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Abstract

Generalized Petersen (GP) networks and periodically regular chordal (PRC) rings have been proposed independently to amelio-
rate the high latency and extreme fragility of simple ring networks. In this paper, we note that certain GP networks are isomorphic
to suitably constructed PRC rings, while other varieties correspond to PRC rings that closely approximate their topological and
performance attributes. In the absence of equivalence and similarity proofs in the opposite direction, our results indicate that PRC
rings may be preferable to GP networks in the sense of covering a broader family of networks and offering greater flexibility in

cost-performance tradeoffs.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Numerous topologies for interconnecting processing
nodes or full-fledged computers have been proposed
by researchers in parallel computing and communica-
tion networks [3,8]. It is often difficult to compare such
networks with respect to their suitability for a particu-
lar application domain [7]. Such a comparison entails
a multitude of modeling and analyses efforts to assess
the networks’ static attributes (diameter, average dis-
tance, bisection, VLSI layout area) and dynamic prop-
erties (routing algorithms, deadlock prevention, traffic
balance, fault tolerance). Thus, it is counterproductive
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to introduce new classes of networks unless they can be
shown to offer tangible advantages in one or more of the
aforementioned areas for a reasonably wide application
domain.

Popularity of the ring topology stems from its struc-
tural simplicity and efficient routing protocols. These
properties lead to low implementation cost and high
communication throughput, with long delays and ex-
treme fragility being potential drawbacks. One way
to ameliorate these drawbacks is to endow a p-node
ring with skip links or chords, forming a chordal ring
CR(p; 51,52, ..., Sg), where the skip distances or chord
lengths s; imply that a node j is linked to nodes j =+ s;,
besides the ring links connecting it to j &+ 1. Another
way is to introduce a secondary ring to form a double-
ring network (Fig. 1(a)). Combining the two ideas of
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(a) DR(12) = GP(12; 1)

(b) GP(12; 3)

Fig. 1. Examples of double-ring (DR) and generalized Petersen (GP) networks.

secondary ring and chordal connections leads to the
generalized Petersen graph (Fig. 1(b)), where the inner
“ring” has =£s skip links instead of &1 ring links [4].
A special case of GP(n;s), the generalized Petersen
graph with p = 2n nodes and skip distance s, is the gen-
eralized double-ring (GDR) network which restricts n
and s to be relatively prime [11], thus ensuring that the
inner part is in fact a ring.

Our goal in this paper is to show that any GP, and
thus GDR, network corresponds to a PRC ring that is ei-
ther isomorphic to it or else very closely approximates
its key architectural parameters. Put another way, PRC
rings are more versatile than GP networks. Thus, we ad-
vocate the use of PRC rings where GP networks have
previously been applied. Any network class that can re-
place, or show benefits over, multiple distinct classes of
networks is useful in the repertoire of parallel computer
architect. For example, it allows single streams of effort
for algorithm development, provision of fault tolerance,
analysis of energy efficiency, and packaging considera-
tions to replace multiple current streams.

2. Background and definitions

We label the n nodes of a ring from 0 to n — 1. Node-
index expressions are taken to be modulo n, with node
n — 1 being adjacent to node 0. For a DR network, with
p = 2n nodes, the outer nodes 0 to n — 1 and inner nodes
0" to (n — 1)’ are connected by outer edges (j, j + 1), in-
ner edges (j', (j + 1)), and spoke edges (/, j'). For GP
or GDR, the inner edges become (', (j +s)'). Among
known results [1] for GP(n; s) is the fact that it is al-
most always Hamiltonian (i.e., contains or embeds a 2n-
node cycle), the only exceptions occurring for GP(n; 2)
when n = 5 mod 6 (see Theorem 13.1 on p. 316 of [5]).
Besides the Petersen graph P = GP(5; 2), other note-

worthy special cases of GP(n; s) are the cubical graph
GP(4; 1), the Mobius—Kantor graph GP(8; 3), the De-
sargues graph GP(10; 3), the symmetric cubic graph
F>4 = GP(12;5), and the prism graph GP(n; 1).

