IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 56, NO. 2, FEBRUARY 2009 167

Efficient Hamming Weight Comparators for Binary
Vectors Based on Accumulative and
Up/Down Parallel Counters

Behrooz Parhami, Fellow, IEEE

Abstract—New counting-based methods for comparing the
Hamming weight of a binary vector with a constant, as well
as comparing the Hamming weights of two input vectors, are
proposed. It is shown that the proposed comparators are faster
and simpler, both in asymptotic sense and for moderate vector
lengths, compared with the best available fully digital designs.
These speed and cost advantages result from a more efficient popu-
lation counting, as well as the merger of counting and comparison
operations, via accumulative and up/down parallel counters.

Index Terms—Column compression, comparator, Hamming
distance, multioperand addition, parallel counter, population
count.

I. INTRODUCTION

HE HAMMING weight of the binary vector V = {vy,

V2, ...,Vpn} iS @ number that ranges from O to n, which
is defined as H (V') = X1<;<,v;. Certain applications require
that H(V'), that is, the number of 1s in the vector V, be
compared with a fixed threshold & or with H(U), where U =
{u1,ua,...,uy} is another binary vector of arbitrary length
m. Thus, the problems of interest here are determining whether
H(V) >k or H(V) > H(U). Such applications abound, for
example, in neural networks [1], threshold voting circuits [2],
digital filtering [3], [4], pattern matching/recognition [5]-[7],
and encoding for data compression [8], [9].

In this paper, we present new designs for Hamming weight
comparators that are faster [O(log 1) versus O(log? n)], as well
as less complex [O(n) versus O(n log®n)], than the best pre-
viously published fully digital designs for n-bit inputs. These
advantages result from two improvements: a more efficient
population counting (determining how many 1s there are among
the inputs) by means of parallel counters, and a merger or
overlapping of population counting with the comparison stage.
Following a brief review of previous work in Section II, our
designs are presented via separate discussions of the required
parts (Sections III and V) and their use in our proposed new
designs (Sections IV and VI). Speed and cost comparisons
with the existing fully digital designs appear in Section VII.
Section VIII concludes this paper.

Manuscript received December 20, 2007; revised April 8, 2008. First
published February 10, 2009; current version published February 25, 2009. This
paper was recommended by Associate Editor V. Gaudet.

The author is with the Department of Electrical and Computer Engineer-
ing, University of California, Santa Barbara, CA 93106-9560 USA (e-mail:
parhami@ece.ucsb.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII1.2008.2010176

II. REVIEW OF PREVIOUS WORK

In view of the extensive applications cited in Section I, many
researchers have offered designs for Hamming weight com-
parators, focusing on the optimization of speed, cost (very large
scale integration (VLSI) area), and power consumption. These
existing designs fall into two categories of mixed digital/analog
and fully digital. Our focus here is on the latter category, but
we provide a brief review of some mixed digital/analog designs
for completeness. Clearly, digital designers must consider both
classes of designs before making a choice for a particular
application domain.

Fujino and Moshnyaga [10] offer a mixed digital/analog
design based on two parallel circuits, each delaying a common
signal by an amount proportional to the number of 1s in an
n-bit input. Depending on which signal path wins the race,
an output circuit is accordingly set to denote the comparison
result between two input vectors or an input vector and a fixed
threshold. Fujino and Moshnyaga contrast their design to those
of Asada et al. [5], Yamashina et al. [11], Gurkaynak et al. [12],
and Morie et al. [13]. The comparison shows the area and power
advantages of 8-bit designs relative to those in [5] and [12], and
the latency advantage over that in [S].

Most of these mixed analog/digital designs are said to out-
perform “conventional” designs based on the counting of the
number of 1s, although the exact counting-based designs are
not specified. It is also rather unclear how scalable the mixed
digital/analog designs would be in the face of increasing
process variations as we move up to higher values of n and
deeper into submicrometer regimes [14].

In the realm of fully digital designs, King et al. [15] and
Pedroni [16] have proposed Hamming weight comparators with
O(n) delay (in terms of logic gate levels) and O(n?) com-
plexity (which is measured in number of gates). Piestrak [17]
has recently improved on these results by showing that thresh-
old functions, which are realized by means of bit-sorting net-
works [18], lead to Hamming weight comparator designs with
O(log?n) delay and O(nlog®n) complexity. The improve-
ments reported by Piestrak are direct consequences of using
sorting networks of lower time and cost complexities, given
that sorting a pair of bits only requires an OR gate, to obtain
the larger of the two bit values, and an AND gate, yielding the
smaller of the two (see Section VI for further elaboration).

