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a b s t r a c t

Existing local iterative algorithms for load-balancing are ill-suited to many large-scale interconnection
networks. The main reasons are complicated Laplace spectrum computations and flow scheduling
strategies. Many large-scale networks are modular and/or hierarchically structured, a prime example
being the class of swapped or OTIS networks that have received much attention in recent years. We
propose a new local scheme, called DED-X, for load-balancing on homogeneous and heterogeneous
swapped/OTIS networks. Our scheme needs spectral information only for themuch smaller basis or factor
graph, which is of size O(n) rather than O(n2), and it schedules load flow on intragroup and intergroup
links separately. We justify the improvements offered by DED-X schemes over traditional X schemes
analytically and verify the advantages of our approach, in terms of efficiency and stability, via simulation.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Load-balancing is the process of redistributing workloads
among computational nodes in a parallel or distributed computing
environment, when static or a priori distribution fails to achieve
near-perfect balance, thus leading to suboptimal efficiency and
speedup. In some cases, dynamic, poorly predictable task char-
acteristics bring about a highly uneven load distribution, caus-
ing severe performance degradation. Examples abound in cluster
and grid computing, which are characterized by a broad collec-
tion of dynamically generated loads on processing nodes. Work-
load equalization is achieved by moving tasks and/or finer chunks
of work between nodes and their neighbors via communication
links that connect them.
Load-balancing algorithms typically assume that the node

workload consists of equally sized items and that the workload is
infinitely divisible. The goal of load-balancing is to design schedul-
ing algorithms to migrate load across network links, with each
node ideally ending up with a load that matches its capabilities.
A node communicates with one neighbor at a time in dimension
exchange algorithms and with all neighbors simultaneously in dif-
fusion algorithms. In parallel processing terminology, these are
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known as single-port and all-port communication models, respec-
tively. Commonly, load-balancing entails two distinct phases of
balance calculation and choice of items to transfer. Balance calcu-
lation yields the amount of load that should be migrated between
a node and its neighbors to achieve a balanced status. Selection of
load items for actual transfer entails a number of criteria relating
to workload characteristics. A good load balancing algorithm has a
numerically stable iterative process, with low computational com-
plexity and a small flow on communication links for achieving a
balanced state.
A number of significant algorithms has been developed for

load-balancing on general networks. For homogeneous networks,
Cybenko [4] presented a local diffusion load-balancing scheme.
Muthukrishnan et al. [13] refer to Cybenko’s method as first-
order scheme (FOS) and endeavor to speed up its iteration process
by using an overrelaxation iterative method in their second-
order scheme (SOS). Diekmann et al. [6] developed an iterative
algorithm, dubbed the optimal polynomial scheme (OPS), to
balance loads among nodes within a finite number of iterations.
They also provided a theoretical analysis for their algorithm.
Elsässer et al. [7] presented an optimal diffusion scheme, OPT,
which balances the node loads in a finite number of iterative
steps, once the graph’s Laplace spectrum becomes known. They
subsequently extended several polynomial diffusion schemes for
load-balancing fromhomogeneous to heterogeneous networks [8],
with the resulting ‘‘balanced’’ node loads being proportional to
their given weights. The schemes cited above produce l2-minimal
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balancing flows. In fact, it is the case that all local iterative
algorithms lead to a minimal flow, independent of the algorithms
and parameters used.
Motivated by load-balancing research in other contexts,

Qin [16] designed a data-aware load-balancing strategy to
achieve high performance for data-intensive jobs in data grid
environments. This was accomplished via a model for estimating
the job response time to calculate slowdowns imposed on jobs
to balance the load of a data grid in such way that computation
and storage resources in each site are simultaneously utilized.
Harchol-Balter and Downey [11] proposed a functional form to
fit the distribution of lifetimes for Unix processes and derived a
preemptive migration load-balancing strategy. They also showed
that their policy reduces the mean delay by 35%–50%, compared
with other preemptive migration policies.
General diffusion algorithms are ill-suited to load-balancing on

large-scale networks, owing to their complicated Laplace spectrum
computation. Swapped or OTIS networks constitute a case in
point. Optical transpose interconnect system (OTIS) networks,
named swapped networks by Parhami [15] (who provides a
historical review and cites many references to original papers
on these networks), are built of n copies of an n-node factor
or basis network, and thus have a total of n2 nodes. Nodes
are linked according to the connectivity of the basis network
in clusters and via intercluster links to other clusters. The
original proposal aimed to realize these intercluster links as
optical channels, hence the name ‘‘OTIS’’. Computing the Laplace
spectrum of a swapped/OTIS networkmust take aboutO(n2) steps.
Interestingly,many algorithms for swapped networks can be based
on the respective algorithms/properties of the much smaller basis
network. It is thus natural to ask whether spectrum computation
for load-balancing can likewise be limited to the basis network in
order to make the algorithm much more efficient. Before showing
that this simplification can indeed be achieved, we review several
studies that deal with load-balancing in large-scale networks.
Several diffusion schemes, described as alternating direction

iteration (ADI), have been proposed by Elsässer et al. [7] to deal
with load equilibrium problems for large and scalable networks.
The same research group also introduced mixed direction iteration
(MDI) in [9] to obtain a smaller flow than ADI, with the same
number of iterations. They present ADI-FOS and ADI-OPT, that is,
ADI versions of the general diffusion schemes FOS and OPT. When
applied to product graphs, the MDI method converges to balanced
status faster than the corresponding general diffusion schemes,
and the number of iterations is always smaller than the latter.
However, these schemes are applicable only to networks modeled
as a Cartesian product of two graphs, and thus cannot be used for
OTIS architectures.
The diffusion algorithms discussed thus far assume the all-port

