid redundancy to allow for negabits in
nonredundant positions. This implies that, in designing
the required adder cells, the negabit would be considered
by itself and not as part of a redundant digit.
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Definition 10 (Extended hybrid redundancy). A k-position
extended-hybrid-redundant number system has k radix-2
positions numbered 0 to k � 1 and weighted 20 to 2k�1.
Each radix-2 position i ð0pipk � 1Þ holds a digit from a
digit set ½�ni; pi�, ni;piX0 and ni þ piX1. Position i is
redundant (nonredundant) iff ni þ piX2 ðni þ pi ¼ 1Þ.
Graphically a redundant position is shown as s, or by a
collection of two or more posibits ð�Þ and negabits ð�Þ; a
nonredundant position contains exactly one posibit or one
negabit.

Fig. 6 depicts the relationships among WBS encodings,
GSD number systems, extended-hybrid-redundant number
systems, and posibit hybrid redundancy.

5. Inverted encoding of negabits

The relative complexity of the adder cells in [7,12] is
mainly due to carry and borrow propagation within the
same circuit. Variants of (4; 2)-compressors and full-
adders, augmented with input/output inverters, have been
proposed in [9] as efficient tools for the compression and
addition of equally-weighted mixed collections of posibits
and negabits. Kornerup [13] has used the compressors of
[9] as more efficient alternatives to the adder cells of [7,12].
Other attempts at similar treatment of equally weighted
posibits and negabits (e.g., [22,23]) have led to slight
variations in full-half-adder circuits for different combina-
tions of posibits and negabits. The difference is often due to
extra inverters at inputs and outputs of the standard cells.
Although intermediate inverters may cancel each other out
in automated VLSI design, inverters for original inputs and
final outputs contribute to extra delay, area and power
consumption; a problem, that we aim to solve by inverted
encoding of negabits. It is well known that inverting all
three inputs of a full-adder will result in inverted sum and
carry. This hints at using a standard full-adder for adding
any three posibits and negabits (see Fig. 4).

Definition 11 (Inverted encoding of negabits). Inverted
encoding of negabits is exactly the opposite of the
conventional encoding, as used, for example, in the most
significant position of standard 2’s-complement represen-
tation. The lower (higher) value of a negabit, that is, �1
(0), is inversely encoded as 0 (1). We use uppercase

(lowercase) letters to designate the logical value of a
negabit (posibit). Then the arithmetic value of a negabit X

(a posibit x) would be X � 1 ðxÞ.

Fig. 7 depicts the universal functionality of a standard
full-adder as a (3; 2)-counter for any equally weighted
collection of 3 posibits and inversely encoded negabits.
A full adder with posibit inputs is characterized by the
equation x1 þ x2 þ x3 ¼ 2cþ s which relates the arithmetic
values of its inputs and outputs. Now, if the posibit input
x1 is replaced by the negabit input X 1, denoting the
arithmetic value X 1 � 1, the equality ðX 1 � 1Þ þ x2 þ x3 ¼

2cþ ðS � 1Þ shows that the full-adder will produce a
negabit sum and posibit carry. The (3; 2)-counter func-
tionality of a full-adder for other combinations of inputs is
similarly justified.
Similarly, one could use half-adders to convert any set of

two equally weighted posibits and negabits to an arithme-
tically equivalent 1-deep, 2-bit result. This functionality of
half-adders is justified by using the equation x1 þ x2 ¼

2cþ s in the same manner as that of a full-adder in the
preceding paragraph. We have shown elsewhere [10] that
conventional compressors, independent of how they are
implemented, offer a similar functionality in reducing
larger collections of posibits and negabits in any combina-
tion.

6. VLSI-friendly addition scheme

All the posibit-hybrid-redundant number systems with
redundant digits that are representable with 2 bits, and
many other extended-hybrid-redundant number systems
(discussed in Section 4), can be represented by canonical
WBS encodings. Addition of two canonical WBS-encoded
numbers is performed by conceptually copying the bits of
the 2-deep operands in the bit placeholders of a 4-deep
WBS representation. This is then followed by digit-set
conversion [15], or reduction to canonical WBS encoding.
In fact, if the redundancy patterns (see Definition 9) of

ARTICLE IN PRESS

Periodic (GSD) Nonperiodic

WBS Encodings

Extended Hybrid

Posibit Hybrid

Fig. 6. Relating WBS encodings and their various subclasses.

