

Design and Evaluation of Decimal Array Multipliers

Saeid Gorgin1, Ghassem Jaberipur1,2, Behrooz Parhami3

1 Dept. of Electrical & Computer Engr., Shahid Beheshti Univ., Tehran, Iran; gorgin@sbu.ac.ir
2 School of Computer Sci., Inst. for Research in Fundamental Sci. (IPM), Tehran, Iran; jaberipur@sbu.ac.ir

3 Dept. of Electrical & Computer Engr. Univ. of California, Santa Barbara, USA; parhami@ece.ucsb.edu

Abstract

Hardware support for decimal arithmetic has become an
important focal point, both in the research arena and in
commercial processor developments. Like their binary
counterparts, decimal multipliers can be designed in a
variety of ways, offering area and speed trade-offs.
Pipelined array multipliers support high throughput,
making them attractive in multiply-intensive applications.
We propose two different architectures for decimal array
multipliers based on (1) precomputed multiples and
(2) decimal digit-multipliers. We compare the VLSI area
and delay parameters of the resulting array multiplier
designs with each other and with those of binary array
multipliers covering the same range of inputs.

Keywords––Array multiplier, Binary-coded decimal;
Computer arithmetic; Decimal calculation; Pipelining.

1. Introduction

Several decades of binary computation may well prove
to be a historical curiosity, sandwiched between centuries
of decimal arithmetic in mechanical calculating devices
and the omnipotent machines of the future that will not be
limited by cost considerations of early digital computers
or today’s binary-friendly electronic circuits. Switching to
all-decimal arithmetic in computers will eliminate one of
the key sources of problems in numerical computation:
the conversion and reconversion errors. It is certainly a
more faithful way of dealing with arithmetic, which is
decimal in the world outside computers.

Limited hardware support for decimal arithmetic is
already in place [1-5], following decades of slow software
simulation on binary computers [6]. It is now quite
feasible to replace sequential decimal multipliers [7-9] by
much faster parallel realizations [10-12].

Pipelining of computer arithmetic circuits is a
longstanding practice for achieving high throughput. In
this regard, array multipliers are not only particularly
suitable for pipelined computations, but they also lead to
enhanced circuit regularity. This regularity, when
combined with shorter interconnects, translates to greatly
improved performance [13].

In this paper, we offer two decimal array multiplier
designs for conventional binary-coded-decimal (BCD)
operands: one is based on selecting the partial products
from among precomputed “easy” multiples of the
multiplicand [14], and the other on generating the partial
products via BCD digit-multiplier cells [15]. Table I lists
symbols and abbreviations used throughout this paper for
easy reference.

Table I Symbols and abbreviations used

Symbol/Term Meaning

PPG Partial product generation

BPP BCD partial product

BCD Binary-coded decimal

BDM BCD digit-multiplier

BCD-FA BCD full adder

PPR Partial product reduction

Decimal carry in [0, 1]

 BCD digit in [0, 9]

 BCD digit X of weight 10i

 Digit of weight 10i in the jth BPP

1782978-1-4244-5827-1/09/$26.00 ©2009 IEEE Asilomar 2009

Here is a roadmap for the rest of the paper. Brief
descriptions of the two partial product generation (PPG)
methods and the related basic reduction cells for the
corresponding array multipliers are provided in Section 2.
Section 3 is devoted to two architectures for decimal array
multipliers. Area and delay comparisons between the two
architectures and with binary array multipliers that cover
the same range of input values are offered in Section 4.
Finally, conclusions are drawn in Section 5.

2. Decimal Partial Product Generation

A k × k decimal multiplier computes the 2k-digit
product by accumulating k BCD partial products (BPPs).
Each BPP constitutes a multiple of the multiplicand,
where the multiplication factor ranges from 0 to 9,
corresponding to a decimal digit. A particular BPP can be
generated via k BCD digit-multipliers (BDMs) or, more
commonly, via precomputation of the required multiples
and selection, using a multiplexer (mux). A mux is shown
as a trapezoidal box in our logic diagrams.