communication model. For the single-port model, Arndt [1] has
constructed the dimension-exchange (DE) algorithms DE-OPT and
DE-OPS (which use the same iteration as in OPT and the same
iterative polynomial as in OPS diffusion algorithms), but divided
each iterative step in both diffusive algorithms into substeps
corresponding to edge colors on the underlying graph. DE-OPS and
DE-OPT use the most recent information, meaning that a node
exchanges its load information with one of its neighbors in each
substep. The diffusion matrices of OPT and OPS are replaced with
their DE counterparts, and the eigenvalues of the original Laplacian
matrix are likewise modified. The convergence speed of DE still
depends on the number of distinct eigenvalues of the Laplacian.
For product graphs, Arndt [2] developed a new diffusion algorithm
ADI-OPS, together with two DE algorithms DE-ADI-OPT and
DE-ADI-OPS.
Our aim here is to construct new diffusion algorithms based on

general diffusion schemes, such as FOS, SOS, and OPT, so that they
Table 1
Terminology and abbreviations, listed for ready reference.

Term Meaning or interpretation

ADI Alternating direction iteration
Adjacency Matrix representation of a graph
Basis Component graph from which a swapped/OTIS network is built
Convergence Speed with which a balanced load status is achieved
CS Weight assignment with all nodes of weight 1, except one with

weight n+ 1
DE Dimension exchange; communication with one neighbor at a

time
DED-X Three-phase diffusion-exchange-diffusion scheme based on X
Error Difference between an achieved load distribution and the ideal

balanced load
Factor Same as ‘‘basis’’
Flow Extent of workload transfers in a network
FOS First-order scheme
HOMO Homogeneous weight assignment: all nodes are given weight 1
Intragroup Links that connect nodes located in the same basis network
Intergroup Links that connect nodes located in different basis networks
Laplacian A particular matrix representation of a graph
Load Units of work assigned to a particular entity (node, subnetwork,

or network)
MDI Mixed direction iteration
Migration Transfer of workload among the network nodes
Network Set of nodes interconnected by links; used interchangeably with

‘‘graph’’
Norm Parameter characterizing a diffusion scheme
OPT Optimal diffusion scheme
OTIS Optical transpose interconnect system; used interchangeably

with ‘‘swapped’’
OTIS-G OTIS network with graph G as basis network
OTIS-Hd OTIS network with a dD hypercube as basis network; generically,

OTIS-Cube
OTIS-Mk×m OTIS network with a k×mmesh as basis network; generically,

OTIS-Mesh
PEAK A highly skewed load distribution where a single node holds the

entire load
Quality Inversely related to extent of flow: the smaller the flow, the

higher the quality
RANL Random load distribution
RANW Weight assignment, with all node weights being random integers

in [1, 64]
SEMI Node assignment in which nodes are given weight 1 or 2, in equal

numbers
SOS Second-order scheme
Stability Property of an algorithm whose error decreases smoothly and

monotonously
Swapped Used interchangeably with ‘‘OTIS’’
Weight Value assigned to a node, reflecting its computational capacity

can perform load -balancing on OTIS networks with the same level
of computational overhead as would be needed for load-balancing
on their much smaller basis networks. Accordingly, we propose
several hybrid load-balancing schemes and show them to possess a
simple iteration process, aswell as high efficiency, when applied to
a wide array of OTIS networks whose basis networks have regular
topologies. Table 1 contains a list of key terms and abbreviations
used in concert with other standard graph-theory and parallel-
computing terms [10,14].

The rest of this paper is organized as follows. After present-
ing basic definitions pertaining to load-balancing, diffusion algo-
rithms, and OTIS networks in Section 2, we review the application
of several existing general diffusion schemes to homogenous OTIS
networks in Section 3.We present our local iterative algorithms for
load-balancing on homogeneous swapped/OTIS networks in Sec-
tion 4, extending the proposed schemes to heterogeneous OTIS
networks in Section 5. In Section 6, we analyze the performance of
these schemes and present simulation results to show the viability
of our approach.
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Fig. 1. The structure of swapped/OTIS network.

2. Definitions and background

The swapped/OTIS architecture (see, e.g., [5,15]) derived from a
general graph G is denoted as OTIS-G or S(G). A formal definition
is given below. Throughout this paper, we use swapped and OTIS
networks interchangeably.

Definition 1 (Swapped/OTIS Graph). Let G = (VG, EG) be an
undirected graph. The swapped or OTIS graph associated with G,
OTIS-G = S(G) = (V , E), is an undirected graph with the vertex
set V = {(g, p) | g, p ∈ VG} and the edge set E = Eb ∪ Es,
where Eb = {((g, p1), (g, p2)) | g ∈ VG, (p1, p2) ∈ EG} and
Es = {((g, p), (p, g)) | g, p ∈ VG, g 6= p}. �

Informally, a swapped/OTIS network, derived from an n-node
network G, is composed of n clusters, each of which is internally
connected as G. Additionally, node i of cluster j (where i 6= j) is
connected externally to node j of cluster i.
The graph G is the factor or basis network of OTIS-G. If G has n

nodes, then OTIS-G is composed of n node-disjoint subnetworks Gi,
i = 0, 1, . . . , n − 1, which constitute the groups or clusters. Each
of these groups is isomorphic to G. Denote the vertex set of Gi as
Vi = {vij | 0 ≤ j ≤ n − 1} and its edge set as Ei = {(vik, vil) |
(vk, vl) ∈ EG}. The vertex set V of OTIS-G is V = ∪0≤i≤n−1 Vi.
The edge set E of OTIS-G can be partitioned into two subsets: The
intragroup or basis edge set Eb, and the intergroup or swap edge
set Es. Clearly, Eb = ∪0≤i≤n−1 Ei and Es = {(vij, vji) | i < j}.
Fig. 1 depicts the structure of a swapped/OTIS network, along
with the terminology used to refer to its various parts. Fig. 2(a)
contains an example OTIS network formed with the 4-node cycle
C4 as its basis or factor network. The example OTIS network shown
in Fig. 2(b) is based on the 6-node complete graph K6.
Letwi = (wi1, wi2, . . . , win)T and ci = (ci1, ci2, . . . , cin)T repre-

sent the load andweight on the ith factorGi of OTIS-G. Similarly, let
w = (w0, w1, . . . , wn−1)

T and c = (c0, c1, . . . , cn−1)T denote the
load and weight on OTIS-G, where the ith components are the load
wi and the weight ci of Gi. The jth node vij of the ith basis network
has initial load w0ij ≥ 0 and weight cij > 0. Notationally, C and Ci
are taken to be diagonal matrices with elements of the vectors c
and ci as their diagonal entries, respectively. That is:

C = diag(c01, . . . , c0n, c11, . . . , c1n, . . . , c(n−1)1, . . . , c(n−1)n)
Ci = diag(ci1, ci2, . . . , cin).

Let Bb and B be the node-edge incidence matrices of the basis
graphG andOTIS-G respectively; take Bs to be thematrix specifying
the incidence of the intergroup edges in Es to nodes of OTIS-
G. Matrices Bb, Bs and B all have in each column exactly two
nonzero entries 1 and −1, which represent the nodes incident to
the corresponding edge. The signs of these nonzero entries imply
directions of the flows produced in the process of load-balancing
on the corresponding edges. The Laplacian L of a graph is L = BBT.
Let L and Lb be the Laplacematrices of OTIS-G and its basis network
G, respectively. Let Aij denote the n × n matrix with only the ijth
entry being 1 and other entries being 0. Let As be a matrix with the
ijth entry being As(i, j) = Aji. Then, L = In ⊗ (Lb + In)− As, where
⊗ represents the Knonecker product.
We denote the distinct eigenvalues of Lwith λi (0 ≤ i ≤ m) and

those of Lb with λbi (0 ≤ i ≤ mb), arranged in increasing order. Let
α ∈ (0, 1) be a constant edge weight for OTIS-G and αb for G. Take
M = In2−αL andMb = In−αbLb to be the corresponding diffusion
matrices of polynomial-based diffusion schemes. Then, M and Mb
have the eigenvaluesµi = 1−αλi andµbi = 1−αbλ

b
i . Denote the

second largest eigenvalue ofM andMb according to their absolute
values with γ = max(|µ2|, |µm|), γ b = max(|µb2|, |µ

b
m|). The

workload wk in step k for polynomial based diffusion schemes
can be commonly expressed as a general iteration form wk =
pk(M)w0. The convergence of this iteration depends on whether
the error term ek = wk−wl tends to zero when k increases, where
wl is the node load vector when the network achieves a balanced
status.
(a) OTIS-C4 . (b) OTIS-K6 .

Fig. 2. Two example OTIS networks, one built of the 4-node cycle C4 as the basis network and the other based on the 6-node complete graph K6 .
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Based on the discussion above, the error term ek is an indicator
of the quality of load-balancing after k steps, and it can be used
for comparing distinct algorithmswith comparable computational
complexities. The iteration error term ek satisfies (see [6]):

‖ek‖2 ≤ max{|pk(µi)| · ‖e0‖2, 2 ≤ i ≤ m}. (1)

In particular, the first-order scheme (FOS) satisfies wk = Mwk−1
and yields error results in ‖ek‖2 ≤ γ k · ‖e0‖2. Since γ (M) =
max(|1 − αλ2(L)|, |1 − αλm(L)|), the minimum of γ is achieved
for 1 − αλ2(L) = −1 + αλm(L). Thus, the optimal value of α is
α = 2/(λ2 + λm). Consequently, we have γ = (1 − ρ)/(1 + ρ),
with ρ = λ2(L)/λm constituting the condition number of L.
For OTIS-G, let yk and xk be two flow vectors whose entries

corresponding to edge e represent the amount of load migrated
along e in step k and the total amount of load until step k,
respectively. For G, let ykb and x

k
b represent the corresponding

parameters of G. The directions of the flows are determined by the
directions of the edges in the incidence matrix. The flow x is called
a balancing flow if and only if Bx = w0 − wl.
We now proceed to describe several known algorithms,

including FOS [4], OPS [6]. and OPT [7]. These all constitute
diffusion schemes for load-balancing on networks with general
topologies. The FOS scheme can be expressed as a local iterative
scheme. It changes the workload vectorwk of nodes and schedules
the flow vector x of edges according towk = Mwk−1, xk = xk−1 −
αBTwk−1, k ≥ 1. The error term ek of FOS [6] satisfies ‖ek‖2 ≤ γ k ·
‖e0‖2. To improve the relatively slow convergence of FOS, another
polynomial-based iterative method, called a second-order scheme
(SOS), was devised [12]. The latter is based on the polynomials:

p0(t) = 1, p1(t) = t,
pk(t) = βtpk−1(t)+ (1− β)pk−2(t) for k ≥ 2.