FA FA

S

cincout

x  Y

FA

s

cinCout

X Y

s

cinCout

x y

FA

S

CinCout

X Y

Fig. 7. Universality of a binary full-adder for adding equally weighted

posibits (shown as lowercase variables) and negabits (uppercase).

G. Jaberipur, B. Parhami / INTEGRATION, the VLSI journal 41 (2008) 49–64 57



Author's personal copy

operand’s encodings are the same, only redundant posi-
tions of the operands produce 4-deep results, with
nonredundant positions yielding 2-deep results. Otherwise
(i.e., operands with different redundancy patterns), a
nonredundant position of one operand may align with a
redundant position of the other, thus leading to 3-deep
positions as well.

With inverted encoding of negabits, reduction of a 4-
deep WBS number to a 2-deep one can be delegated to any
standard reduction network such as a Wallace tree [24] or
Dadda tree [25]. But, the resulting 2-deep number may
show an arbitrary redundancy pattern that is not
necessarily the same as that of the input operands. This
pattern change is what may happen in Algorithm 1 below.
Algorithm 2, however, provides for addition results with a
preserved redundancy pattern, which, as we will see later, is
not necessarily the same as representational closure.

Algorithm 1 (WBS reduction with shifted redundancy

pattern).

Input: A 4-deep WBS-encoded number derived by align-
ing two canonical WBS operands with identical
redundancy patterns. See Fig. 8a for an example.

Output: A canonical WBS-encoded result with shifted
redundancy pattern, where the redundancy index
riþ1 of the result is equal to ri of the operands, for
iX0. See Fig. 8c.

(I) For each 4-deep position j, use a full-adder to
reduce it to a 2-deep position. This leads to a
3-deep position j þ 1. See Fig. 8b

(II) Use a cascade of full-adders for carry-propagate
addition starting with a single full-adder at an
intermediate 3-deep position j þ 1 (or position 0),
followed by a chain of full adders for 2-deep
positions up to, but not including, the next higher
3-deep position. The carry-out of the full-adder for
the leftmost 2-deep position in a chain will stop at
the following 3-deep position, where it joins the
sum bit generated in that position to form the
redundant 2-deep position j þ 1 of the result.

The adder cells required for implementation of Algo-
rithm 1 are depicted in Fig. 9. The two full-adders of
Fig. 9a, used for redundant positions, may be replaced by

any (4; 2) compressor. The single full-adder of Fig. 9b is
used for nonredundant positions. Note that a single full-
adder for a nonredundant position is the minimum
possible.

Algorithm 2 (WBS reduction with preserved redundancy

pattern).

Input: A 4-deep WBS-encoded number derived by align-
ing two canonical WBS operands with identical
redundancy patterns. See Fig. 10a, for an example.

Output: A canonical WBS-encoded result with preserved
redundancy pattern, where the redundancy index
ri of the result is equal to ri of the operands, for
iX0. See Fig. 10c.

(I) Use a full-adder (half-adder) for any 4-deep
position j (2-deep position iÞ. This turns each
4-deep position j into a 3-deep position and
leaves the multiplicity of 2-deep positions intact
(Fig. 10b).

(II) Proceed exactly as in step (II) of Algorithm 1. See
Fig. 10c, where the result has the same redundancy
pattern as of the operands.

The required adder cells for Algorithm 2 are depicted in
Fig. 11, where the extra cost for preserving the redundancy
pattern is seen to be a half-adder per nonredundant
position (compare Figs. 9b and 11b). However, the
addition latency is the same as that of the circuit for
shifted redundancy pattern. Again, the circuit in Fig. 11a
may be replaced by a (4; 2)-compressor. Note that the
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Fig. 8. Reduction with shifted redundancy pattern.

Fig. 9. Adder cells leading to shifted redundancy pattern.

Fig. 10. Reduction with preserved redundancy pattern.
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adder cells for redundant positions in both algorithms are
identical. Also note that all adder cells are universal in that
their functionality does not depend on the polarities of
inputs and outputs. This is an important feature of our
designs, in the sense of enabling the use of conventional
building blocks that, over time, have been highly optimized
with regard to complexity, speed, and power requirements.

