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Abstract
Residue number system (RNS) representations, which 
allow fast addition and multiplication, have found niche
applications in signal processing. These representations 
are based on integer-valued residue “digits” with respect 
to integer moduli. We introduce RNS representations with 
continuous or analog digits, and study their dynamic 
range, accuracy, and optimal choice of the moduli. Like 
positional number systems with continuous digits, our 
representations offer advantages in robustness and fault 
tolerance. As an interesting application, we point to 
recent findings in computational neuroscience that 
attribute a rat’s uncanny ability to return to a home 
position, even in the absence of visual clues, to a related
hex-grid-based residue representation of its position.
Keywords––Continuous-valued digits; Digital arithmetic; 
Hybrid analog/digital encoding; Number representation.

1. Introduction
Residue number system (RNS) representations have 

been studied extensively since the early days of digital 
computers [1-4]. Early high hopes for superfast arithmetic 
due to independent parallel operations on the residues 
were shattered by the realization that certain difficult 
arithmetic operations and decision processes can nullify 
much or all of this gain. Thus, practical applications 
remained limited to signal processing tasks dominated by 
addition and multiplication operations. An extensive body 
of RNS-related methods was already in place by 1986 [5]. 
More recently, the potential of RNS for low-power 
arithmetic has gained attention (e.g., [6]).

RNS is used to represent integers or scaled fixed-point 
values. Given pairwise relatively prime integer moduli 
mk–1 > . . . > m1 > m0, an integer R is represented by its 
ordered set of residues (rk–1, ... , r1, r0) with respect to the k
moduli. The dynamic range of this number system, that is, 
the number of distinct uniquely represented integers, is M
= mk–1 ... m1m0. This range can be used for unsigned 
numbers [0, M – 1], signed numbers [– M/2 , M/2 – 1],
or any other set of M consecutive integers. 

Addition, subtraction, and multiplication operations are 
performed independently on each residue. Given the RNS 
operands S = (sk–1, ... , s1, s0) and T = (tk–1, ... , t1, t0), their 

sum/difference and product are formed as follows
(notationally, |z |m stands for z mod m):

S T (|sk–1 tk–1|mk–1, . . . , |s1 t1|m1, |s0 t0|m0)
S T (|sk–1 tk–1|mk–1, . . . , |s1 t1|m1, |s0 t0|m0)
Problems to be addressed in practical applications 

include choice of the moduli, forward/reverse conversions 
from/to binary format, and consideration of when/how to 
scale the intermediate results to avoid overflow. In what 
follows, we focus only on the dynamic range and its 
properties, in preparation for our discussion of the 
continuous-digit case. For details of RNS arithmetic and 
applications, the reader is referred to [3].

The example RNS in Fig. 1, with m1 = 4 and m0 = 3,
has a dynamic range of M = 12, which can be used to 
represent the natural numbers in [0, 11]. The next natural 
number, 12, is indistinguishable from 0, so 11 is as high 
as we are allowed go. Now, forgetting for the moment 
that the residues are restricted to natural numbers, let us 
ponder the effect of having real-valued r1 and r0,
represented, for example, by analog signals. If we change 
(r1, r0) = (1.0, 1.0) to (r 1, r 0) = (1.0 + 1, 1.0 + 0), where 

1 and 0 are absolute errors, we can still correctly decode 
the number, as long as both 1 and 0 are less than 0.5.

Fig. 1. Conventional RNS with the moduli 3 and 4.
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The horizontal and vertical separation of codes in Fig. 1 
by a minimum of 1 unit allows us to correct any residue 
error of less than 0.5, that is, r 1 and r 0 can vary anywhere 
inside the dashed box surrounding point 1 in Fig. 1, 
without causing a decoding error. If we need detection 
only, any error with a magnitude less than 1 is detectable. 
Similar error detection and correction capabilities may be 
provided by additional or redundant moduli, which lead to 
the extension of dynamic range, without actually utilizing 
all the values that would be representable [7].

Henceforth, we focus on two-residue number systems. 
With regard to dynamic range and other properties of 
interest, multiresidue systems can be handled by cascaded 
application of two-residue results. For example, the RNS 
that results from adding a third modulus m2 = 5 to the 
RNS of Fig. 1 might be viewed and analyzed as one of the
two-modulus systems {3, 20}, {4, 15}, or {5, 12}. All 
proofs are omitted in this paper.