The iterative process of SOS migrates workloads according to
w1 = Mw0, wk = βMwk−1 + (1 − β)wk−1, k ≥ 2. It is known
that wk converges to wl whenever β ∈ (0, 2), with the fastest
convergence occurring for β = 2/(1 +

√
1− γ 2). Following [6],

we denote this optimal value of β as β0. Then, the error term ek in
the kth iteration satisfies:

‖ek‖2 ≤ (β0 − 1)k/2(1+ k
√
1− γ 2)‖e0‖2. (2)

After these parameters have been computed, the SOS algorithmcan
be expressed as a general framework, as suggested in [6].
The optimal scheme OPT [7] has the following simpler iteration

process: 2 ≤ k ≤ r − 1, yk−1 = (1/λk+1)BTwk−1, xk = xk−1+ yk−1,
wk = [I − (1/λk+1)L]wk−1.

3. Hybrid diffusion schemes for homogeneous OTIS-networks

For an OTIS-network with n vertices on its basis network, all
eigenvalues of an n2 × n2 matrix have to be computed before
the load-balancing process starts. This is sometimes impractical,
motivating us to pursue a hybrid scheme called DED-X, that
combines diffusion and dimension exchange, for OTIS networks.
Its basic idea is to divide the load-balancing process into three
stages of diffusion, exchange, and diffusion. To describe our DED-
X approach, let the symbol X denote any known general load-
balancing scheme. In the first stage, DED-X iteratively diffuses node
loads until the initial load w0i of the ith basis network achieves a
balanced status wli locally within the basis network. In this stage,
the workload wk of step k can be expressed as wk = (In ⊗
pk(Mb))w0.
In the second stage, a dimension exchange strategy is applied

over all intergroup links. In this stage, basis networks interchange
their balanced node load by a way of swapping the load of node
(u, v) with that of node (v, u). At the end of this stage, the total
load on each basis network is the same. Given the status at the end
of the first stage, the load of the entire network after this second
stage is given bywl+1 = Aswl.
In the third stage, we proceed with diffusion using the same

iterative polynomial-based scheme as in the first stage. However,
given that all basis networks have the same initial load vector, we
only compute the load migration on one of the basis networks,
using the resulting common flow on all other basis networks.
Fig. 3 illustrates the preceding three-stage load balancing

process. Note that the key property responsible for DED-X’s
extreme efficiency is the ability of an OTIS network to disperse the
balanced basis network loads uniformly over all clusters, making
the load vector in each cluster identical after a single load exchange
step via the intercluster (swap) links.
We now proceed to prove that any polynomial-based scheme

used in the DED-X framework must force wk to the average of
node loads in the entire network after the completion of DED-X’s
diffusion-exchange-diffusion process.

Theorem 1. For any polynomial-based scheme X that takes at most l
steps to iteratively balance the load within a basis network, from the
initial loads w0i for the ith basis network to the common load

1
n Jw

0
i ,

DED-X scheme balances the loadw0 to the common load 1
n2
(J ⊗ J)w0

in at most 2l+ 1 steps.

Proof. By the condition of this proposition, pl(Mb) = (1/n)J .
Applying the DED-X scheme, we have:

w2l+1 = [In ⊗ pl(Mb)]As[In ⊗ pl(Mb)]w0

=
1
n2
(In ⊗ J)As(In ⊗ J)w0 =

1
n2
(J ⊗ J)w0.

The equation above shows that w0 will tend to the final
balanced load of 1

n2
(J ⊗ J)w0 within 2l+ 1 steps. �

The DED-X scheme, as applied here to homogeneous systems,
will be expressed in the form of a local iterative algorithm in
Section 4 (see Fig. 4). Such a DED-X algorithm for heterogeneous
networks readily yields DED-X for a homogeneous network as a
special case. The performance of these algorithmswill be discussed
in detail in Sections 5 and 6.
Note that one can select any previously known (e.g., FOS, SOS,

OPT) or newly-proposed load-balancing scheme to replace X in
DED-X. Thus, DED-X leads to a variety of practical algorithms with
diverse attributes.
The flow calculated by DED-X is not minimal in l2-norm. In

the following discussion, λbi , 0 ≤ i ≤ mb, denotes the Laplacian
eigenvalues of the basis graph G and λi, 0 ≤ i ≤ m, denotes those
of OTIS-G. Let zbi be the orthogonal eigenvectors corresponding to
λi satisfying

∑
1≤i≤n z

b
i = w0k , where w

0
k is the part of initial load

on the kth basis network. Let zi be the orthogonal eigenvectors
corresponding to λi. Take xg and xDED to represent the flows on
OTIS-G links resulting from general diffusion schemes and DED-
X schemes, respectively. By Theorem 7 of reference [1], the flow
xg satisfies:

xg = BT
m∑
i=2

1
λi
zi =


(I ⊗ BTb)

m∑
i=2

1
λi
zi

BTs
m∑
i=2

1
λi
zi

 . (3)

If xD1 , xE , and xD2 represent the flows produced at the first
diffusion, exchange, and the second diffusion stages of DED-X
schemes, then:

xDED =
[
xD1 + xD2
xE

]
. (4)
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(a) Unbalanced initial node distribution. (b) Node loads after the first stage.