An approach that preserves the redundancy pattern (e.g.,
Algorithm 2) does not necessarily lead to representational
closure, because the latter requires not only a match in the
redundancy patterns of the operands and the result but
also identical polarity combinations for like positions. But
it is interesting that the adder cells of Fig. 9 preserve the
polarity sets of the operands, leading to a representation-
ally shifted result similar to the result of true hybrid
redundant adders based on the adder cells in [12] or those
in [13]. While the adder provided in [7] for BSD hybrid-
redundant operands is representationally closed, neither
[12] not [13] offers or hints at the idea of such an addition
scheme for other variants of true hybrid redundancy (i.e.,
where nonredundant positions do exist).

In [10], we have presented a representationally closed
adder for SDB-hybrid-redundant operands showing advan-
tages in terms of area, speed, and regularity. In Section 7,
we present representationally shifted and representationally
closed high-level designs for VLSI-friendly constant-time
adders with symmetric extended-hybrid-redundant oper-
ands.

7. Symmetric extended hybrid redundancy

Recalling our discussion in Section 2, variants of
symmetric posibit hybrid redundancy are limited to hybrid
redundant number systems with right-hybrid-redundant
digit sets ½�ðpþ 2h � 2Þ;pþ 2h � 2� for all h40, where p is
the maximum positive value which can be represented by
the right-side redundant position (see Lemma 1). A WBS
encoding for such a digit set would have at least 2h � 2 ¼
2ð2d � 1Þ negabits in its radix-2 redundant position, where

d is the distance between consecutive radix-2 redundant
positions. This means that the representation depth in
radix-2 redundant positions grows exponentially with the
distance parameter d.
The most important characteristic of posibit hybrid

redundancy is the design flexibility in allowing an arbitrary
number of nonredundant radix-2 positions between radix-2
redundant positions for area-time tradeoff, as it is this
number that defines the area requirement and the
associated latency for the design. With exponential growth
of area for the radix-2 redundant positions when symmetry
is a requirement, any attempt to increase h would be
ineffective as an area-time tradeoff measure. As an
example, for h ¼ 3, corresponding to a rather short
distance of d ¼ 2 between redundant positions, the
encoding depth of redundant positions will be pþ 6 (at
least 6). Converting such a deep WBS encoding to a 2-deep
(canonical) encoding reduces the number of radix-2
nonredundant positions, which is counterproductive as
regards to the main advantage of true hybrid redundancy.

Example 6 (Deep symmetric hybrid redundancy). Fig. 12
depicts the WBS encoding of a radix-8, 6-deep symmetric
hybrid-redundant number system and its equivalent
canonical WBS encoding. Each radix-8 digit belongs to
½�6; 6�. The reduction process from 6-deep to 2-deep is
similar to that shown in Fig. 8.

Example 6 serves to confirm the result of Corollary 3
that posibit 2-deep hybrid redundancy provides for only
two different symmetric digit sets, namely, BSD and the
minimally redundant radix-4 digit set ½�2; 2�. This ob-
servation establishes that posibit 2-deep hybrid-redundant
representations are mostly asymmetric, thus essentially
denying designers the flexibility of spacing variations to
trade off speed for economy (smaller VLSI area) in many
cases where symmetry is desired. To reduce the depth of a
high-radix symmetric posibit hybrid-redundant representa-
tion, it is possible to use more than one radix-2 position for
representation of the redundant radix-2 digit set, as was
suggested by the equal-weight grouping (see Definition 6).

Example 7 (Shallow encoding of symmetric hybrid redun-

dancy). Consider a 9-position (0 to 8) hybrid-redundant
representation with 2 posibits and 8 negabits in positions 0,
3, 6, and a single posibit in every other position (i.e., a 10-
deep representation of the radix-8 digit set ½�8; 8�). An
equivalent 3-deep representation for the above contains a
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single posibit in positions 1, 4, 7, two posibits in positions
0, 3, 6, and one posibit plus 2 negabits in positions 2, 5, 8.

The resultant symmetric posibit-hybrid-redundant num-
ber system of Example 6 is not a 2-deep WBS encoding; it
is thus unsuitable for the efficient universal addition
scheme based on the adder cells of Figs. 9 or 11. The
process of deriving its equivalent canonical WBS encoding,
through the transformations of Fig. 4, leaves a single
negabit in each of the originally redundant positions. The
canonical WBS encoding thus derived (Fig. 13) no longer
represents a posibit-hybrid-redundant number system, but
it is an extended-hybrid-redundant number system, as
specified by Definition 10. This suggests a general method
for constructing a 2-deep WBS encoding to represent a
given symmetric range ½�a; a�. We begin with a one-
position WBS encoding with a posibits, and a negabits, and
repeatedly apply the transformations of Fig. 9, until no
other similar transformation is applicable [10].