2. RNS with Continuous Residues
The RNS of Fig. 1, viewed as having continuous or 

analog digits in [0.0, 3.0) and [0.0, 4.0), can be thought of 
as representing real numbers in [0.0, ), where is the 
new dynamic range. But what would be an appropriate 
value for ? For ease of reference, we tackle this question 
in Example 1 below. Notationally, we switch to using
for dynamic range and for residues, in lieu of m and r,
to signify that they are real-valued rather than integers.

Example 1: If, in Fig. 1, we drew lines with slope 1 to 
connect the values 0-11 in ascending order, intermediate 
points on the lines would correspond to representations of 
nonintegers; e.g., the value 6.3 yields ( 1, 0) = (0.3, 2.3), 
a point on the sloped line between 6 and 7. It is readily
seen that we can go beyond 11. With exact real-valued 
residues, the representable range will be [0.0, 12.0); 
otherwise, if max denotes the maximum error in 1 or 0,
that is, max = max((max 1), (max 0)), then the range that 
ensures correct decoding within max is [0.0, 12.0 – max).
We see that the dynamic range is on the order of m1m0.
Note that even though the residues 1 and 0 are real-
valued, relative primality of m1 and m0 remains a
precondition for maximal range. More importantly, the 
dynamic range cannot be extended beyond m1m0, even if 
the real-valued residues are very accurate. This is because 
the wraparounds occur at precisely the same points for 
both real-valued and integer residues.

Consider the following analysis for solving the limited 
dynamic range problem. Given the RNS encoding of a 
value R, with the two residues containing (signed) errors 
of 1 and 0, the erroneous residues specify a point R  on 
the residue plane (Fig. 2). To decode this number, we 
might attempt to find the closest point R  to it on one of 
the sloped lines of Fig. 1.

Fig. 2. Decoding error with continuous-digit RNS.

Fig. 3. Continuous-digit RNS with the moduli {3.6, 4.4}.

For 1 , 0 < 0.5, the closest line to R  is the same line 
that contains R and the error in the decoded value R  is at 
most max. This is because the coordinates of R  in Fig. 2
are 1 = 1 + ( 1 + 0)/2 and 0 = 0 + ( 1 + 0)/2, 
leading to R – max R  R + max.

Now that we have introduced continuous residues or 
“digits,” there is no compelling reason for insisting that 
the moduli m1 and m0 in a continuous-digit residue 
number system (CD-RNS) be whole numbers.

Example 2: Consider the CD-RNS with 1 = 4.4 and   
0 = 3.6 (Fig. 3). The set [0, ) of values represented fall 

on lines of slope 1, with to be determined. The product 
15.84 = 4.4 3.6 of the moduli would be a reasonable 
first guess. But we can go past 15.84, up to 18.0 (see the 
lower right corner of Fig. 3), without the horizontal or 
vertical line separations becoming less than 0.8. Actually, 
to have an error of 0.4 in a residue correctable, we must 
stop just under 17.6, associated with 1 = 0 and 0 = 3.2. 
This is because an error of +0.4 in both residues at R =
17.6 will yield (0.4, 0.0) as the residue representation, 
which defines point R , thus causing the value 17.6 to be 
interpreted as R = 0.2 after correction according to the 
process depicted in Fig. 2.
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Example 2 shows that the same error tolerance applies
to the extended range [0.0, 17.6), in lieu of [0.0, 15.84). 
That is, reducing the line separations from 1.0 in Fig. 1 to 
0.8 in Fig. 3, a reduction factor of 1.25, has allowed us to 
extend the dynamic range by about 11%. Intuitively, the 
dynamic range not increasing by a factor of 1.25 is due to 
the waste from uneven line spacings in Fig. 3.

