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Metacyclic graphs, which include supertoroids as a subclass, have been shown to possess interesting
properties and potential applications in implementing moderate- to large-size parallel processors with fairly
small node degrees. Wu, Lakshmivarahan, and Dhall (J. Parallel Distrib. Comput. 60 (2000), pp. 539–565)
have described a deterministic, distributed routing scheme for certain subclasses of metacyclic graphs.
However, they offer no proof that the scheme is a shortest-path routing algorithm and do not indicate
whether or how their scheme may be extended to the entire class of metacyclic graphs. In this paper, we
provide a near-shortest-path, deterministic routing algorithm that is applicable to any metacyclic graph and
derive a bound for the diameter of such graphs.
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1. Introduction

It is now well known that Cayley graphs [1,2] and Cayley coset graphs [2,7] provide an extremely
useful framework that can facilitate the design and analysis of interconnection structures for paral-
lel processing. Computer architecture researchers continually seek new interconnection networks
that offer a variety of desirable topological features and cost/performance attributes [8]. This
quest has led to the exploration of Cayley graphs of finite groups obtained from two or more
groups through well-defined combining operations. These operations, which are quite varied,
include direct product, wreath product, and semi-direct product [2,5,9]. For example, the two-
dimensional toroid (torus) is an example of a Cayley graph formed by the direct product of two
cyclic groups [4].

Draper and Faber [5] initiated the study of a class of interconnection networks whose topologies
are based on supertoroidal graphs, which are Cayley graphs of semi-direct product of two cyclic
groups of order m = ck and n = c2l, where c ≥ 2, k ≥ 1, and l ≥ 1 are integers. A supertoroid or
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22 W. Xiao and B. Parhami

supertoroidal graph, with parameters c, k, and l is denoted as �(c, k, l). Wu et al. [9] described a
distributed, deterministic routing scheme for supertoroids and other special classes of metacyclic
graphs. Based on an experimental verification for 4 ≤ c ≤ 20 and various values of the parameters
k and l, they conjectured that their scheme was indeed a correct, shortest-path routing algorithm,
but were unable to construct a proof of optimality.

In this paper, we provide a near-shortest-path, deterministic routing algorithm for metacyclic
graphs, which are Cayley graphs formed by the semi-direct product Z/m ⊗ Z/n of two cyclic
groups Z/m (of order m) and Z/n (of order n), for integers m and n [4]. We also derive some
bounds on the diameter of metacyclic graphs. Our results, which can be applied to all metacyclic
graphs, can be viewed as generalizations of those of Wu et al. [9], where determining the diam-
eter and deriving a shortest-path routing algorithm for metacyclic graphs are identified as open
problems. Thus, our results constitute some progress towards solving these problems.

The rest of this paper is organized as follows. In Section 2, we cover the needed definitions and
notational conventions and also introduce metacyclic graphs, which cover toroids and supertoroids
as special cases, as a subclass of Cayley graphs of semi-direct products. In Section 3, we derive a
deterministic routing algorithm, which is applicable to the entire class of metacyclic graphs, and
discuss its properties and examples of use. In Section 4, we present some general bounds on the
diameter of metacyclic graphs and also discuss some special cases of interest. Section 5 contains
our conclusions and directions for further research.

2. Definitions and notations

We continue our discussion by defining a number of key concepts and notations [4]. Let G be
a finite group with I as its identity element. Let � ⊂ G be a generating set of G such that
I /∈ � and g−1 ∈ � if g ∈ �. Define the Cayley graph C(G, �) = (V , E), where V = G and
E = {(x, y)|y = xg for some g ∈ �}. Then, C(G, �) is a regular, vertex-transitive graph of
degree |�|. Given any integer n, let h and m be integers such that gcd(n, h) = 1 and hm ≡ 1
mod n. The rest of our presentation is in terms of a particular fixed value of h thus chosen. Let
G = Z/m and H = Z/n be two cyclic groups, where Z/n = {0, 1, . . . , n − 1} and all operations
are modulo n. The semi-direct product Z/m ⊗ Z/n is referred to as a metacyclic group. In other
words, G ⊗ H = Z/m ⊗ Z/n, with the product operator defined by (a, b) ⊗ (u, v) = (a, b)