8. Adding extended-hybrid-redundant numbers

Numbers with arbitrary digit sets can be added digitwise
to produce a sum with a digit set whose range is the sum of
the ranges of the operand digits. This wider digit set can be
kept intact and the result used as an operand in further
arithmetic operations. It is also possible to convert the
wider digit set to a more convenient one for further
processing. Often, however, it is required to obtain results
with the same digit set as inputs [26]. Such representation-
ally closed arithmetic is desirable for storage efficiency,
reusability of the arithmetic circuits, and regularity in VLSI
realization. While encoding-algorithm combinations that
are not representationally closed can be useful and are used
in practice (e.g., [14]), when a representationally closed
scheme is compared against one that is not closed, fairness
dictates that the overhead of conversion to the ultimate
encoding for the latter be taken into account in any cost/
speed comparisons.

Where the two operands in addition are represented with
the same canonical WBS encoding, the reduction cells of
Fig. 11 may be used to produce a 2-deep result with the
same redundancy pattern as that of the operands.
Preserving the redundancy pattern is a necessary condition
for representational closure, but it is not sufficient; the
number of posibits and negabits of the like positions of the
result and the operands should be the same as well. One
obvious case, in which the latter property is sufficient, is
when the encoding consists of only posibits (e.g., SC digit)
or only negabits. The adder cells of Fig. 9, however,
preserve representational closure, except for a one position

left shift in the resultant pattern, that is, the number of
posibits and negabits of any position i þ 1 of the result is
equal to that of position i of either operand.
Fig. 14 depicts, in dot notation, representationally closed

addition of two 3-digit symmetric hybrid-redundant
operands with the digit set ½�8; 8�. Fig. 15 shows a regular
adder design for an arbitrary radix-2h digit i extending
from position ih to position ði þ 1Þh� 1, where the only
building blocks are full- and half-adders (shaded boxes).
Note that cells drawn with dashed lines belong to position
ih� 1. The addition process is outlined by steps of the
algorithm that follows.

Algorithm 3 (Representationally closed addition of sym-

metric 2-deep extended-hybrid-redundant operands, exem-

plified by Fig. 13).

1. Replace the 2-deep column of equal-weight negabits by
an ðhþ 1Þ-position 1-deep 2’s-complement number of
the same arithmetic value. This produces a new negabit
in the next higher negabit position. A standard half-
adder can produce the 2-bit 2’s-complement sum of 2
negabits. An h-bit sign-extension of the latter produces
the desired result; however, due to our inverted encoding
of negabits, an inversion is required for sign extension.
The required circuitry for this step, a half-adder in the
leftmost position of each radix-2h digit and two
inverters, can be seen in Fig. 15.

2. Concurrently with Step 1, use a full-adder (half-adder)
in the 4-deep (2-deep) posibit positions to derive a
3-deep intermediate result. Zero-valued posibit and
negabit constants (boldface 0, regular-face 1) appear in
the least significant digit position of Fig. 14 for
regularity. The latency for this step is equal to that of
one full-adder.

3. Use one full-adder per position to reduce the 3-deep
result to one of depth 2. The latency of this step is again
equal to that of one full-adder.
� Use a chain of h full-adders per every h positions to

derive the final result. The delay of this step is equal to
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Fig. 13. A canonical WBS encoding of an extended hybrid-redundant

number system with the symmetric digit set ½�8; 8�.

Fig. 14. Representationally closed addition of symmetric hybrid-redun-

dant operands.
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that of h cascaded full-adders. For large h (say, hX4),
one may use carry acceleration techniques to ascertain a
delay of Oðlog hÞ.

The extra cost for subtraction is minimal. We negate the
subtrahend by bitwise inversion of each digit, and then
perform an addition as above. That simple bitwise
inversion of each digit negates that digit, and thus the
whole number, is justified as follows.

Theorem 1 (Negating a WBS-encoded symmetric digit).
A digit value from a symmetric digit set represented by

posibits and inversely encoded negabits is negated by

inverting all the bits.