Pedroni’s design is better than that of King et al., so we will
not discuss the latter any further. However, although Piestrak’s
designs supersede those of Pedroni, in the sense of being

1549-7747/$25.00 © 2009 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 12, 2009 at 16:38 from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 56, NO. 2, FEBRUARY 2009

g-bit initial count x | Count
register

Parallel . n
incrementer increment
signals v;

g-bit final count y = x + Zv;
Fig. 1. Block diagram of an accumulative parallel counter.

nincrement signals v;, 291 < n < 29

b

¥ Y
g-bit tally of up to 291 FA
of the increment signals %

| FA | FA |<—
""""" >
g-bit
initial
count x |
; y A y Al

S N N ENE
Ignore, or use as ,’
discussed in text I l l l l

g-bit final count y

Fig. 2. Design of an unsigned mod-29 parallel incrementer.

uniformly better in both speed and cost, we will compare our
designs to both schemes to better point out the relationships
of the two schemes and the progression of speed and cost
improvements.

III. ACCUMULATIVE PARALLEL COUNTERS

Parallel counters [19], that is, circuits that count the number
of 1s in an input vector, were proposed to generalize sequential
counters. A more appropriate generalization would be a circuit
that adds the sum of n increment signals to a stored count that
is ¢ bits wide, as shown in Fig. 1. When there is only one
increment signal, the circuit degenerates into a conventional
sequential up counter.

The parallel incrementer in Fig. 1 is a generalized form of a
conventional parallel counter in the sense of including the extra
count input entering it from the top. Designs for the parallel
incrementers have been studied for arbitrary values of ¢ [20].

For our domain of interest here, we can set ¢ = [log, n],
because the threshold k, which is smaller than n, is represented
with at most [log, n] bits. Fig. 2 shows a parallel incrementer
based on the foregoing assumptions. The population count part
of the design consists of a tree of increasingly wider ripple-
carry adders from top to bottom. It is readily seen that with
q — 1 levels of such adders, imposing a total latency of 2qg — 2
levels, the g-bit sum of up to 29 — 1 increment signals is
obtained. The final g¢-bit ripple-carry adder incorporates the
initial count and perhaps the last increment signal. It adds a

J
[
) o n—1
Sign o increment
pOSitiOﬂ o signa|5
' []
' °®
; ® ® @ --- Sumofincrements
® @ ©® O --- Initial signed count
® --- nthincrement signal
® ® ® O --- Final signed count

Fig. 3. Signed parallel incrementer in dot notation.

latency of only one level given that its carry propagation almost
totally overlaps that of the (¢ — 1)-bit adder directly above it.
The total latency is thus 2g — 1 full-adder levels (see the
dashed line).

Note that in terms of the number n = 29 — 1 of input signals,
the latency of the circuit in Fig. 2 is approximately 2 log, n.
Although it might be possible to improve this latency to slightly
over log, s n = 1.7 log, n via the application of the Wallace-
tree construction used in high-speed multipliers [21], very
little, if any, performance would be gained due to the peculiar
structure of such trees, which necessitates longer and more
irregular wires. So, we proceed with the simple design in Fig. 2.

IV. FIXED-THRESHOLD COMPARATORS

A fixed-threshold Hamming weight comparator is obtained
if the 2’s-complement of %, that is, a representation of —k, is
placed in the count register of Fig. 1, the bits of the vector
V' are supplied as increment signals from the right, and the
complement of the result’s sign bit is taken as the output. This
is tantamount to checking the condition —k + ¥1<;<,v; > 0.

The latter condition is equivalent to having a nonnegative
final count in an accumulative parallel counter with initial count
—k and n increment signals v;, 1 < ¢ < n. As shown in the dot-
notation diagram in Fig. 3 for n = 8, this multioperand addition
problem [21] can readily be solved by adding n — 1 of the
increment signals to form a [log, n]-bit sum. The latter sum
is then added to the (g + 1)-bit initial count by using the nth
increment signal as the carry-in into the addition.

