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Abstract

Hardware support for decimal arithmetic has become an 
important focal point, both in the research arena and in 
commercial processor developments. Like their binary 
counterparts, decimal multipliers can be designed in a 
variety of ways, offering area and speed trade-offs. 
Pipelined array multipliers support high throughput,
making them attractive in multiply-intensive applications.
We propose two different architectures for decimal array 
multipliers based on (1) precomputed multiples and      
(2) decimal digit-multipliers. We compare the VLSI area 
and delay parameters of the resulting array multiplier 
designs with each other and with those of binary array 
multipliers covering the same range of inputs. 

Keywords––Array multiplier, Binary-coded decimal; 
Computer arithmetic; Decimal calculation; Pipelining.

1. Introduction

Several decades of binary computation may well prove 
to be a historical curiosity, sandwiched between centuries 
of decimal arithmetic in mechanical calculating devices 
and the omnipotent machines of the future that will not be 
limited by cost considerations of early digital computers 
or today’s binary-friendly electronic circuits. Switching to 
all-decimal arithmetic in computers will eliminate one of 
the key sources of problems in numerical computation: 
the conversion and reconversion errors. It is certainly a 
more faithful way of dealing with arithmetic, which is 
decimal in the world outside computers.

Limited hardware support for decimal arithmetic is 
already in place [1-5], following decades of slow software 
simulation on binary computers [6]. It is  now quite 
feasible to replace sequential decimal multipliers [7-9] by 
much faster parallel realizations [10-12].

Pipelining of computer arithmetic circuits is a 
longstanding practice for achieving high throughput. In 
this regard, array multipliers are not only particularly 
suitable for pipelined computations, but they also lead to 
enhanced circuit regularity. This regularity, when 
combined with shorter interconnects, translates to greatly 
improved performance [13].

In this paper, we offer two decimal array multiplier 
designs for conventional binary-coded-decimal (BCD) 
operands: one is based on selecting the partial products 
from among precomputed “easy” multiples of the 
multiplicand [14], and the other on generating the partial 
products via BCD digit-multiplier cells [15]. Table I lists 
symbols and abbreviations used throughout this paper for 
easy reference.

Table I Symbols and abbreviations used

Symbol/Term Meaning

PPG Partial product generation

BPP BCD partial product

BCD Binary-coded decimal

BDM BCD digit-multiplier

BCD-FA BCD full adder

PPR Partial product reduction

Decimal carry in [0, 1]

 BCD digit in [0, 9]

 BCD digit X of weight 10i

 Digit of weight 10i in the jth BPP
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Here is a roadmap for the rest of the paper. Brief 
descriptions of the two partial product generation (PPG) 
methods and the related basic reduction cells for the 
corresponding array multipliers are provided in Section 2.
Section 3 is devoted to two architectures for decimal array 
multipliers. Area and delay comparisons between the two 
architectures and with binary array multipliers that cover 
the same range of input values are offered in Section 4. 
Finally, conclusions are drawn in Section 5.

2. Decimal Partial Product Generation

A k × k decimal multiplier computes the 2k-digit 
product by accumulating k BCD partial products (BPPs).
Each BPP constitutes a  multiple of the multiplicand,
where the multiplication factor ranges from 0 to 9,
corresponding to a decimal digit. A particular BPP can be 
generated via k BCD digit-multipliers (BDMs) or, more 
commonly, via precomputation of the required multiples
and selection, using a multiplexer (mux). A mux is shown 
as a trapezoidal box in our logic diagrams.

Figure 1 contains a high-level description of a BDM,
where the heavy horizontal bars represent BCD digits.
Functionally, a BDM multiplies its two 4-bit BCD inputs 
and provides the resulting two-digit product at output.
The design details are available elsewhere [15]. Figure 2
depicts 4 × 4 decimal PPG, where each of the four BPPs, 
generated via four BDMs, is represented as a doubled-up 
BCD number, composed of a 4-digit BCD number with 
the appropriate decimal alignment and a second left-
shifted 4-digit BCD number.