(c) Node loads after the second stage. (d) Node loads after the third stage.

Fig. 3. A simple example for the hybrid DED-X schemes, with loads shown at the beginning and after each of the three stages.
Fig. 4. The structure of the DED-X algorithm.
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Note that we have the following two equalities:

xD1 = (I ⊗ BTb)



mb∑
i=1

1
λbi
zb1,i

...
mb∑
i=1

1
λbi
zbn,i

 = (I ⊗ B
T
b)

n∑
i=1

mb∑
j=1

1
λbj
(ei ⊗ zbi,j) (5)

xD2 = (I ⊗ BTb)



mb∑
i=1

1
λbi
zb
∗,i

...
mb∑
i=1

1
λbi
zb
∗,i

 = (I ⊗ B
T
b)

n∑
i=1

mb∑
j=1

1
λbj
(ei ⊗ zb∗,j). (6)

Substituting xE = BTs
∑
1≤i≤n ei ⊗ z

b
i,1 as well as the expressions

for xD1 and xD2 from Eqs. (5) and (6) into (4), we obtain:

xDED =


(I ⊗ BTb)

n∑
i=1

mb∑
j=1

1
λbj
(ei ⊗ (zbi,j + z

b
∗,j))

BTs
n∑
i=1

ei ⊗ zbi,1

 . (7)

Because zbi,j + z
b
∗,j is also an eigenvector of λ

b
j letting z

b
i,j =

zbi,j + z
b
∗,j, we get:

xDED =


(I ⊗ BTb)

n∑
i=1

mb∑
j=1

1
λbj
(ei ⊗ zbi,j)

BTs
n∑
i=1

ei ⊗ zbi,1

 . (8)

Comparing Eqs. (3) and (8),we can conclude that the flowbyDED-X
schemewill approach the optimal flowwhen OTIS-G has relatively
complicated eigenvalueswith respect to those ofG, a condition that
is true for most regular basis networks.

4. DED-X schemes for heterogeneous OTIS-networks

The DED-X scheme described thus far cannot achieve the
balanced state by only local balancing on basis networks, along
with load transposition in the second stage,when theOTIS network
is not homogeneous. To generalize the DED-X scheme for use with
heterogeneous OTIS networks, it is necessary to revise the load
exchange strategy and flow schedule components. In this section,
we accomplish this goal by assigning weights to the intergroup
links.
With a heterogeneous OTIS network, the X scheme used in the

first diffusion phasemust be tailored for individual basis networks.
Next, we must revise the exchange strategy over intergroup links
in the second stage. Using cij to denote the weight of node (i, j), the
weight lij for the edge ((i, j), (j, i)), i 6= j, linking the basis networks
i and j, is assigned as follows:

lij =

(
n−1∑
k=1
cik

)(
n−1∑
k=1
cjk

)
n−1∑
i=1

n−1∑
j=1
cij

. (9)

In the third stage, we proceed with diffusion on each of the
basis networks bymeans of the same iterative polynomial as in the
first stage, with flow-scheduling on intragroup edges of each basis
network.
We can prove that the DED-X scheme must converge from the
initial load wk to the balanced status in the case of heterogeneous
networks.

Theorem 2. For any polynomial based scheme X, if X takes at most
k1 and k2 steps to redistribute the initial loads w0i and w

l
i of each of

basis networks to achieve balanced status, respectively, then the DED-
X scheme can lead from the initial loadw0 to the balanced status in at
most k1 + k2 + 1 steps.

Proof. For any polynomial-based scheme X, and for any 0 ≤ i ≤
n − 1, the scheme X leads the basis network i to local balanced
status after the first stage. It follows that:

w
k1
ij =

cij
n−1∑
k=1
cik

n−1∑
k=1

w0ik. (10)

In the second stage, based on Eqs. (9) and (10), exchanging loads
on intergroup links results in the new loads:

w
k1+1
ij = w

k1
ij −

(
n−1∑
k=1
cik

)(
n−1∑
k=1
cjk

)
n−1∑
i=1

n−1∑
j=1
cij

(
w
k1
ij

cij
−
w
k1
ji

cji

)

=

 cij
n−1∑
k=1
cik

−

n−1∑
k=1
cjk

n−1∑
i=1

n−1∑
j=1
cij

 n−1∑
k=1

w0ik −

n−1∑
k=1
cik

n−1∑
i=1

n−1∑
j=1
cij

n−1∑
k=1

w0jk.

(11)

In the third stage, the same iterative polynomial is used, but with
different initial loads on the nodes. We thus get, after k2 additional
steps:

w
k1+k2+1
ij =

cij
n−1∑
k=1
cik

n−1∑
j=1

w
k1+1
ij =

cij
n−1∑
k=1
cik

n−1∑
j=1


n−1∑
k=1
cik

n−1∑
i=1

n−1∑
j=1
cij

n−1∑
k=1

w0jk


=

cij
n−1∑
i=1

n−1∑
j=1
cij

n−1∑
j=1

n−1∑
k=1

w0jk = w
l
ij. (12)

Eq. (12) establishes thatw0 tends towlwithin k1+k2+1 steps. �

The structure of the DED-X algorithm is outlined in Fig. 4 as a
local iterative process. As in the case of the homogeneous version
of the algorithm, one can select any load-balancing scheme, such
as FOS, SOS, or OPT, to replace X. Fig. 5 depicts a simple example
of the application of the DED-X algorithm for heterogeneous load
balancing. The performance of DED-X schemes will be discussed in
detail in Sections 5 and 6.