Example 3: If, in the CD-RNS of Example 2, we decide 
to go beyond 18.0, the continuation of the dashed line 
from point R of Fig. 3 suggests that we can do so, 
provided the error margin is lowered from 0.4 to 0.2.          
In fact, we can go all the way to 39.6, represented by the 
point at the upper right corner of Fig. 3, after wrapping 
around at 21.6, 22.0, 25.2, 26.4, 28.8, 30.8, 32.4, 35.2, 
and 36.0, successively. Again, to ensure that an error of 

0.2 in either residue is correctable, we have to end the 
dynamic range just under 39.4

Before continuing with our discussion of CD-RNS, it is 
worth noting that hybrid digital/analog arithmetic has 
been proposed in connection with positional number 
systems [8-10]. These representations are of interest due 
to their robustness, immunity to noise, simple carry-free 
analog operations, and energy economy. These positive 
attributes apply to our representations as well. The effects 
of errors in RNS have also been studied in the context of 
reverse conversion to binary [11, 12].

3. Dynamic Range and Accuracy
We continue with the assumption of an RNS with two 

moduli, 1 > 0, and further assume, at the outset, that 
residue accuracy is dependent on the moduli, as defined 
below. We will subsequently consider the effect of 
accuracy as an independent parameter.

Theorem 1: Let 1 = | 1| 0
. If the residues 1 and 0 are 

accurate to within max = 1/2, then, the dynamic range 
of a CD-RNS with 1 > 0 is = 0(1 + 1/ 0 0/ 1 ).

Note that in Example 1, we derived the dynamic range 
as [0.0, 12.0 – max). Similarly, in Examples 2 and 3, we 
subtracted max from the upper end of a computed range to 
ensure that the last number included within the range is 
distinguishable from very small values at the beginning.
In Theorem 1 and henceforth we omit the tiny – max
adjustment to simplify the expressions involved.

When 1 is not close to an integral multiple of 0,
Theorem 1 essentially establishes a lower bound on the 
supportable dynamic range, given that its accuracy 
requirement for the residues is quite modest. 

Example 4: If 1 = 1.0, then, provided residues are 
accurate to within 0.5, the dynamic range of Theorem 1 
extends to = 0(1 + 1/ 0 0) = 0 1. This is consistent 
with the range [0.0, 11.5) of Example 1, because we are 
now ignoring the – max term.

Example 5: For 1 = 4.4, 0 = 3.6, leading to 1 = 0.8, 
an accuracy of 0.4 in the residues would guarantee a 
dynamic range of [0.0, 18.0), matching [0.0, 17.6) 
obtained in Example 2, to within the ignored – max term.

We next consider an arbitrary precision max for the 
two residues. First, we note that if either of the moduli is 
an integral multiple of 1, then the dynamic range will be 
limited to that given in Theorem 1, provided max 1/2. 
This is because the sloped lines will eventually wrap 
around, tracing the same path as that beginning at point 0. 
This occurs in Fig. 1, for example, limiting the dynamic 
range to [0, 12.0). On the other hand, in Fig. 3, neither 1
nor 0 is divisible by 1 = 0.8, allowing the dynamic 
range to extend beyond [0, 18.0), provided max < 0.2. In 
general, such an extension is possible if the residues of 1
and 0 mod 1 are at least 2 max.

Theorem 2: Let –1 = 1, 0 = 0, and, for 0 i j, i+1
= min(| i–1| i

, i – | i–1| i
), where j is the largest possible 

index for which j 2 max.  If the residues 1 and 0 are 
accurate to within max, then the dynamic range of
CD-RNS is lower-bounded by: 

0(1 + 1/ 0 0/ 1 ) 1/ 2 2/ 3
. . .

j–1 / j

Given that the expression above is rather complicated, 
an intuitive explanation is called for. If we remove the 
floor operators (which essentially model the waste due to 
unequal line spacings, of the types seen in Fig. 3) and 
assume j = = 2 max, both bounds reduce to 0 1/(2 max), 
indicating that under ideal conditions, the supported
dynamic range is directly proportional to the two moduli 
and varies inversely with the representation error bound.
One implication of Theorem 2 is that the same { 1, 0}
pair of moduli can be used to cover a wider dynamic 
range with more accurate residues, provided certain 
conditions on the parameters i are met.

Theorem 3: Define = max(2 max, ), where is the 
largest number that exactly divides both 0 and 1, if such 
a number exists, and 0 otherwise. Then, the dynamic 
range of the CD-RNS is upper-bounded by: 

max( 0 1/ , 1 0/ )
The lower/upper bounds defined in Theorems 2 and 3

are often close to each other, so that they provide a fairly 
accurate estimate for the exact dynamic range . We will 
see shortly that optimal choice of the moduli essentially 
entails an attempt to render the lower and upper bounds as 
close to each other as possible. A useful variation of the 
result of Theorem 3 is the following:

Corollary 1: To attain a dynamic range with a 
maximum residue error max, we must have 0 1 2 max.