Proof. Let the symmetric digit set, represented over several
radix-2 positions, be ½�a; a�. This implies that the sum of
the weights associated with the set of all posibits or all
negabits is a. Consider a digit D whose encoding comprises
a set of 1-valued posibits of total weight x and a set of 0-
valued negabits of total weight y, leading to D ¼ x� y,
with x, ypa. The bitwise complemented digit Dcompl will
then have the value ða� xÞ � ða� yÞ ¼ �D. &

The overall adder circuitry, as depicted in Fig. 15, is
comprised of two full-adders and one half-adder per radix-
2 position. An inverter per bit and a multiplexer is the
minimum possible penalty for subtraction, a bound that is
achievable in this case, as noted above. The total addition
delay, corresponding to the critical path of Fig. 15 (the
heavy broken line) is equal to that of h full-adders and two
half-adders. With a carry acceleration circuit, an Oðlog hÞ

delay can be easily achieved. Note that a representationally
shifted adder, based on the adder cells of Fig. 9, has a cost
of one (two) full-adder(s) per nonredundant (redundant)

position, that is, a total of hþ 1 full-adders per radix-
2hdigit. The delay, in this case, is equal to that of hþ 1 full-
adders, almost the same as in the case of representationally
closed adder. However, the hardware penalty for repre-
sentational closure is rather substantial; the equivalent of
one extra half-adder (and one extra full-adder) per
redundant (nonredundant) position.

9. Conversion from two’s complement

Conversion from 2’s-complement representation to
posibit hybrid-redundant representation is quite simple as
long as the digit set for redundant positions includes f0; 1g.
In particular, this is the case for all representations
shown in Table 2. Bits are directly transferred from one
representation to the other in nonredundant positions
(which, by definition, consist of single posibits) and one of
the posibit components of a redundant digit is used in
redundant positions. The only nonroutine part of the
conversion pertains to the sign position. In the case of the
last two entries in Table 2, corresponding to two entries in
Table 3 which do not include negabits in the leftmost
column, conversion of negative numbers is clearly im-
possible. For the first three entries of Table 2, the sign bit
of the 2’s-complement number can be accommodated in
the most significant position of the hybrid-redundant
representation. The conversion latency is thus no greater
than a single inverter delay.
Based on the preceding discussion, one potential draw-

back of extended hybrid redundancy is that it may
complicate the process of conversion from 2’s-complement
representation. In this section, we discuss the conversion
process in general, showing that any carry propagation in
the conversion process can be terminated at a redundant
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Fig. 15. Representationally closed adder for digit i of radix-2h symmetric hybrid-redundant numbers.
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position, and provide an efficient solution for the particular
symmetric representation introduced earlier (see Fig. 14).

The general process of conversion from k-bit 2’s-
complement representation to a given extended-hybrid-
redundant representation is as follows. For each posibit in
position i of the source number, 0pipk � 2, we choose a
conversion option from Table 5, depending on the bit
pattern of the target representation in the same position i.
The main objective in this choice is to make the outgoing
carry from a redundant position completely independent of
the incoming carry for that position. Table 5 shows how
the latter goal can be achieved. Where we have at least two
posibits in a redundant position, they can absorb both the
source bit and the incoming carry, allowing us to set
cout ¼ 0; other posibits (negabits), if any, will be set to 0 (1),
corresponding to the arithmetic value 0. For a redundant
position with exactly one posibit, we set cout ¼ x, where x is
the value of the source posibit, and use xcin (respectively,
xþ cinÞ for the target posibit (negabit). Finally, where a
redundant position contains no posibit, we choose cout ¼ 1
and set the two target negabits to x and cin. The choices
listed for nonredundant positions in Table 5 are self-
explanatory. Because we use conventional or positive
carries throughout, carry acceleration techniques with
standard circuitry can be easily introduced, if desired.

The fact that carry propagation stops at digit boundaries
for periodic canonical extended-hybrid-redundant repre-
sentations is a direct consequence of the fact that for the
latter representation to accommodate a continuous interval
of integers, each period or h-position digit must be able to
represent all values in the range ½0; 2h � 1�.

In practice, conversion from 2’s-complement to ex-
tended-hybrid-redundant representation can often be done
with no carry propagation and with a latency equivalent to
that of a single inverter. For example, in case of the
symmetric hybrid-redundant number system depicted in
Fig. 13, conversion from 2’s-complement representation
involves only direct wiring and some inversions, as shown
schematically in Fig. 16. Note that the leftmost inverter is
needed because of our inverted encoding of negabits.