5. Algorithm analysis

A difference between the DED-X and the X algorithm is that
the X scheme can run on any general network, whereas DED-
X is specific to OTIS networks. However, when the X algorithm
is applied to OTIS-G, Laplacian eigenvalues of the entire OTIS-
G graph must be known and iterations are executed on all
nodes by flowing loads over all edges synchronously. But with
DED-X, only the Laplacian eigenvalues of the basis graph G are
necessary and iterations proceed only within groups, separated
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(a) Unbalanced initial load distribution, and
computed weights for swap links.

(b) Node loads after local diffusion using a general
X scheme.

(c) Load exchange on swap links and the resulting
loads after exchange.

(d) Node loads after a second local diffusion using
the X scheme.

Fig. 5. An example of the DED-X scheme applied to a heterogeneous OTIS network. Node weights in {0.25, 0.5, 1.0} are given immediately below node indices.
by a dimension exchange process over intergroup edges. The
most important parameters characterizing the performance of the
proposed algorithm include load-balancing accuracy, number of
iterative steps, and the amount of flow on communication links.
The load-balancing accuracy of DED-X follows from Theorems 1
and2.Quickness of convergence followsdirectly from the structure
of DED-X, based on the convergence of X. As for the amount of
flow, we have analytic results to characterize the extent, but given
that the presentation of these results requires the introduction
of new notations and extensive derivations, we will report them
separately in our future work.
Let RV be the set of functions from the vertex set V of graph G to

the setR of real numbers, that is,RV = {f : V → R}.We proceed to
prove that OTIS-G has a smaller diffusion norm than G, when using
a polynomial based diffusion scheme X.

Theorem 3. Let λb1 and λ1 represent the second smallest Laplace
eigenvalue of the basis network G and OTIS-G, respectively. Take λbmax
andλmax to denote their largest eigenvalue, respectively. Then it is true
that

λ1 ≤ λ
b
1 (13)

λbmax + 1 ≤ λmax. (14)

Proof. Let f ∈ RV be a function defined by the eigenvector
corresponding to λb1. Then, f⊥e, where e = (1, 1, . . . , 1)

T. For any
g ∈ Rn, we have (g ⊗ f )T(e⊗ e) = 0, so we have (g ⊗ f )⊥e. Now
considering the Rayleigh quotient expression ofmatrix eigenvalue,
and noting that Lbf = λb1f , we have:

λ1 ≤
〈Ls(g ⊗ f ), g ⊗ f 〉
〈g ⊗ f , g ⊗ f 〉

=
(g ⊗ f )T(In ⊗ Lb + In2 − As)(g ⊗ f )

(g ⊗ f )T(g ⊗ f )
= λb1 + 1−
(gT ⊗ f T)As(g ⊗ f )
〈g, g〉〈f , f 〉

. (15)

On the other hand, the following two equations hold:

(gT ⊗ f T)As(g ⊗ f )
〈g, g〉〈f , f 〉

=
1

〈g, g〉, 〈f , f 〉

n∑
i=1

gif T
(

n∑
k=1

Akigkf

)
(16)

n∑
i=1

gif T
(

n∑
k=1

Akigkf

)
=

n∑
i=1

gifif Tg = 〈g, f 〉2. (17)

Combining Eqs. (15)–(17) we conclude that:

λ1 ≤ λ
b
1 + 1−

〈g, f 〉2

〈g, g〉〈f , f 〉
. (18)

By choosing g to equal f , we have 〈g,f 〉2

〈g,g〉〈f ,f 〉 = 1 and λ1 ≤ λb1.
Eq. (13) is thus satisfied. Similarly, for any g ∈ RV , we choose f
as an eigenvector of the maximal eigenvalue λbmax of Lb. Because
g ⊗ f ∈ RV , for h ∈ RV the largest eigenvalue λmax satisfies:

λmax = max
h

〈Lsh, h〉
〈h, h〉

. (19)

Replacing hwith g ⊗ f , we get:

λmax ≥ max
g

〈Ls(g ⊗ f ), g ⊗ f 〉
〈g ⊗ f , g ⊗ f 〉

. (20)

In a manner similar to the proof of Eq. (13), we can establish
that:

〈Ls(g ⊗ f ), g ⊗ f 〉
〈g ⊗ f , g ⊗ f 〉

= λbmax + 1−
〈g, f 〉2

〈g, g〉〈f , f 〉
. (21)
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Table 2
Comparison of diffusion parameters of basis networks and corresponding OTIS networks (Gs stands for OTIS-G).

G λ2(G) λ2(Gs) λm(G) λm(Gs) α(G) α(Gs) ρ(G) ρ(Gs) γ (G) γ (Gs)

H3 2.0000 0.5857 6.0000 7.4142 0.2500 0.2500 0.3333 0.0790 0.5000 0.8535
M2×4 0.5857 0.2508 5.4142 6.9319 0.3333 0.2874 0.1081 0.0362 0.8047 0.9301
P8 0.1522 0.0732 3.8478 5.6542 0.5000 0.3492 0.0396 0.0130 0.9239 0.9744
C8 0.5858 0.2509 4.0000 5.7491 0.4361 0.3333 0.1464 0.0436 0.7445 0.9164
K8 8.0000 0.8769 8.0000 10.000 0.1250 0.1839 1.0000 0.0877 0.0000 0.8388
Taken together, Eqs. (20) and (21) yield:

λmax ≥ max
g

{
λbmax + 1−

〈g, f 〉2

〈g, g〉〈f , f 〉

}
. (22)

Eq. (14) holds when g is taken to satisfy 〈g, f 〉 = 0. �

We now prove that DED-FOS always converges more quickly than
FOS.