Figure 1 contains a high-level description of a BDM,
where the heavy horizontal bars represent BCD digits.
Functionally, a BDM multiplies its two 4-bit BCD inputs
and provides the resulting two-digit product at output.
The design details are available elsewhere [15]. Figure 2
depicts 4 × 4 decimal PPG, where each of the four BPPs,
generated via four BDMs, is represented as a doubled-up
BCD number, composed of a 4-digit BCD number with
the appropriate decimal alignment and a second left-
shifted 4-digit BCD number.

BCD Digit
Multiplier

4 4

44

Fig. 1 Decimal digit-multiplier (BDM).

Fig. 2 A scheme for 4 × 4 PPG via 16 BDMs.

Fig. 3 A 4 × 4 PPG scheme using precomputed multiples.

The method of precomputed multiples is based on
directly computing some of the required multiples (e.g., 2,
4 and 5 [Rich55]) as single BCD numbers and forming
the others as doubled-up BCD numbers (viz., 3 = 2 + 1,
6 = 5 + 1, 7 = 5 + 2, 8 = 4 + 4, 9 = 5 + 4). Figure 3 depicts
this PPG method as applied to 4 × 4 BCD multiplication.
Note that for the multiples 0, 1, 2, 4, and 5, an all-0s entry
is used as the second component of the associated
doubled-up BCD number for the sake of uniformity.
Other sets of easy multiples have also been utilized in the
design of parallel BCD multipliers [10], [12].

Similar to the practice for binary tree and array
multipliers, a common way of computing the desired
decimal product is to first compress the partial products
matrix into two BCD numbers and then employ a
conventional BCD adder to finish the process. The basic
partial product reduction (PPR) cell, depicted in Fig. 4a,
is a BCD full adder (BCD-FA) [16]. However, just as
utilizing (4; 2)-compressors leads to binary multipliers
with more regular layouts [13], a merged realization of
two BCD-FAs, acting as a BCD (3; 1)-compressor (Fig.
4b), produces more regular decimal designs.

BCD-FA

44

4

(a)

BCD-FA

BCD-FA

4 4

44

4

(b)
Fig. 4 (a) BCD-FA; (b) BCD (3; 1)-compressor.

1783

1i jH

i jH

BCD-FA

BCD-FA

4 4

44

4

BCD digit
Multiplier

4 4

4 i jL

i j
jP

1
i j
jP

iA jB

Fig. 5 Combined PPG/PPR cell.

The BDM approach of Fig. 2 leads to slower PPG than
that of Fig. 3 [15]. However, the former yields greater
regularity for efficient VLSI realization. Figure 5 depicts
a combined PPG/PPR cell composed of one BDM and
two BCD-FAs, representing Eqns. 1 and 2, where a
superscript denotes the power-of-10 weight of a particular
decimal position.

(1)

) (2)

The inputs Ai and Bj are the corresponding digits of the
multiplicand and multiplier, whose product is represented
by a pair of BCD digits H (high) and L (low). The output

constitutes the (i + j)th digit of the jth accumulated
BPP. The same arrangement would not be possible with
the PPG approach of Fig. 3.

3. Decimal Array Multiplier Architectures

Two decimal array multiplier architectures, based on
the basic cells of Figs. 4b and 5, are depicted in Figs. 6
and 7, respectively.

Each mux block in Fig. 6 selects the two components of
a doubled-up BCD multiple from among precomputed
multiples based on the appropriate BCD digit of the
multiplier. The boundary reduction cells in Fig. 6 are
somewhat simpler than those in the middle. For example,
the top and left cells are single BCD-FAs (the top five
with no carry-in) and the input/output relationship of the
four bottom cells is shown in Fig. 8, where the required
reduction logic is composed of a binary half-adder and a
BCD-FA. Similarly, the boundary cells of Fig. 7 are
simpler than those in the middle.

The bottom cells in both Figs. 6 and 7 constitute a
ripple-carry BCD adder that would be replaced by a fast
adder in a parallel multiplier [17]. In a pipelined
realization, however, use of a fast adder may not be
helpful and may prove detrimental to both performance
and cost-effectiveness. In pipelined realizations of the
designs in Figs. 6 and 7, we can incorporate two cascaded
bottom cells within a single pipeline stage. The latency of
the resulting merged cell would be slightly less than that
of one of the nonboundary cells.