The double-ring network of Fig. 1(a), also known
as the prism graph, was first proposed to improve the
robustness of a simple ring, which is particularly vul-
nerable to cable-cut accidents when deployed in un-
derground trenches. Pedersen and coworkers [6,11,12]
studied generalized double-ring networks (N2R net-
works, in their terminology) in comparison with simple
DR networks and degree-3 chordal rings, taking topo-
logical parameters, such as diameter and average intern-
ode distance, as well as reliability into consideration.
While their simulation-based results do not advance
our theoretical understanding GDR networks, they do
point to potential advantages of GDR(n; s) in compar-
ison with other networks of similar cost and complex-
ity.

We next define the notion of periodic regularity
in chordal rings [9]. Consider a p-node chordal ring
CR(p; 1,52, ...,5g), with g skip links of lengths s; <
53 < --- < 5g. To reduce the node degree of such a net-
work from 2g + 2 to 4, while maintaining some of its
desirable attributes such as small diameter and average
internode distance, we may pursue the following strat-
egy. Let g divide p. Rather than provide all g different
skip links for each node, we divide the nodes into g
classes according to the residue of their indices mod-
ulo g. We assign a single skip link type to each class
of nodes. As shown in Fig. 2, node j may be provided
with two skip links to nodes j & 5z (j mod ). Both the
diameter and average internode distance increase by no
more than g as a result of this strategy, which consti-
tutes a form of pruning. Given that g is relatively small
in practice, the loss of performance due to the increased
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Fig. 2. Node structure in chordal rings and PRC rings, showing degree reduction from 2g + 2 to 4.
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Fig. 3. Two ways of replacing a degree-4 node with two degree-3 nodes.

routing distances is negligible (aggregate network band-
width is a different story, of course). Certain conditions
on the skip distances are required if the resulting net-
work is to be regular with regard to node degree. How-
ever, here we are not interested in PRC rings in their
full generality, so there is no need to discuss such con-
ditions.

The construction leading to degree-4 PRC rings
(Fig. 2) is a special case of a node degree reduction strat-
egy in which a node of degree d is replaced by a network
of lower-degree nodes that collectively provide d exter-
nal links to serve as the original links of the replaced
node. Fig. 3 shows how GP(n;s) and degree-3 PRC
networks, PRC3(2n; s), represent two different ways of
applying this strategy to reduce the node complexity of
a degree-4 chordal ring: a GP network is obtained when
each CR node is replaced by a 2-node network in the ra-
dial direction, whereas a PRC3 ring network is obtained
when substitution is in the tangential direction. A nat-
ural question that arises is how 2n-node, degree-3 GP
networks and PRC3 rings compare with regard to sta-
tic parameters and dynamic performance attributes. We
endeavor to show that PRCj3 rings are preferable to GP
networks.

3. GP networks as PRC rings
DR networks are known to be Hamiltonian. A span-

ning cycle of DR(n) is readily traced by using any
two adjacent spoke edges, plus all but one of the outer

and inner edges. A different Hamiltonian cycle can be
formed that moves between outer and inner rings, tak-
ing one step in each before switching to the other. This
leads to an alternate drawing of the network of Fig. 1(a),
shown in Fig. 4(a). The PRC ring isomorphic to DR(12)
has a group size of g = 2 and skip distances of +3 for
even nodes and —3 for odd nodes. Clearly, one can use
this construction for any DR(n) with n even. It remains
to establish whether an isomorphic PRC ring can be
found for odd n. The following theorem shows the an-
swer to be negative.

Theorem 1. The double-ring network DR(n) is a PRC
ring if and only if n is even.