A direct circuit realization of the method in Fig. 3 is slightly
different from that in Fig. 2. We could modify the design by
including an extra half-adder (in the location marked by a
dashed circle near the bottom of Fig. 2) and extending the initial
count to g + 1 bits so as to accommodate a sign position in 2’s-
complement format. Then, the complement of the sum output
of this extra half-adder indicates a nonnegative final count.
However, if we start with a negative initial count and would like
to know whether the updated count is nonnegative, the carry-out
of the g¢-bit ripple-carry adder at the bottom of Fig. 2 directly
supplies this information. This is because the sign bit 1 in the
extra position to the left would change to 0, thus indicating a
nonnegative result iff the carry-out bit ¢, is 1. Put another way,
instead of initializing to —k and determining whether adding n
increment signals would make it nonnegative, we can initialize
an unsigned parallel counter to 2¢ — k and determine whether

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 12, 2009 at 16:38 from IEEE Xplore. Restrictions apply.

PARHAMI: EFFICIENT HAMMING WEIGHT COMPARATORS FOR BINARY VECTORS 169

Initial count bit Tally bit
Xj Zj

Ci
i+1 ci

Fig. 4. Stage of carry network in lieu of the final adder.

adding the n increment signals would make the unsigned sum
equal to or greater than 27 (leads to overflow).

Because we are only interested in the carry-out bit ¢, of
the final addition, those parts of the parallel incrementer that
are only used to generate its other ¢ outputs can be removed
to simplify the design. This is an output-side simplification.
Furthermore, for any fixed threshold k, the circuit can be
simplified by removing the unnecessary elements; these input-
side simplifications are discussed later. Alternatively, we could
forego the input-side simplifications to allow the use of a
variable (adjustable) threshold that is externally supplied (set
at system startup). This approach would make our design more
flexible than those offered earlier. These more versatile designs
are still faster than those previously published (see Section VII).

A critical path through the circuit realization in Fig. 2 is
shown by the heavy dashed line. It consists of 2¢g — 1 full-
adder levels. Using a more precise analysis, by distinguishing
between the full-adder latency for its sum and carry outputs,
Osum and dcarry, respectively, the critical path shown has a
latency of (¢ — 1)dsum + ¢dcarry, assuming we focus on the
cq output, as discussed above. The output-side simplifications
consist of removing the sum logic for the ¢ full-adders at
the bottom of Fig. 2, leaving in place only the carry network
depicted in Fig. 4. This reduces the circuit complexity, but has
no effect on the latency previously computed.

The carry network in Fig. 4 can also be used to assess
the extent of input-side simplifications. In positions where the
initial count bit is z; = 0, we have c¢; 1 = z;¢;, which requires
a single AND gate per stage. For x; = 1, the simplified stage
will compute c; 1 = ¢; V 2; by using a single OR gate. Thus,
the ¢ full-adders and the associated delays at the bottom of
Fig. 2 are replaceable with ¢ gates and ¢ gate delays. The critical
path in Fig. 2 now goes through the full-adders on the next to the
last row for a total latency of (¢ — 1)(dsum + Ocarry) + Ogate-

V. Up/DOWN PARALLEL COUNTERS

An up/down parallel counter [22] is a generalization of a
sequential up/down counter. The latter receives a “count” signal
along with a “direction” signal and accordingly updates the
stored count (+1 for up, —1 for down, if count is asserted).
One possible generalization involves using a single direction
signal along with n parallel count signals. More useful for our
purposes here is a generalization that views the inputs as signed
count signals (increments and decrements), each encoded in
2 bits. The stored count is then updated by adding to it the sum
of the signed count signals, that is, y = x + Xw;, where w;’s

An element { o — Bits of V, with

of WLO 7 positive weights
(abinary @ / (increments)
signed digit;, O A
BSD) e
O
®
o
o
o
® @ O 7 Tallyofthe n BSD digits in
O O 0O J binary signed-digit format

Fig. 5. Up/down parallel counting shown in extended dot notation.

are now the signed values in {—1, 0, 1} encoded in 2 bits. With
the latter view, the block diagram for such a counter would be
identical to Fig. 1, except that each of the lines entering from
the right would represent a 2-bit bundle.

The count values —1, 0, and 1 can be encoded in different
ways by using 2 bits. An encoding that has been found to be
quite efficient in the past is the (v, 7) encoding, which uses
10, 00, and 01 to represent —1, O, and 1, respectively. The
name “(v,) encoding” arises from the interpretation of the
two bits as negative and positive flags [23]. We use here a
simple variation of the (v, 7) encoding, which we call (v/,)
encoding, where the v bit is inverted. This rather trivial change
has been shown to produce significant savings [24] in cost and
delay (and to a lesser extent, power consumption) of circuits
that process binary signed digits (BSDs) in {—1,0,1}. These
savings result from the avoidance of multiple inversions in the
course of computation.