,2 ,4 ,5A A A A

3B

2B

1B

0B

BCD-FA

BCD-FA

4 4

4

4

4

jP

1jP

iX iY

Fig. 6 A 4 × 4 array multiplier with precomputed multiples.

0A1A2A3A

3B

2B

1B

0BiH

1iH

BCD-FA

BCD-FA

4 4

44

4

BCD digit
Multiplier

4 4

4 iL

jP

1jP

iA iB

jP

1jP

iA

iB

Fig. 7 A 4 × 4 array multiplier with BDMs.

Fig. 8 The simplified bottom boundary cells of Fig. 6.

1784

4. Delay and Area Comparisons

The architecture of Fig. 7 is readily seen to be more
regular than that of Fig. 6; it is also more amenable to
pipelined realization. Table II shows assumed component
delays in terms of fan-out-of-4 NOT gates (FO4) and
layout areas in units of 2-input NAND-gate (NAND2),
based on Logical Effort analysis [18]. All the basic cells
required for our two proposed architectures, and those
needed for a similar binary array multiplier used for
comparison, are listed in Table II. The PPG entries
constitute the collection of components that would be
responsible for generating the precomputed multiples,
decoding the multiplier digit, and selecting the BPP (in
doubled-up BCD form) in Fig. 6.

The equations that follow represent the area (A) and
delay (D) of a k-bit BCD array multiplier based on
architectures of Figs. 6 and 7. Because our focus is on
pipelined realization, the delay figures are derived by
identifying the slowest pipeline stage.

Table III shows our derived delay and area parameters
for 3-digit pipelined decimal array multipliers (i.e., for
k = 3) based on the equations just provided and Table II.
The corresponding parameters for a 10-bit binary array
multiplier, which covers almost the same range of input
values (1024 different values in binary, versus 1000 in
decimal), are also supplied for comparison.

Table II Delay and area parameters for basic cells

Delay
(FO4)

Area
(NAND2)

Half-adder (HA) 1.35 5.00

Full adder (FA) 2.63 13.00

Latch 1.44 4.88

BCD-FA 4.16 98.00

BDM 8.90 166.12

PPG

Generator 3.91 66.37

Decoder 1.35 36.00

Selector 1.44 31.50

Table III Array multiplier delay and area comparisons

Delay
(FO4)

Delay
ratio

Area
(NAND2)

Area
ratio

Binary 4.94 1.00 1228 1.00

Decimal, Fig. 6 15.11 3.05 2753 2.24

Decimal, Fig. 7 14.50 2.93 2769 2.25

The factor of about 3 delay penalty for decimal array
multiplication compared with the binary version is rather
discouraging. However, there are two redeeming factors.
First, some of the performance loss due to decimal
arithmetic is regained from the elimination of conversion
and reconversion overheads. Second, in some
applications, the gain in accuracy may justify the reduced
speed. For example, applications that currently tolerate
the excessive overhead of software implementations (with
or without partial hardware support) will certainly have
no problem with a factor-of-3 throughput reduction.
Finally, this is only a first attempt at designing decimal
array multipliers; better designs may emerge over time.

Note that the “decimal” penalties discussed above are
assessed with respect to pipelined binary array
multiplication. The throughput of a pipelined decimal
array multiplier is considerably better than that of other
decimal multiplication techniques. A quantitative
assessment of this advantage is left to future work.

5. Conclusions

We have proposed decimal array multiplier designs
based on two different methods for partial product
generation. The design utilizing BCD digit-multipliers
shows a 4% advantage in the pipeline clock cycle; it is
also more regular and hence better-suited to VLSI
realization. The regularity and higher clock frequency are
achieved at negligible area cost (0.5%). We compared
the performance of 3-digit decimal array multipliers,
accepting inputs in [0, 999], with each other and with that
of a 10-bit binary array multiplier, having input operands
in [0, 1023]. Not surprisingly, the area and delay penalties
are rather significant, with high throughput being the
main advantage compared with other decimal multipliers.