Proof. The “if” part is straightforward, given the pre-
ceding construction. To prove the “only if” part, let
n be odd. Clearly, we cannot trace a Hamiltonian cy-
cle by alternating between the outer and inner rings,
switching on every other step. A Hamiltonian cycle
must thus take a hop somewhere from the outer/inner
to the inner/outer loop, remaining there for at least 2
hops. Without loss of generality, let the cycle include
the segment 0’ — 0 — 1 — 2. It is easy to see that
the postulated Hamiltonian cycle cannot be completed,
except if the inner and outer parts of the path con-
tinue separately, eventually rejoining via the spoke edge
((n—1), (n—1)"). Thus, only two spoke links are part of
the Hamiltonian path. However, spoke links are not in-
terchangeable with the outer or inner links (the network
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(a) DR(12) = GP(12; 1)

(b) GP(12; 3)

Fig. 4. PRC ring views of DR(12) and GP(12; 3).

is not edge-transitive). To see this, consider that each
spoke link is part of two different cycles of length 4,
whereas each outer/inner link belongs to only one such
cycle. Having only two spoke links in the Hamiltonian
cycle forces a period of at least /2. Note that in a PRC
ring, any two skip links of the same type s; that are
separated by g nodes (i.e., they emanate from nodes j
and j + g, where g is the period) are completely inter-
changeable. O

For GP networks, the construction is more com-
plicated. Consider GP(12; 3) in Fig. 1(b). To trace a
Hamiltonian cycle for this network in a manner as to
produce an isomorphic PRC ring, it is necessary, but not
sufficient, to utilize spoke links at equal intervals. The
condition is a necessary because periodicity (with pe-
riod g) dictates that links emanating from nodes j and
J + hg be interchangeable. One possibility is shown in
Fig. 4(b), which is a PRC ring with g =4 and skip dis-
tances —5, —11, +11, +5.

Theorem 2. GP(n; s) is a PRC ring if n is even, s > 1
is odd, and n =2 mod (s — 1).

Proof. Note that the condition “n even” is redundant,
because it is implied by “s odd” and n =2 mod (s — 1).
Begin a Hamiltonian cycle at node 0. Proceed as fol-
lows, taking spoke links on alternate steps:

00 s s =1 -1 @s-1)
Qs—1) 25—2) @s—2) ...

The pattern in the partial sequence above is periodic,
with a period of 4, as evidenced by the underlined inner-
ring node numbers that are multiples of s — 1. If con-

tinuation of the underlined sequence of node numbers
leads to the node (s — 2)’, the pattern can be repeated
by proceeding to (s — 2), (s — 3), and (s — 3)". From
there, each node number is shifted by —2 relative to
those in the previous repetition, eventually closing the
path via the final nodes 1’ and 1. Thus, because of the
wraparound when going beyond the starting nodes O
and 0/, some multiple of s — 1 must equal n + s — 3,
that is, I[(s — 1) = n 4+ s — 3. To make the right-hand
side of this equation a multiple of s — 1, we must have
n =2 mod (s — 1). In the special case of s = 3, the lat-
ter condition becomes n = 2 mod 2, which is the same
as “neven”. 0O

Theorem 2 provides sufficient conditions for GP(n; s)
to be a PRC ring. If the postulated conditions are satis-
fied, then the isomorphic PRC ring has a period of 4.
At this point, we do not know whether these conditions
are necessary as well, although we strongly suspect that
they are. Note that the final condition on 7 in the state-
ment of Theorem 2, that is, » =2 mod (s — 1), is not as
restrictive as it appears at first glance. For example, it is
always satisfied for s = 3, it is satisfied for s = 5 pro-
vided that n is not a multiple of 4, and, more generally,
it holds for one out of every (s — 1)/2 consecutive even
values of n. Therefore, a PRC ring network of size close
to that of an arbitrary DR or GP network can always be
constructed. This notion is formalized in the following
theorem.

Theorem 3. Given the diameter-D network GP(n; s)
with n even, sodd (s > 5), and n #2 mod (s — 1), we
can construct a PRC ring with no more than 2(n+s — 3)
nodes whose diameter is at most D + 1.
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Fig. 5. A PRC ring network and its representations as a pruned (twisted) torus.