(u, v) = (a + u, h−ub + v), is a semi-direct product of the two cyclic groups, where the first
component is computed mod m and the second one mod n [9]. Consider the generating set
� = {(1, 0), (−1, 0), (0, 1), (0, −1)}. For the Cayley graph C(Z/m ⊗ Z/n, �), which is known
as a metacyclic graph, taking ε ∈ { − 1, 1}, we have,

(a, b)(ε, 0) = (a + ε, h−εb), (1)

(a, b)(0, ε) = (a, b + ε). (2)

Clearly, for h = 1, we have G ⊗ H = G × H and the semi-direct product becomes a direct
product of G and H [4]. Hence, the toroid C(G × H , �) is a metacyclic graph, where G = Z/m,
H = Z/n, and� = {(1, 0), (−1, 0), (0, 1), (0, −1)}. ConsiderG′ = Z/ck andH ′ = Z/c2l, with
c, k, and l integers. Then, gcd(c2l, 1 + cl) = 1. Taking h = 1 + cl, m = ck, n = c2l, we can easily
find hm ≡ (1 + cl)ck ≡ 1 + c2kl ≡ 1 mod n by the binomial theorem [4]. Hence, G′ ⊗ H ′ is a
semi-direct product. For (a, b), (u, v) ∈ G′ ⊗ H ′, we can readily establish the following identity,
which is the same as Equation (2.3) of Wu et al. [9]:

(a, b)(u, v) = (a + u, (1 − ucl)b + v). (3)
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International Journal of Computer Mathematics 23

The Cayley graphC(G′ ⊗ H ′,�) = �(c, k, l), known as the supertoroidal graph, withG′ = Z/ck,
H ′ = Z/c2l, and � = {(1, 0), (−1, 0), (0, 1), (0, −1)}, is a metacyclic graph. Thus, recalling that
ε ∈ { − 1, 1}, we have,

(a, b)(ε, 0) = (a + ε, (1 − εcl)b), (4)

(a, b)(0, ε) = (a, b + ε). (5)

Figure 1. Cayley graphs of semi-direct products and their various subclasses [9].

Figure 2. The 64-node supertoroidal network �(4, 1, 1) of Example 1 with nodes of degree 4. The b component in the
index of node (a, b) is shown as a hexadecimal digit (0–F). To avoid clutter, vertical wraparound links have not been
drawn fully; instead, they are labelled using the node number on the other side.
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24 W. Xiao and B. Parhami

Figure 3. The 28-node instance of the metacyclic graph of Example 2 with nodes of degree 3. The b component in the
index of node (a, b) is shown as a hexadecimal digit (0–D).

Figure 1, adapted from Wu et al. [9], shows the relationships between the class of Cayley graphs of
semi-direct products (the most general) and its various important subclasses: metacyclic graphs,
supertoroids, Borel graphs, and toroids (tori). Borel graphs, which will not be discussed in this
paper, constitute a family of Cayley graphs that are based on a special class of matrix groups [3].
As shown by the shaded area in Figure 1, some, but not all, toroids are supertoroids. An example
of a supertoroid (Figure 2), as well as a metacyclic graph that is not a supertoroid (Figure 3), will
be discussed in Section 3 (Examples 1 and 2) in conjunction with the application of our routing
algorithm (Algorithm 1).

3. Routing algorithm

Assume that G = Z/m, H = Z/n, and � = {(1, 0), (−1, 0), (0, 1), (0, −1)}. Because the meta-
cyclic graph � = C(G ⊗ H , �) is vertex-transitive, we only need to consider routing from any
node (p, q) to the node (0, 0), where 0 ≤ p < m and 0 ≤ q < n. If a link connects node
(p, q) to node (p, q) (1, 0), then this link is called a [1, 0] link; [−1, 0], [0, 1], and
[0, −1] links are defined in an analogous manner. A path from node (p, q) to node (0,
0) contains zero or more of each of the [1, 0], [−1, 0], [0, 1], and [0, −1] links. We
denote the number of [1, 0], [−1, 0], [0, 1], and [0, −1] links of a path by w, x, y, and
z, respectively. Such a path from node (p, q) to node (0, 0) is of length w + x + y + z

and may be denoted as w[1, 0] + x[−1, 0] + y[0, 1] + z[0, −1]. Because w and x are mod-
ulo m, and y and z are modulo n, it is the case that 0 ≤ w, x < m and 0 ≤ y, z < n.
Without loss of generality, we may assume by Equations (1) and (2) that a route from
node (p, q) to node (0, 0) satisfies the equations that follow, where εi ∈ {1, −1} and 1 ≤
i ≤ w + x.