The realization of an up/down parallel counter can be based
on the process depicted in Fig. 5, where an extended dot
notation is employed. In this notation, the black dots represent
the ordinary bits, or posibits, whereas the hollow circles stand
for the negatively weighted bits, or negabits. A pair consisting
of a posibit and a negabit form a signed digit in {—1,0,1}. It
is readily shown in Fig. 5 that the sum of the BSD inputs with
three-valued digits can be formed as a BSD number by using
two separate tally circuits: one for the posibits to form the 7
bits of the BSD output, and another for the negabits to form the
output’s v bits. All that remains is to detect the sign of the BSD
result. This is done by a fast sign detection circuit [25], or as
outlined below.

Fig. 6 shows a realization of an up/down parallel counter
based on Fig. 5 and the discussion in the preceding paragraph.
Each of the parallel counter blocks is identical to the design in
Fig. 2 with its final row of full-adders removed. The final row
of adders does the required 2’s-complement subtraction. Note
that the inverted encoding of the negabits obviates the need for
complementation, and the carry-in of 1 supplies the +1 term
needed for 2’s complementation. It is clear from a comparison
of Figs. 2 and 6 that the latency formula derived at the very end
of Section IV is applicable to both.

VI. TWO-VECTOR COMPARATORS

In what follows, we shall assume that m = n, limiting
our design to comparing the Hamming weights of vectors of

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 12, 2009 at 16:38 from IEEE Xplore. Restrictions apply.

170 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 56, NO. 2, FEBRUARY 2009

n negabits (U)

n posibits

Negabit and
posibit parallel
counters

Yy Yy Y

Cq FA | FA | FA

REERR

g-bit final count

e = -

Fig. 6. Realization of an up/down parallel counter.

the same length. For m # n, all the derived time and cost
complexity results become pessimistic upper bounds if n is
taken to be the larger of the two values. This is tantamount to
0-extending the shorter of the two input vectors to obtain V' =
{v1,v2,...,v,}and U = {uy,ua, ..., un} as our comparands.

Defining the vector W =V — U, which is computed
bitwise, the condition H(V) > H(U) is equivalent to
Yi<i<npw; > 0. The latter sum is the “weight” of W, with each
element having the weight —1, 0, or +1. Thus, if we use bits
of V as posibit inputs to the circuit in Fig. 6 and form the
complements of the bits of U for use as its negabit inputs, the
carry-out ¢, yields the desired comparison result.

As noted earlier, the latency of the circuit in Fig. 6 is identical
to that in Fig. 2; the circuit complexity, in terms of the number
of full-adders, is n — ¢ greater. For example, when n = m =
15 (¢ = 4), there are 11 extra full-adders in the circuit in Fig. 6
compared with that in Fig. 2.

VII. SPEED AND COST COMPARISONS

We now compare our designs with those of Pedroni [16] and
Piestrak [17] in terms of latency (number of gate levels) and
cost (gate count). To facilitate our comparison, we note that
these previous designs, although quite different at first sight,
are instances of the same design method, with Piestrak’s design
being simpler and faster. To explain our unified formulation of
the two design methods, we use the example of determining
whether H (V') > 3 for a 5-bit vector V. Piestrak’s design [17],
which is shown in Fig. 7(a), is based on a sorting network that
orders the input bits from largest to smallest. The sorted output
vector starts with a number / of 1s (perhaps none) followed
by 5 — h elements of 0. For k = 3, we simply examine the
third output line. Each of the short vertical line segments in the
diagram represents an OR gate and an AND gate, collectively
sorting a pair of bits, with the larger bit output at the top.

Pedroni’s design [16], which is formulated in terms of a
rectangular cellular array that is formed of a building block with
two NOR gates, can be recast in terms of a sorting network by
complementing the horizontal signal into the cell [16, Fig. 2]

D G S S
‘I E O E >
-

(a) (b)

Fig. 7. Unified view of Piestrak’s and Pedroni’s designs. (a) Piestrak’s design
for H(V') > 3. (b) Pedroni’s design for H(V') > 3.