Proof. Let n = m mod (s — 1), where m is even and
m # 2. The postulated PRC ring is derived from the
Hamiltonian-cycle construction of Theorem 2, after
adding 2[(s + 1 — m) mod (s — 1)] nodes to GP(n; s)
to transform it into GP(n + (s + 1 —m) mod (s — 1); s).
Because (s + 1) = 2mod (s — 1), it is readily seen
that the number of nodes in the expanded network is
2 mod (s — 1), thus making the Hamiltonian cycle con-
struction method of Theorem 2 applicable. The maxi-
mum enlargement of n during the transformation above
is s — 3 (which occurs for m = 4), leading to the maxi-
mum of 2(n 4+ s — 3) nodes in the network. The fact that
the diameter of the expanded network is no more than
D + 1 is readily provable by observing that there can
be no more than an extra skip link on the shortest path
from any source node to a destination node, compared
with a corresponding diametral path in GP(n; s). O

4. Some practical implications

Based on Theorem 3, even when a GP network is not
isomorphic to a PRC ring, we can use a PRC ring of
comparable size and diameter in lieu of the former. The
relative size increase in this replacement is no greater
than (s — 3)/n. In general, the optimal value of s, that
is, the skip distance that minimizes the network diam-
eter and its average distance, is s°"' = ©(n'/?). The
worst-case relative size increase from GP network to
the derived PRC ring is thus omn~Y 2). This is no worse
than the effect of adding a single row or column to a 2D

square mesh or torus network. The effect on diameter is
also comparable.

If PRC3 rings are to be used in parallel architec-
tures, either as direct choices or as substitutes for GP
networks, their structural properties must be contrasted
with other fixed-degree networks of comparable costs.
We have shown PRC rings to be isomorphic or topolog-
ically similar to GP networks. Thus, results of prior re-
search showing GDR networks (special cases of GP net-
works) to have advantages over other degree-3 networks
carry over to PRC rings. As depicted in Fig. 5(a), a p-
node PRCj3 ring is isomorphic to an s x (p/s) pruned
twisted torus, where s is the skip distance. Fig. 5(b)
shows that some PRC rings are isomorphic to ordinary
pruned tori. Thus, documented advantages of pruned
tori [10] carry over to PRC rings, as do comparative
evaluations between pruned tori and other fixed-degree
networks.

The next issue to be considered is that of incremen-
tal scalability, that is, the extent to which a network
can be expanded to include a larger number of nodes.
In this respect, hypercube networks are not very scal-
able for two different reasons: the fairly large step size
in going from one configuration to the next possible
configuration (with twice as many nodes), and the in-
crease in node degree to allow this expansion. Simi-
larly, the incremental scalability of many fixed-degree
derivatives of hypercube networks suffers from the re-
quirement that the network size be a power of 2. Ring
and mesh networks, on the other hand, are more readily
scalable. The incremental scalability of PRC rings fol-
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lows from the pruned twisted torus equivalence depicted
in Fig. 5.

5. Conclusion

We have shown that many (generalized) double-ring
networks and generalized Petersen graphs are isomor-
phic to periodically regular chordal rings. Additionally,
we have demonstrated that when a GP(n; s) network is
not isomorphic to a PRC ring, it can be replaced by a
PRC ring that is at most only slightly larger and has
a diameter that is either the same or one unit more.
Furthermore, the replacement PRC ring enjoys identi-
cal fault tolerance and robustness parameters, including
3-connectivity [13]. The fairly complicated routing al-
gorithms of GP networks [2] become simpler with the
PRC ring view. It is certainly an advantage for a number
of routing functions to have a Hamiltonian cycle readily
visible and not requiring any calculations to derive.

In the absence of equivalence and similarity proofs
in the opposite direction, our results indicate that PRC
rings may be preferable to GP networks in the sense
of covering a broader family of networks and offering
greater flexibility in cost-performance tradeoffs. Explor-
ing conditions and application contexts under which
performance and fault tolerance benefits could material-
ize constitutes a possible direction for further research.
Other areas for future research include the derivation
of exact values (closed-form formulas) for the diameter,
bisection width, and fault diameter of PRC3 rings. The
node symmetry of PRC rings and their periodic regu-
larity (the next best thing, in the absence of complete
edge-symmetry) make both analytical and experimental
evaluations feasible with moderate effort.
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