BCD Digit 
Multiplier

4 4

44

 
Fig. 1 Decimal digit-multiplier (BDM).

 
Fig. 2 A scheme for 4 × 4 PPG via 16 BDMs.

 
Fig. 3 A 4 × 4 PPG scheme using precomputed multiples.

The method of precomputed multiples is based on 
directly computing some of the required multiples (e.g., 2, 
4 and 5 [Rich55]) as single BCD numbers and forming
the others as doubled-up BCD numbers (viz., 3 = 2 + 1, 
6 = 5 + 1, 7 = 5 + 2, 8 = 4 + 4, 9 = 5 + 4). Figure 3 depicts
this PPG method as applied to 4 × 4 BCD multiplication. 
Note that for the multiples 0, 1, 2, 4, and 5, an all-0s entry 
is used as the second component of the associated 
doubled-up BCD number for the sake of uniformity.
Other sets of easy multiples have also been utilized in the 
design of parallel BCD multipliers [10], [12].

Similar to the practice for binary tree and array 
multipliers, a common way of computing the desired 
decimal product is to first compress the partial products
matrix into two BCD numbers and then employ a
conventional BCD adder to finish the process. The basic
partial product reduction (PPR) cell, depicted in Fig. 4a, 
is a BCD full adder (BCD-FA) [16]. However, just as 
utilizing (4; 2)-compressors leads to binary multipliers 
with more regular layouts [13], a merged realization of 
two BCD-FAs, acting as a BCD (3; 1)-compressor (Fig. 
4b), produces more regular decimal designs.

BCD-FA
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(b)  
Fig. 4 (a) BCD-FA; (b) BCD (3; 1)-compressor.
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Fig. 5   Combined PPG/PPR cell.

The BDM approach of Fig. 2 leads to slower PPG than 
that of Fig. 3 [15]. However, the former yields greater 
regularity for efficient VLSI realization. Figure 5 depicts 
a combined PPG/PPR cell composed of one BDM and 
two BCD-FAs, representing Eqns. 1 and 2, where a 
superscript denotes the power-of-10 weight of a particular 
decimal position. 

(1)

) (2)

The inputs Ai and Bj are the corresponding digits of the 
multiplicand and multiplier, whose product is represented 
by a pair of BCD digits H (high) and L (low). The output 

constitutes the (i + j)th digit of the jth accumulated 
BPP. The same arrangement would not be possible with 
the PPG approach of Fig. 3.

3. Decimal Array Multiplier Architectures

Two decimal array multiplier architectures, based on 
the basic cells of Figs. 4b and 5, are depicted in Figs. 6 
and 7, respectively.

Each mux block in Fig. 6 selects the two components of 
a doubled-up BCD multiple from among precomputed 
multiples based on the appropriate BCD digit of the 
multiplier. The boundary reduction cells in Fig. 6 are 
somewhat simpler than those in the middle. For example, 
the top and left cells are single BCD-FAs (the top five 
with no carry-in) and the input/output relationship of the 
four bottom cells is shown in Fig. 8, where the required 
reduction logic is composed of a binary half-adder and a 
BCD-FA. Similarly, the boundary cells of Fig. 7 are 
simpler than those in the middle.

The bottom cells in both Figs. 6 and 7 constitute a
ripple-carry BCD adder that would be replaced by a fast 
adder in a parallel multiplier [17]. In a pipelined 
realization, however, use of a fast adder may not be 
helpful and may prove detrimental to both performance 
and cost-effectiveness. In pipelined realizations of the 
designs in Figs. 6 and 7, we can incorporate two cascaded 
bottom cells within a single pipeline stage. The latency of 
the resulting merged cell would be slightly less than that 
of one of the nonboundary cells.
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Fig. 6   A 4 × 4 array multiplier with precomputed multiples.
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Fig. 7 A 4 × 4 array multiplier with BDMs.