TABLE 1
COST AND LATENCY EXPRESSIONS FOR FIXED-THRESHOLD
HAMMING WEIGHT COMPARATORS

Design Cost (gate count) Latency (gate levels)

Pedroni [16] 2in n+k-1

Piestrak [17] n(logzn)2/2 logyn(logyn + 1)/2
Proposed (n—logon—1)ypat+ logyn (logyn=1)(Sgum+3carry) +1
G“Cost 4 Latency
107 T Pedroni
10%F
4 = o
10 Piestrak
10°r Proposed
/ Proposed
102 10 1
10 1 1 !]] :n 1 1 1 1 1 g

16 32 64 128 256 512 16 32 64 128 256 512

Fig. 8. Cost and latency comparisons.

and replacing the cell with the two-input sorter shown in Fig. 7.
With this interpretation, Pedroni’s design for H(V') > 3 would
look as in Fig. 7(b). The three extra O inputs ensure that the third
output from the top would equal 1 iff the input vector V' has at
least three 1s. The original design presented by Pedroni actually
outputs the logical AND of the top three outputs, whereas the
third output provides the same information given that the top
two outputs cannot be Os when the third one is 1.

Piestrak’s fixed-threshold Hamming weight comparator is
built of O(nlog®n) gates and has a latency of O(log?n) gate
levels. Note that the speed and cost of these networks are
independent of the threshold k. The Pedroni fixed-threshold
Hamming weight comparator requires O(kn) gates and has a
latency of O(n + k) gate levels. Our design, which is depicted
in Fig. 2, requires O(n) gates and has a latency of O(log n) gate
levels. The exact cost (number of gates) and latency (gate level)
formulas for the three designs are listed in Table I, where ygpa
is the cost of a full-adder relative to a gate, and dsum and dcarry
are the full-adder delay parameters.

From the expressions in Table I, we find that our design
is faster than Piestrak’s when dgum + dcarry < 1 + (logy n)/2.
Thus, taking dsum = Jcarry = 2, We find that our design would
have a speed advantage for n > 64. Likewise, our design is sim-
pler when vpa < log, n[n(logyn)/2 —1]/(n —logen — 1). A
standard full-adder needs nine gates; thus, our design is more
economical for n > 8. Fig. 8 shows the preceding cost/latency
comparisons in graphic format. Note that we have taken
Pedroni’s design in its original form [16], whereas it is readily

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 12, 2009 at 16:38 from IEEE Xplore. Restrictions apply.

PARHAMI: EFFICIENT HAMMING WEIGHT COMPARATORS FOR BINARY VECTORS 171

TABLE II
COST AND LATENCY EXPRESSIONS FOR TWO-VECTOR
HAMMING WEIGHT COMPARATORS

Design Cost (gate count) Latency (gate levels)
Pedroni [16] n(n + 1) 2n
Piestrak [17] n(logzn)2 +n+logyn (logon+1)logynt+2)/2

PI‘OpOSCd Z(H—Ingﬂ—l)Y FA+410g2n (IOgZ”_l)(BSuergcarry)Jr 1

shown in Fig. 7(b) that all the comparators connected to the
lowest k signal lines can be removed with no ill effect. How-
ever, this simplification does not change the asymptotic cost
and latency formulas.

Of course, with modern implementation technologies, a gate-
level comparison is unrealistic and, possibly, also unfair. Full-
adders are such important components of arithmetic circuits
that their designs have extensively been optimized with regard
to cost, latency, and energy requirements. Scores of designs
are available for use with different technological constraints,
performance needs, and power characteristics. For example, if
we use a ten-transistor full-adder [26] in our design, it might
become superior to that of Piestrak [17] for smaller values of
n as well. Thus, the data in Table I and Fig. 8 must be viewed
as conservative for our designs. Note, however, that transistor-
level circuit optimizations are also applicable to competing
designs, although the resultant savings are unlikely to be as
significant as for full-adders.

The corresponding cost and latency expressions for the two-
vector Hamming weight comparators appear in Table II. It is
readily shown from comparing Tables I and II that, compared
with the state of the art, our proposed scheme offers even
greater benefits for two-vector comparators.

It is also possible to compare the three designs in Tables I
and II based on the product of cost and latency, which represents
cost effectiveness. In such a comparison, our proposed designs
are uniformly better, even for small values of n.

VIII. CONCLUSION

We have proposed a design method for Hamming weight
comparators that allow the weight of a vector to be compared to
a given threshold value. The constant threshold may be known
a priori (fixed) or supplied as input (adjustable). Even when
a completely variable threshold is not a requirement, it may
be useful to have the facility to adjust the threshold based on
system requirements or field experience. We have also applied
our design strategy to circuits that determine which of the two
vectors has a larger Hamming weight. Our designs are faster
[O(logn) versus O(log®n)] as well as less complex [O(n)
versus O(n log? n)] than the best previously published results,
due to Piestrak [17], for fully digital realizations.