Theorem 4. Let γb and γ denote the diffusion norms of the basis
network G and OTIS-G, respectively. Then γb < γ implies that when
applying the DED-FOS scheme and FOS scheme to OTIS-G, DED-FOS
will have a smaller upper bound of error than FOS in the kth iteration.

Proof. Let ρb and ρ represent the condition number of the Laplace
matrices Lb and L. By using Theorem 3, we find that:

ρ =
λ1

λmax
≤

λb1

λbmax + 1
<

λb1

λbmax
= ρb. (23)

Therefore:

γb =
1− ρb
1+ ρb

<
1− ρ
1+ ρ

= γ . (24)

Eq. (24) implies that for the OTIS-G network, the iteration error for
DED-FOS at the kth step satisfies ‖ekb‖2 ≤ γ kb . The corresponding
FOS error is ‖ek‖2 ≤ γ k, with γb < γ . �

Our next result pertains to the performance of the DED-SOS
scheme, showing that it displays better convergence compared
with the ordinary SOS scheme for OTIS networks.

Theorem 5. The upper bounds b(ekb) of iteration error on G and b(e
k)

on OTIS-G utilizing a general SOS scheme satisfies

b(ekb) = τ
2k−1b(ek) (25)

where τ < 1 is a real constant determined from the ratio of diffusion
norms γb and γ .

Proof. In Eq. (2), let
√
1− γ 2b = θ and

√
1− γ 2 = ε. Then, given

that 0 ≤ ε < θ < 1, we are led to:

b(ekb)
b(ek)

=

[
(1− θ)(1+ ε)
(1+ θ)(1− ε)

]k/2 (1+ kθ
1+ kε

)
. (26)

Letting (1+ε)/(1+θ) = δ, we obtain δ < 1 and (1−θ)/(1−ε) =
δγ kb /γ

2. Now, given that (1 + kθ)/(1 + kε) < θ/ε and k > 0, we
have:

b(ekb)
b(ek)

< δk−1(γb/γ )
k. (27)

Let τ = max(δ, γb/γ ). Then, τ < 1, and Eq. (27) becomes Eq. (25).

Theorem 5 implies that, when applied to OTIS-G, DED-SOS will
have a smaller error upper bound than SOS in the kth iteration.
With regard to the DED-OPT scheme, let d be the diameter of the
basis graph. Then, we have the following result.
Theorem 6. In the worst case, to achieve balanced status on the OTIS
network, DED-OPT has a lower bound d+1 on the number of iterations
required, whereas OPT needs as least 2(d+ 1) iterations in this case.

Proof. In the worst case, the OPT scheme requires a number
of iterations equal to the number of distinct eigenvalues of the
Laplace matrix of the OTIS topology. But the number of iterations
required by DED-OPT equals the number of distinct eigenvalues of
the basis graph. We know that the Laplacian of a graph always has
the same number of distinct eigenvalues as its adjacency matrix;
the latter has at least d + 1 distinct eigenvalues [3]. Note that a
swapped or OTIS network has diameter 2d+1when its basis graph
has diameter d (see [15]). �

6. Experimental results

Wenowpresent somequantitative results based on simulations
to help illustrate the properties and advantages of the DED-X
scheme in comparison with a general diffusion scheme X. These
results are based on some familiar basis networks, including
hypercube (Hd), mesh (Mk×m), linear array or path (Pn), ring or
cycle (Cn) and complete graph (Kn). Each of the OTIS-G networks
considered consists of 64 nodes (that is, n = 2d = k × m = 8).
To highlight the impact of the initial load, we experiment with
both a highly unbalanced and a randomly distributed initial load,
described in the following.

• PEAK: One node has a superload of 100n, while all others have
load 0
• RANL: A total load of 100n is randomly distributed among all
nodes.

We consider four types of weight assignment with regard to
network heterogeneity:

• HOMO: All nodes are given weight 1 (homogeneous)
• SEMI: Nodes are given weight 1 or 2, in equal numbers
• CS: All nodes are of weight 1, except one with weight n+ 1
• RANW: Node weights are random integers in [1, 64].

Our aim is to compare the new strategies DED-FOS and DED-
OPT with the traditional FOS and OPT in speed, flow quality, and
numerical stability. We did experiments on mesh and hypercube
network with PEAK and RAN initial load distributions. The load-
balancing process stops when the error ‖wk − wl‖2 is less than
0.01.

6.1. Convergence speed

Table 2 presents several diffusion parameters used in X and
DED-X schemes, coming from spectral computation of the basis
network G and the corresponding OTIS-G. Note that the symbol Gs
is used in Table 2 as a shorthand for OTIS-G. All OTIS architectures
listed have a lower value for the second smallest eigenvalue λ2
and condition number ρ of the Laplacian, and larger diffusion
norm γ , compared with their corresponding basis networks.
These experimental results validate the theoretical derivations
of Section 5. That is, our theorems showing that DED-FOS and
DED-SOS schemes should converge faster than FOS and SOS,
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Table 3
Comparison of the number of the iterations of general scheme X and DED-X (NY represents the number of iterations of Y).