Further research can be undertaken to improve the
performance and reduce the decimal-arithmetic penalty.
We would like to examine the use of alternate reduction
cells, such as those based on decimal encodings other
than standard BCD [11]. Fully redundant decimal array
multipliers can also be envisioned [19].

1785

References
[1] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M.

Schwarz, and S. R. Carlough, “The IBM z900 Decimal
Arithmetic Unit,” Proc. 35th Asilomar Conf. Signals,
Systems, and Computers, Vol. 2, pp. 1335–1339, 2001.

[2] S. Shankland, “IBM’s POWER6 Gets Help with Math,
Multimedia,” ZDNet News, October 2006.

[3] J. Friedrich, et al., “Design of the POWER6
Microprocessor,” Proc. Int’l Solid-State Circuits Conf.,
pp. 96–97, 2007.

[4] C. F. Webb, “IBM z10: The Next-Generation Mainframe
Microprocessor,” IEEE Micro, Vol. 28, No. 2,
pp. 19–29, 2008.

[5] E. M. Schwarz, J. Kapernick, and M. Cowlishaw,
“Decimal Floating-Point Support on the IBM z10
Processor,” IBM J. Research and Development, Vol. 53,
No. 1, 2009.

[6] M. F. Cowlishaw, “Decimal Floating-Point: Algorism
for Computers,” Proc. 16th IEEE Symp. Computer
Arithmetic, pp. 104–111, 2003.

[7] M. A. Erle and M. J. Schulte, “Decimal Multiplication
via Carry-Save Addition,” Proc. Conf. Application-
Specific Systems, Architectures, and Processors,
pp. 348–358, 2003.

[8] R. D. Kenney, M. J. Schulte, and M. A. Erle, “A High-
Frequency Decimal Multiplier,” Proc. IEEE Int’l Conf.
Computer Design, pp. 26–29, 2004.

[9] M. A. Erle, E. M. Schwartz, and M. J. Schulte, “Decimal
Multiplication with Efficient Partial Product
Generation,” Proc. 17th IEEE Symp. Computer
Arithmetic, pp. 21–28, 2005.

[10] T. Lang and A. Nannarelli, “A Radix-10 Combinational
Multiplier,” Proc. 40th Asilomar Conf. Signals, Systems,
& Computers, pp. 313–317, 2006.

[11] A. Vazquez, E. Antelo, and P. Montuschi, “A New
Family of High-Performance Parallel Decimal
Multipliers,” Proc. 18th IEEE Symp. Computer
Arithmetic, pp. 195–204, 2007.

[12] G. Jaberipur and A. Kaivani, “Improving the Speed of
Parallel Decimal Multiplication,” IEEE Trans.
Computers, to appear (doi: 10.1109/TC.2009.110).

[13] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford, 2nd ed., 2010.

[14] R. K. Richards, Arithmetic Operations in Digital
Computers, Van Nostrand, 1955.

[15] G. Jaberipur and A. Kaivani, “Binary-Coded Decimal
Digit Multipliers,” IET Computers & Digital
Techniques, Vol. 1, No. 4, pp. 377–381, 2007.

[16] M. Schmookler and A. Weinberger, “High Speed
Decimal Addition,” IEEE Trans. Computers, Vol. 20,
No. 8, pp. 862–866, 1971.

[17] A. Vazquez and E. Antelo, “Conditional Speculative
Decimal Addition,” Proc. 7th Conf. Real Numbers and
Computers, pp. 47–57, 2006.

[18] I. F. Sutherland, R. F. Sproull, and D. F. Harris, Logical
Effort: Designing Fast CMOS Circuits, Morgan
Kaufmann, 1999.

[19] S. Gorgin and G. Jaberipur, “Fully Redundant Decimal
Arithmetic,” Proc. 19th IEEE Symp. Computer
Arithmetic, pp. 145-152, 2009.

Note: This paper was produced in final form on 2009/09/09

1786