10. Conclusions

The hybrid redundancy scheme of [7], extended in [12],
constitutes an easily understood concept leading to
straightforward management of area-time tradeoffs in the
design of hybrid-redundant number systems. The designer
has the option of considering as many posibits between the
redundant positions as required by cost-performance
targets. The redundant positions are practically restricted
to at most 4-valued digit sets to enhance the addition
speed. The latter constraint, with the help of equal-weight
grouping, has led to 2-deep encodings (using the terminol-
ogy of WBS encodings) of hybrid-redundant number
systems. However, the ordinary or posibit hybrid redun-
dancy scheme does not offer the latter design flexibility
when shallow symmetric number systems are desired. In
such cases, hybrid redundancy fails to provide representa-
tional closure in adding true hybrid-redundant operands,
does not fully preserve the original digit sets, is incompa-
tible with the direct use of carry acceleration techniques,
and lacks support for subtraction by means of the same
circuitry used for addition.
In this paper, we provided an in-depth analysis of

limitations of posibit hybrid redundancy and showed that
these problems can be overcome by two innovations:

� Allowing single negabits in nonredundant positions: This
possibility, which led to definition of extended hybrid
redundancy, helps in designing shallow symmetric
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Table 5

Carry propagation rule in conversion from 2’s-complement to extended-hybrid-redundant representation

Source digit x cin Nonredundant target (exactly one bit) Redundant target (at least two bits)

K K � K K �

K � �

0 0 0 1 0 0 0

0 1 0

0 1 1 0 0 1 0

1 1 1

1 0 1 0 1 0 1

0 0 0

1 1 0 1 1 0 1

1 1 1

Cout ¼ xcin xþ cin 0 x 1

2’s-complement number 

Extended-hybrid-

redundant number

Not used

Fig. 16. Schematic view of conversion from 2’s-complement to the

extended-hybrid-redundant representation of Fig. 13.
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hybrid-redundant number systems, which would become
impractically deep otherwise (the depth would increase
exponentially with the spacing of redundant positions).
Furthermore, symmetric digit sets make the negation
operation quite efficient and lead to direct reusability of
addition circuitry for subtraction. For example, in the
case of some common symmetric number systems,
negation is performed via bitwise inversion.
� Encoding negabits in inverted form: This simple idea

leads to the applicability of conventional full/half-
adders, counters, and compressors in reducing sets of
posibits and negabits and renders carry acceleration
techniques directly applicable. For example, a universal
(4; 2)-compressor based on inverted encoding of
negabits [10] is advantageous, in terms of regularity
and use of standard cells, to inverter-augmented (4; 2)-
compressor variants proposed in [13] for use in alternate
implementations of the adder cells of [12], given that the
types and placements of these variants depend on the
input/output digit sets. Conventional binary full-half-
adders and carry acceleration cells have been studied
extensively with regard to area, speed, and energy
efficiency [21]; hence, using them in our designs allows
a wide choice of predesigned and highly optimized cells.

We showed that when representationally shifted results are
acceptable, as is generally the case in true posibit hybrid
redundancy with the implementations in [12] and [13], a
universal adder may be designed with one (two) full-adders
per nonredundant (redundant) position. The adder delay
for radix-2h periodic hybrid-redundant number systems
equals that of hþ 1 full-adders. As shown in the
representationally closed adder of Fig. 15, the hardware
penalty for the coexistence of symmetry and representa-
tional closure, both desired in practice, is the equivalent of
one extra half-adder (and one extra full-adder) per
redundant (nonredundant) position. Fortunately, however,
the addition delay is almost the same (that of h full-adders
and two half-adders in series), so the speed penalty is
negligible. Conversion from 2’s-complement to an ex-
tended-hybrid-redundant number system requires limited
carry propagation between consecutive redundant posi-
tions in the most general case. However, for common
symmetric representations, conversion delay reduces to
that of a single inverter, which is the minimum possible.

Further research on extended hybrid redundancy
schemes may pursue the design of multipliers and dividers
as well as efficient circuits for converting from various
extended hybrid-redundant formats to 2’s-complement
binary format. The latter can, of course, be achieved
via removal of negabits from all intermediate positions
(in a manner similar to step 1 of Algorithm 3) and
subsequent use of posibit compression, followed by a
carry-propagate addition. However, more efficient schemes
may be applicable for specific encodings or classes of
encodings.
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