hεw+x (· · · hε2(hε1(q + v1) + v2) + · · · + vw+x) + vw+x+1 ≡ 0 mod n (6)

x − w ≡ p mod m, (7)

v1 + v2 + · · · + vw+x+1 = y − z, (8)

|v1| + |v2| + · · · + |vw+x+1| = y + z, (9)

where the number of hεi elements in Equation (6) is w + x and v1, v2, . . . , vw+x+1 are integers
produced by successive applications of Equation (2). Noting that Equation (6) can be rewritten
as Equation (6′) and given the equalities hm ≡ 1 mod n and ε1 + ε2 + · · · + εw+x = x – w ≡ p
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mod m, we have,

hε1+ε2+···εw+x (q + v1) + hε2+···+εw+x v2 + · · · + vw+x+1 ≡ 0 mod n (6′)

hx−w(q + v1 + h−ε1v2 + · · · + h−pvw+x+1) ≡ 0 mod n. (10)

Because gcd(n, h) = 1, Equation (10) yields

q + v1 + h−ε1v2 + · · · + h−pvw+x+1 ≡ 0 mod n (11)

The preceding discussion leads to the following result.

OBSERVATION 1 The path w[1, 0] + x[−1, 0] + y[0, 1] + z[0, −1] from node (p, q) to node
(0, 0) is a shortest path iff there exist integers w, x, y, z, v1, v2, . . . , vw+x+1 satisfying Equa-
tions (7), (8), (9), and (11) such that w + x + y + z is minimal, where 0 ≤ w, x < m and 0 ≤ y,
z < n.

Because the exponent εi of h in Equation (11) may be 1 or −1, which is not fixed, we consider
the following more general congruent equation, with fixed exponents for h, which generalizes
Equation (11)

q + v1h
−x + v2h

−x+1 + · · · + vxh
−1 + vx+1 + vx+2h + · · · + vx+w+1h

w ≡ 0 mod n. (12)

COROLLARY 1 If there exist integers w, x, y, z, v1, v2, . . . , vw+x+1 satisfying Equations (7), (8),
(9), and (12), such that w + x + y + z (0 ≤ w, x < m, 0 ≤ y, z < n) is minimal, then we have
the routing equation

hx{h−1{· · · h−1

︸ ︷︷ ︸

w−1

{h−x−1[h(· · · h(h
︸ ︷︷ ︸

x

(q + vx+1) + vx) + · · · + v2) + v1] + vx+2}

+ · · · + vx+w} + vx+w+1} ≡ 0 mod n, (13)

where d(p, q), the distance between node (p, q) and node (0, 0), satisfies the inequalities w +
x + y + z ≤ d(p, q) ≤ w + 3x + y + z.

Proof It is clear that if the integers w′, x ′, y ′, z′, v′
1, v

′
2, . . . , v

′
w+x+1 satisfy Equations (7), (8),

(9), and (11) such that w′ + x ′ + y ′ + z′ is minimal, with 0 ≤ w′, x ′ < m and 0 ≤ y ′, z′ < n,
then they satisfy Equations (7), (8), (9), and (12). Hence, we have w + x + y + z ≤ d(p, q) =
w′ + x ′ + y ′ + z′ from Observation 1. Repeatedly multiplying (x times in all) Equation (12) by
h, we get,

h(· · · h(h(q + vx+1) + vx) + · · · + v2) + v1 + vx+2h
x+1

+ · · · + vx+whx+w+1 + vx+w+1h
x+w ≡ 0 mod n. (14)

Multiplying Equation (14) by h−x−1, we get,

h−x−1[h(· · · h(h(q + vx+1) + vx) + · · · + v2) + v1] + vx+2 + · · · + vx+whw−2

+ vx+w+1h
w−1 ≡ 0 mod n (15)

Repeatedly multiplying (w − 1 times in all) Equation (15) by h−1, we obtain,

h−1{· · · h−1

︸ ︷︷ ︸

w−1

{h−x−1[h(· · · h(h
︸ ︷︷ ︸

x

(q + vx+1) + vx) + · · · + v2) + v1]

+ vx+2} + · · · + vx+w} + vx+w+1 ≡ 0 mod n (16)

Multiplying Equation (16) by hx , we arrive at Equation (13). It is apparent that in the sequence of
operations described above, Equation (1) has been applied x + (w − 1) + (x + 1) + x = w + 3x
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26 W. Xiao and B. Parhami

times and Equation (2) has been applied |v1| + |v2| + · · · + |vw+x+1| = y + z times. Hence, we
have d(p, q) ≤ w + 3x + y + z. �

We can obtain a deterministic routing algorithm for the metacyclic graph � = C(G ⊗ H, �)

based on Corollary 1, which also establishes the correctness of our algorithm.