 
Fig. 8 The simplified bottom boundary cells of Fig. 6.
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4. Delay and Area Comparisons

The architecture of Fig. 7 is readily seen to be more 
regular than that of Fig. 6; it is also more amenable to 
pipelined realization. Table II shows assumed component 
delays in terms of fan-out-of-4 NOT gates (FO4) and 
layout areas in units of 2-input NAND-gate (NAND2),
based on Logical Effort analysis [18]. All the basic cells 
required for our two proposed architectures, and those 
needed for a similar binary array multiplier used for 
comparison, are listed in Table II. The PPG entries 
constitute the collection of components that would be
responsible for generating the precomputed multiples, 
decoding the multiplier digit, and selecting the BPP (in 
doubled-up BCD form) in Fig. 6.

The equations that follow represent the area (A) and 
delay (D) of a k-bit BCD array multiplier based on 
architectures of Figs. 6 and 7. Because our focus is on 
pipelined realization, the delay figures are derived by 
identifying the slowest pipeline stage.

Table III shows our derived delay and area parameters
for 3-digit pipelined decimal array multipliers (i.e., for         
k = 3) based on the equations just provided and Table II.
The corresponding parameters for a 10-bit binary array 
multiplier, which covers almost the same range of input 
values (1024 different values in binary, versus 1000 in 
decimal), are also supplied for comparison. 

Table II Delay and area parameters for basic cells

Delay 
(FO4)

Area 
(NAND2)

Half-adder (HA) 1.35 5.00

Full adder (FA) 2.63 13.00

Latch 1.44 4.88

BCD-FA 4.16 98.00

BDM 8.90 166.12

PPG

Generator 3.91 66.37

Decoder 1.35 36.00

Selector 1.44 31.50

Table III Array multiplier delay and area comparisons

Delay
(FO4)

Delay
ratio

Area
(NAND2)

Area
ratio

Binary 4.94 1.00 1228 1.00

Decimal, Fig. 6 15.11 3.05 2753 2.24

Decimal, Fig. 7 14.50 2.93 2769 2.25

The factor of about 3 delay penalty for decimal array 
multiplication compared with the binary version is rather
discouraging. However, there are two redeeming factors. 
First, some of the performance loss due to decimal 
arithmetic is regained from the elimination of conversion 
and reconversion overheads. Second, in some 
applications, the gain in accuracy may justify the reduced 
speed. For example, applications that currently tolerate 
the excessive overhead of software implementations (with 
or without partial hardware support) will certainly have 
no problem with a factor-of-3 throughput reduction.
Finally, this is only a first attempt at designing decimal 
array multipliers; better designs may emerge over time.

Note that the “decimal” penalties discussed above are 
assessed with respect to pipelined binary array 
multiplication. The throughput of a pipelined decimal 
array multiplier is considerably better than that of other 
decimal multiplication techniques. A quantitative 
assessment of this advantage is left to future work.

5. Conclusions

We have proposed decimal array multiplier designs
based on two different methods for partial product 
generation. The design utilizing BCD digit-multipliers
shows a 4% advantage in the pipeline clock cycle; it is 
also more regular and hence better-suited to VLSI 
realization. The regularity and higher clock frequency are
achieved at negligible area cost ( 0.5%). We compared 
the performance of 3-digit decimal array multipliers, 
accepting inputs in [0, 999], with each other and with that 
of a 10-bit binary array multiplier, having input operands
in [0, 1023]. Not surprisingly, the area and delay penalties 
are rather significant, with high throughput being the 
main advantage compared with other decimal multipliers.

Further research can be undertaken to improve the 
performance and reduce the decimal-arithmetic penalty. 
We would like to examine the use of alternate reduction 
cells, such as those based on decimal encodings other
than standard BCD [11]. Fully redundant decimal array 
multipliers can also be envisioned [19].
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