Example 6: Taking max = 0.2 in the CD-RNS of Fig. 3,
we obtain 1 = 0.8 and 2 = 0.4, with 3 = 0.0 violating 
the requirement for the last j being no less than 2 max.
The lower- and upper-bound expressions of Theorems 2 
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and 3 evaluate to 36.0 and 39.6, respectively, indicating a 
dynamic range of at least [0.0, 36.0). Note that the true 
range is [0.0, 39.6), with its top end shown at the upper 
right corner of Fig. 3, that is, the point where full 
wraparound from 39.6 to 0 occurs. 

Example 7: Raising the accuracy of residues in 
Example 6 to max = 0.1 won’t increase the dynamic 
range, given the full wraparound at 39.6. The pessimistic 
lower-bound expression of Theorem 2 reflects this 
limitation, as its value remains at 36.0 for any max < 0.2. 
On the other hand, the optimistic upper bound of 
Theorem 3 indicates the wider range [0.0, 79.2), which is 
clearly unattainable. Slightly different values for the 
moduli 1 and 0 could fix this problem, however.

Example 8: We consider a special case where 1 is not 
an integral multiple of 2. For the CD-RNS of Fig. 4,
we have –1 = 1 = 6.5, 0 = 0 = 4.4, 1 = | 1| 0

= 2.1, 
and 2 = | 0| 1

= 0.2. Assuming max = 0.1, Theorem 2 
yields the dynamic range lower bound 132.0. The upper 
end of the derived range is less than the ideal value 

1 0/(2 max) = 143.0, because some of the potential 
dynamic range is lost to the unequal spacing between 
lines of slope 1 in Fig. 4 and some to the fact that the 
lower bound is generally less than the true value. Note, in 
particular, that the solid line just below the one 
originating at 0 in Fig. 4 has a horizontal and vertical 
separations of 0.3, instead of 0.2. The next line after 
wraparound (dashed in Fig. 4) will have horizontal and 
vertical separations of 0.1, which is clearly not allowed 
with max = 0.1. The dynamic range is 136.5.

Fig. 4. Continuous-digit RNS with the moduli {6.5, 4.4}.

Example 9: Consider a smaller error bound max = 0.05 
in Fig. 4. The dashed line, and its (wrapped) successors, 
are now allowed, leading to increases in the  lower/upper 
bounds provided by Theorems 2 and 3 (to 264.0 and 
286.0, respectively); the actual range is [0, 286.0).

In conventional RNS, the moduli being pairwise 
relatively prime leads to maximization of the dynamic 
range. The corresponding result for CD-RNS is:

Theorem 4: Let  –1 = 1, 0 = 0, and,  for 0 i j,
i+1 = min(| i–1| i

, i – | i–1| i
), where j is the largest index 

for which j 2 max. The maximum possible dynamic 
range of 0 1/(2 max) is attained if j = 2 max.

Note that the maximum range specified by Theorem 4 
is achieved in Examples 1, 3, 4, 6, and 9.

4. Choosing the CD-RNS Moduli
Based on Theorem 1, given a maximum error max in 

residues, we can choose the moduli as 0 + 2 max and 0,
leading to the dynamic range 0 0/(2 max) + 0. This 
observation suggests that to cover a desired dynamic 
range [0, ) with residues that are accurate to max and 
two moduli that are as small as possible, 1 and 0 should 
roughly equal (2 max)1/2 and they should differ by 2 max.

Example 10: Dynamic range [0, 100.0) with max = 0.1 
translates to moduli of the order of 4.5. Choosing 1 = 4.6 
and 0 = 4.4 yields the dynamic range [0.0, 101.2).

Note that the dynamic range of Example 10 could have 
been computed by scaling up max to 1, scaling up the two 
moduli by the same factor of 10 to integer values m1 = 46 
and m0 = 44, and then using the rules for ordinary RNS. 
This would have yielded M = m1m0/gcd(m1, m0) = 1012. 
Scaling back down by a factor of 10 confirms the derived 
range of [0.0, 101.2). However, the same could not be 
done when 1 is not an integral multiple of max.