Network Initial load Node weight NFOS NGDED-FOS NSOS NGDED-SOS NOPT NGDED-OPT

OTIS-H3

PEAK
HOMO 77 38 27 25 15 7
SEMI 77 38 27 25 15 7
CS 73 35 26 23 15 7

RAN
HOMO 76 37 27 25 15 7
SEMI 76 37 27 25 15 7
CS 71 38 26 23 15 7

OTIS-M2×4

PEAK
HOMO 165 114 45 38 42 13
SEMI 165 114 45 38 42 13
CS 155 105 43 35 42 13

RAN
HOMO 157 112 45 38 42 13
SEMI 157 112 45 38 42 13
CS 144 112 43 35 42 13
Table 4
Comparison of the flows of general OPT and DED-OPT.

Network Node load Node weight OPT flows DED-OPT flows

OTIS-H3

PEAK
HOMO 4599 4636
SEMI 4517 4947
CS 2299 2104

RAN
HOMO 2885 3107
SEMI 2760 3497
CS 2105 1547

OTIS-M2×4

PEAK
HOMO 47213 6279
SEMI 53662 6609
CS 37794 2985

RAN
HOMO 70986 4971
SEMI 134687 5312
CS 85719 2075
because they use the same diffusion parameters required for G to
implement diffusion on OTIS-G, have been validated.
In Table 3 we present the results of the number of iterations in

order to compare the convergence speed of traditional X schemes
with those of DED-X schemes, when started on the PEAK and
RAN initial load distributions. Our theoretical analysis showed
that DED-FOS requires a smaller number of iterations than the
traditional FOS scheme. The number of iterations for DED-FOSwith
PEAK and RAN are nearly identical. DED-OPT behaves better than
OPT, requiring nearly half the number of iterations for PEAK and
RAN, except in the case of the complete graph Kn.

6.2. Solution quality

It is known (see [6]) that existing polynomial-based schemes
all compute the same flow. This suggests that all DED-X schemes
have the same flows in the first and third stages. Because the
second stage, dimension exchange, is based on the initial state of
local-balanced status, DED-X schemes also have the same flows.
Consequently, all DED-X schemes compute the same (possibly
non-minimal) flow. Taking this into consideration, we only give
the flows of DED-OPT on OTIS networks to illustrate the solution
quality of DED-X schemes. Table 4 shows that in most cases,
the flow of the DED-OPT scheme is smaller than the flow of
general OPT. The advantage of DED-OPT over OPT is particularly
pronounced in the case of OTIS-M2×4 and OTIS-P8. Therefore, there
is strong incentive for applying DED-X in these cases.

6.3. Numerical stability

As stated previously, the criteria for judging the quality of load-
balancing algorithms also include their numerical stability. An
iterative algorithm is considered stable if the error ek in kth step
monotonically decreases with respect to the iteration parameter k.
Fig. 6. DED-FOS and FOS on OTIS-H3 network.

Unfortunately, finding a schemewith stable iterative behavior and
fewer steps is often not easy. The FOS scheme has good numerical
stability, but it is slow. OPT needs a relatively smaller number of
iterative steps, but suffers from a possible numerical trap. Figs. 6
and 7 show that the DED-FOS scheme is numerically stable and
converges faster than FOS on OTIS architectures.
Figs. 6 and 7 also show that DED-FOS is stable in both diffusion

stages, with the error steadily decreasing. There is a sudden drop
of error arising in the second stage (load exchange), but given the
use of optical links in this stage, this may not be a problem.
The best behavior of DED-X can be observed in Figs. 8 and

9, where DED-OPT has a much better stability than general OPT.
Relative to OPT, numerical problems are almost never observed
in DED-OPT. It is clear that OPT leads to a relatively high peak
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Fig. 7. DED-FOS and FOS on OTIS-M2×4 network.

Fig. 8. DED-OPT and OPT on OTIS-H3 network.

error value, while DED-OPT leads to a significant decrease in
iteration error. The abrupt drop to a balanced status in the last
iterative step is a common property of convergence for the general
OPT scheme [7]. This indicates that a general OPT scheme would
possibly fail to load-balance an OTIS architecture with a large basis
network, owing to numerical problems and the high error values.
In such application domains, DED-OPT might be an appropriate
substitute that avoids the stability and error problems.

7. Conclusions

We have presented, theoretically analyzed, and experimentally
evaluated a number of algorithms for load-balancing on OTIS
networks, demonstrating that the class of diffusion-exchange-
diffusion algorithms based on the diffusion scheme X on the
basis networks (DED-X) provides highly efficient alternatives to
standard algorithms directly adapted to an OTIS network as a
whole. These algorithms are useful practically, despite the fact
that (like their counterparts to which they are compared) they do
not produce optimal flows. The key to the efficiency and greater
stability of these algorithms is that they take advantage of the
special structure of swapped/OTIS networks to reduce the number
of iterations and/or reduce the required communication traffic.
Our work has revealed key properties of load balancing

algorithms for the important class of swapped/OTIS networks, in
Fig. 9. DED-OPT and OPT on OTIS-M2×4 network.

turn leading to opportunities for additional research in this area.
We have analyzed the flow generated by DED-X algorithms and
will report our results in the near future. A main focus of our
ongoing work is considering whether the number of iterations can
be further reduced, without creating numerical stability problems
or excessive errors. Seeking generalizations to other large-scale
networks is also an attractive area for further investigation. While
the techniques used here may be inapplicable to other large-scale
and hierarchical interconnection schemes, the insights gained
from this study may help us identify the appropriate approach in
each case.
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