ALGORITHM 1 Routing from node (p, q) to node (0, 0) in a metacyclic graph
For any given (w, x) satisfying x − w ≡ p mod m and 0 ≤ w, x < m:

Step 1. Find integers y, z, v1, v2, . . . , vw+x+1 satisfying Equations (8), (9), and (12) such that
w + x + y + z is minimal, where 0 ≤ y, z < n.

Step 2. Construct the routing Equation (13), as noted in the preceding discussion.

Let l(p, q) be the length of the routing path from node (p, q) to node (0, 0). Then, l(p, q) ≤ w +
3x + y + z. Hence, we have l(p, q) − d(p, q) ≤ 2x. In particular, since 0 ≤ x < m, Algorithm 1
is a near-shortest-path routing algorithm when m is small. Furthermore, Algorithm 1 is a shortest-
path routing algorithm if x = 0. Our algorithm is provably correct and is applicable to all metacyclic
graphs, as opposed to the scheme of Wu et al. [9], which has not been formally proven correct and,
additionally, only pertains to specific classes of metacyclic graphs. It is noteworthy, however, that
the application of our algorithm requires that for any (w, x), with x − w = p mod m (0 ≤ w, x <

m, 0 ≤ y, z < n), we find the integers y, z, v1, v2, . . . , vw+x+1 satisfying Equations (8), (9), and
(12) such that w + x + y + z is minimal. This is not a trivial task, and we discuss it further in the
following.

For any given (w, x) with x − w ≡ p mod m and 0 ≤ w, x < m, based on Equation (12), we
first sort |h−x |, |h−x+1|, . . . , |h−1|, |h|, |h2|, . . . , |hw|. The time required for this phase is O(m
log m). Next, we use repeated divisions with remainders to find v1, v2, . . . , vw+x+1, beginning
from the greatest of |h−x |, |h−x+1|, . . . , |h−1|, |h|, |h2|, . . . , |hw|, where q is the dividend for the
first step. This phase too requires O(m log m) time. The total time complexity of computing the
routing equation in Algorithm 1 is thus O(m log m) for any given (w, x), with x – w = p mod m

and 0 ≤ w, x < m. Consequently, the total time complexity for computing the routing equation
in Algorithm 1, for all (w, x), with x – w = p mod m and 0 ≤ w, x < m, is O(m2 log m).

Example 1: Consider �(c, k, l) = C(Z/ck ⊗ Z/c2l, �), where � = {(1, 0), (−1, 0), (0, 1),

(0, −1)}. This supertoroidal graph is depicted in Figure 2. For comparison purposes, we
have shown a 64-vertex three-dimensional toroid in Figure 4. Let c = 4 and k = l = 1. Then,
h = 1 + cl = 5, h−1 = 1 − cl = −3. Now consider routing from node (0, 9) to node (0, 0), that
is, let p = 0, q = 9. Setting w = x = 1, by Equation (12) we have 9 + (−3)v1 + v2 + 5v3 ≡ 0
mod 16. Because |h| > |h−1|, we first perform division with the dividend q = 9 and the divi-
sor h = 5, obtaining the remainder −1 (i.e., 9 = 5 × 2 − 1). Next, the dividend is taken to be
−1 and the divisor h−1 = −3, which yields the remainder of −1. Thus, we obtain 9 + (−3) ×
0 + 1 + 5 × (−2) ≡ 0 mod 16. Hence, we have v1 = 0, v2 = 1, v3 = −2. By Equation (13), we
have 5 × [(−3)2 × 5 × (9 + 1) − 2] ≡ 0 mod 16. Clearly, −3 × 5 ≡ 1 mod 16. Hence, we get
5 × [(−3) × (9 + 1) − 2] ≡ 0 mod 16. The preceding steps lead to the routing path (0, 9) → (0,
10) → (1, 2) → (1, 1) → (1, 0) → (0, 0). This path from node (0, 9) to node (0, 0), traced by
a heavy line in Figure 2, is of length 5. Generally, there exist other paths. For example, here we
have the alternate path: (0, 9) → (1, 5) → (2, 1) → (2, 0) → (3, 0) → (0, 0).