Example 11: For attaining the dynamic range defined 
by = 100.0, with max = 0.15, the two moduli must be on 
the order of (2 100.0 0.15)1/2 = 5.5. Choosing 1 = 5.6 
and 0 = 5.4 yields the dynamic range [0, 102.6). There is 
no direct counterpart to this latter CD-RNS among 
ordinary residue number systems.

Now consider the case when a rough magnitude for one 
modulus is known. Without loss of generality, let the 
smaller of the two moduli 0 be given approximately. 
Further, assume that the given 0 is an integral multiple of 
2 max (if not, minor adjustment to 0 will make it so). 
Then, to achieve a dynamic range [0, ), Corollary 1 
suggests that 1 2 max/ 0. One way to ensure that a 
near-minimal value for 1 would be adequate is to adjust 
it upward, if necessary, until it is a multiple of 2 max,
compute the lower bound of Theorem 2, and continue 
adjusting upward by 2 max until the lower bound equals or 
exceeds the desired dynamic range. Alternatively, one 
could aim for satisfying the condition of Theorem 4.
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Example 12: Consider a stated goal of 100.0, with 
max = 0.15 and 0 3.5. We take 0 = 3.6, which is an 

integral multiple of 2 max. Corollary 1 yields 1 8.33. 
Taking 1 = 8.4 leads to the lower bound of 25.2, which is 
too small. Adding = 0.3 to make 1 = 8.7 yields the lower 
bound 72.0, which is still inadequate. We could continue 
with increasing 1 to 9.0 and beyond, but Theorem 4 
guarantees a dynamic range of [0, 104.4), with 0 = 3.6 
and 1 = 8.7, given that 3 = 0.3.

5. An Application of CD-RNS
This study of continuous-digit RNS and their properties 

was motivated by the following problem in computational 
neurobiology. It is postulated [13] that the common rat’s 
uncanny ability to return to its starting position in a 
straight line, after a long sequence of movements in 
different directions, in the absence of any visual markers 
(or even in total darkness), results from internal neural 
activity as opposed to the processing of environmental 
clues. Briefly, a landmark paper [14] established that in 
addition to “place cells,” activated when the rat is in 
specific locations, there exist grid cells whose firing is not 
linked to specific locations, but rather to the rat’s relative 
in-cell position within a periodic, hexagonal grid.

For simplicity, let us ignore the 2D (or even 3D) nature 
of a rat’s environs and focus on a 1D model. As shown in 
Fig. 5, given a 1D grid x, the real value R might be 
specified by a pair (i, ), where i is an integer identifier of 
a grid cell or interval and is a real-valued “phase” or 
displacement within the cell. Similarly, R can be specified 
by the pair (j, ) in relation to  a second 1D grid y. Now, 
given only the phases (associated with any of the heavy
dots in Fig. 5) and (hollow circles) within the grids x
and y, we may be able to deduce R.

There are several open problems in computational 
neurobiology with regard to the rat’s navigation system. 
One such problem is the dynamic range of the 
aforementioned location representation scheme with a 
given set of moduli. Numerical simulations indicate that 
the range is an exponentially increasing function of 1/ max,
with the exponent being slightly less than the number of 
moduli. For example, an exponent of 10.7 is observed 
with a particular set of 12 moduli [13]. Applying our 
results to the same case, we obtain an exponent of 11.0, 
which is in good agreement with experiments.

      Fig. 5. Localization with two grids in 1D space.

6. Conclusions
Our results provide a digital arithmetic perspective on 

the work of computational neuroscientists who have 
hypothesized the use of modular number representation of 
location data in rats (and other animals) and have verified 
the feasibility of this type of representation, as well as 
adequacy of the resulting dynamic range via simulation. 
Our theoretical results on CD-RNS confirm the feasibility 
of these hypotheses.

Research can continue in a number of directions. In the 
domain of digital arithmetic, one can complete and 
expand the theory presented here by removing some 
restrictions. In the realm of biology, one may try to 
determine how close the actual moduli associated with a 
rat’s navigation system are to optimal values and whether 
there is any evidence of evolutionary refinement of the 
moduli or the representational accuracy.
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