Example 2: This is an example metacyclic graph that is not a supertoroidal graph. Let m = 2
and assume that n is even but not a multiple of 4. Assume that h = n − 1 and h−1 = −1. By
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Figure 4. Three-dimensional 4 × 4 × 4 toroid (of node degree 6) drawn so as to facilitate comparison with the super-
toroidal network of Figure 2. To avoid clutter, vertical wraparound links have not been drawn fully; instead, they are
labelled using the node number on the other side. Despite its larger node degree, and thus higher implementation cost,
this network has the same diameter as the one in Figure 2.

Equation (12), we have q + v1h
−1 + v2 ≡ 0 mod n. For p = 1 and q = n/2, we may set v1 = n/2

and v2 = 0. By Equation (13), we have the routing equation hq + v1 ≡ (−1)n/2 + n/2 ≡ 0 mod
n. Algorithm 1 yields the following routing path from node (1, n/2) to node (0, 0) in this network:
(1, n/2) → (0, n/2) → (0, n/2 − 1) → · · · → (0, 1) → (0, 0). The length of this path is n/2 + 1.
Figure 3 shows an instance of this network for n = 14, with the aforementioned routing path from
node (1, 7) to node (0, 0) traced by a heavy line.

Remark 1 As is evident from Examples 1 and 2, some h−1 and h elements in Equation (13)
cancel each other out, which frequently leads to a shortest path from node (p, q) to node (0, 0).

Remark 2 Subtracting Equation (8) from Equation (12), we obtain:

q + y − z + v1(h
−x − 1) + v2(h

−x+1 − 1) + · · · + vx(h
−1 − 1) + vx+2(h − 1)

+ · · · + vw+x+1(h
w − 1) ≡ 0 mod n (17)

Because hm ≡ 1 mod n, we have h−1 ≡ hm−1 mod n, and thus h−l − 1 ≡ h(m−1)l − 1 mod n,
where l is an integer. Given that hl − 1 is divisible by h − 1, and based on Equation (17), we
obtain,

q ≡ z − y + f |h − 1| mod n, for some integerf. (18)

Similarly, given that hl − 1 is divisible by h−1 − 1, we can deduce the following.

q ≡ z − y + g|h−1 − 1| mod n, for some integer g (19)
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28 W. Xiao and B. Parhami

We will use Equation (19) to establish a diameter lower bound in Section 4. Note that in the special
case of �(c, k, l), Equation (19) reduces to q ≡ z − y mod cl.

4. Diameter bounds

Assume that � = C(G ⊗ H, �) is a metacyclic graph, where � = {(±1, 0), (0, ±1)}. Let D(X)

denote the diameter of graph X and d(p, q) be the distance from the node (p, q) to the node (0,
0). Then we have the following result.

THEOREM 1 Assume that |h−1 − 1| divides n, p = 
m/2�, and q = 
|h−1 − 1|/2�. Then, the
diameter of � satisfies D(�) ≥ d(p, q) ≥ 
m/2� + 
|h−1 − 1|/2�.

Proof Because |h−1 − 1| divides n, we have by Equation (19)

q ≡ z − ymod |h−1 − 1|.
Hence, we have q + 2y = y + z + g|h−1 − 1|, where g ≥ 0. For g = 0, we have y + z = q +
2y ≥ q = 
|h−1 − 1|/2�. For g ≥ 1, we have y − z = g|h−1 − 1| − q, which leads to y + z =
g|h−1 − 1| − q + 2z ≥ g|h−1 − 1| − 
|h−1 − 1|/2� ≥ 
|h−1 − 1|/2�. On the other hand, we
have by Equation (7)

x − w ≡ 
m/2� mod m.

Thus, x + w ≡ 2w + 
m/2� mod m. For x ≤ w, we have w = m − 
m/2� + x ≥ 
m/2�. For
x ≥ w, we have x ≥ w + 
m/2� ≥ 
m/2�. Hence, w + x ≥ 
m/2� in either case. Based on the
lower bounds derived for w + x and y + z, we can write w + x + y + z ≥ 
m/2� + 
|h−1 −
1|/2� and, so, D(�) ≥ d(p, q) ≥ min(w + x + y + z) ≥ 
m/2� + 
|h−1 − 1|/2�. �

The following corollary of Theorem 1 is a known result from the study of Draper and Faber [5].

COROLLARY 2 For � = �(c, k, l), we have D(�) ≥ 
ck/2� + 
cl/2�.

Draper and Faber [5] have shown that D(�(c, k, l)) = 
ck/2� + 
cl/2� when c ≥ 8. We have
been unable to obtain a similar closed-form representation for the diameter of metacyclic graphs
as a function of the parameters m, n, and h. In the absence of such an exact diameter formula, the
following diameter upper bound is useful.

Assume that |h−1| �= 1 and q < n has the following polynomial expansion [4] in terms of h−1

q = u1h
−i + u2h

−i+1 + · · · + uih
−1 + ui+1,

where |h−i | ≤ q < |h−i−1| and |uj | ≤ |h−1|, j = 1, 2, . . . , i + 1. Then, because |h−i | ≤ q < n,
we have i ≤ log n/ log |h−1|, where the logarithms are in base 2. Hence, we have:

|u1| + |u2| + · · · + |ui+1| ≤ (i + 1)|h−1| ≤ (log n/ log |h−1| + 1)|h−1|.
As a result, d(p, q) ≤ O(m) + (log n/ log |h−1| + 1)|h−1|. We have thus shown the following.

THEOREM 2 Suppose that � = C(G ⊗ H, �) is a metacyclic graph. Then, the diameter of �

satisfies D(�) ≤ O(m) + (log n/ log |h−1| + 1)|h−1|, when |h−1| �= 1.

By Theorems 1 and 2, we have the following special results.
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Figure 5. Three-dimensional 4 × 4 × 4 pruned toroidal network (node degree of 4) for comparison with Figures 2 and 4.
To avoid clutter, vertical wrap-around links have not been drawn fully; instead, they are labelled using the node number
on the other side.

COROLLARY 3 Consider � = �(c, k, l). Then h−1 = 1 − cl, and so D(�) ≤ O(m + cl) =
O(ck + cl), where cl �= 2. Therefore, we have D(�) = �(ck + cl).

COROLLARY 4 Let m = 4 and n = h2 + 1 > 2. Then h−1 = −√
n − 1 and we have D(�) ≤

O(
√

n).

We see that in this case, the network diameter is less than those of the corresponding torus and
supertoroid networks, with the same parameters m and n, when the number of nodes is sufficiently
large.

5. Conclusion

In this paper, we have extended the results of Wu et al. [9] on routing for certain subclasses of
metacyclic graphs, by presenting a deterministic routing algorithm that is applicable to all meta-
cyclic graphs. We have also derived bounds on diameters of such graphs. Our routing algorithm
comes with a correctness proof, and even though it is not a shortest-path algorithm, its chosen
routing paths are not much longer than the shortest paths when m is small. The derivation of
an exact formula for the diameter of metacyclic graphs as a function of m, n, and h, is still an
open problem, but our bounds constitute some progress towards solving this problem. Because
metacyclic groups (semi-direct products of two cyclic groups) are not commutative, the difficulty
in constructing a general shortest-path routing algorithm is not unexpected. In the absence of an
optimal routing algorithm, our near-shortest-path routing algorithm is a useful tool.
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Further research can proceed in several directions. Other than tackling the open problems cited
in the preceding paragraph, one may endeavour to compare metacyclic graphs in general, and the
subclass of supertoroids in particular, to other networks with similar cost/performance attributes.
For example, pruned torus networks, which also are Cayley graphs [10] and offer reduced node
degree compared with ordinary or unpruned tori, may be viewed in some respects as being
intermediate between ordinary tori and supertoroids. An example of pruned three-dimensional
torus, with node degree 4 and diameter equal to the corresponding unpruned torus of Figure 4, is
depicted in Figure 5. It would be interesting to compare such networks of equal node degree with
regard to their topological parameters and robustness attributes. Comparing the performance of
such networks under realistic implementation and packaging considerations, as studied by Gupta
and Dally [6], constitutes another potentially fruitful research direction.
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