Hamming weight comparators find applications in digital
neural networks, threshold voting, digital filtering, pattern
recognition/matching, and data compression. Further optimiz-
ing our designs and performing detailed cost/speed analysis
based on actual circuit implementations for the named appli-
cations constitute possible directions for future work.

REFERENCES

[1] D. B. S. King, R. J. Simpson, R. J. Moore, and I. P. MacDiamid, “Ham-
ming value comparator hierarchies,” Electron. Lett., vol. 35, no. 11,
pp. 910-911, May 1999.

[2] B. Parhami, “Voting networks,” IEEE Trans. Rel., vol. 40, no. 3, pp. 380-
394, Aug. 1991.

[3] K. Chen, “Bit-serial realizations of a class of nonlinear filters based on
positive Boolean functions,” IEEE Trans. Circuits Syst., vol. 36, no. 6,
pp. 785-794, Jun. 1989.

[4] M. Karaman, L. Onural, and A. Atalar, “Design and implementation of a
general-purpose median filter unit in CMOS VLSI,” IEEE J. Solid-State
Circuits, vol. 25, no. 2, pp. 505-513, Apr. 1990.

[5] K. Asada, S. Kumatsu, and M. Ikeda, “Associative memory with minimum
hamming distance detector and its application to bus data encoding,”
in Proc. IEEE Asia-Pacific Appl.-Specific Integr. Circuits Conf., 1999,
p. 16.1.

[6] C. Barral, J.-S. Coron, and D. Naccache, “Externalized fingerprint
matching,” in Proc. Ist Int. Conf. Biometric Authentication, 2004,
pp. 309-315.

[71 S. Ullman, High-Level Vision: Object Recognition and Visual Cognition.
Cambridge, MA: MIT Press, 1996, p. 5.

[8] S. Komatsu, M. Ikeda, and K. Asada, “Bus data encoding with coupling-
driven adaptive code-book method for low power data transmission,” in
Proc. 27th Eur. Solid-State Circuits Conf., 2001, pp. 297-300.

[9] M. Stan and W. Burleson, “Bus-invert coding for low-power 1/0,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no. 1, pp. 49-58,
Mar. 1995.

[10] M. Fujino and V. G. Moshnyaga, “An efficient hamming distance com-
parator for low-power applications,” in Proc. 9th Int. Conf. Electron.,
Circuits Syst., 2002, vol. 2, pp. 641-644.

[11] T. Yamashina, T. Shibata, and T. Ohmi, “Neuron MOS winner-take-all
circuit and its application to associative memory,” in Proc. Int. Solid-State
Circuits Conf., 1993, pp. 236-237.

[12] F. K. Gurkaynak, Y. Leblebici, and D. Mlynek, “A compact high-speed
hamming distance comparator for pattern matching applications,” in Proc.
9th Eur. Signal Process. Conf., 1998, pp. 1-9.

[13] T. Morie, T. Matsuura, S. Miyata, T. Yamanaka, M. Nagata, and A. Iwata,
“Quantum dot structures measuring hamming distance for associative
memories,” Superlattices Microstruct., vol. 27, no. 5/6, pp. 613-616,
May 2000.

[14] O.S. Unsal, J. W. Tschanz, K. Bowman, V. De, X. Vera, A. Gonzalez, and
O. Ergin, “Impact of parameter variations on circuits and microarchitec-
ture,” IEEE Micro, vol. 26, no. 6, pp. 30-39, Nov./Dec. 2006.

[15] D. B. S. King, R. J. Simpson, C. Moore, and 1. P. MacDiarmid, “Digital
n-tuple hamming comparators for weightless systems,” Electron. Lett.,
vol. 34, no. 22, pp. 2103-2104, Oct. 1998.

[16] V. A. Pedroni, “Compact fixed-threshold and two-vector hamming com-
parators,” Electron. Lett., vol. 39, no. 24, pp. 1705-1706, Nov. 2003.

[17] S.J. Piestrak, “Efficient hamming weight comparators of binary vectors,”
Electron. Lett., vol. 43, no. 11, pp. 611-612, May 2007.

[18] B. Parhami, Introduction to Parallel Processing: Algorithms and Archi-
tectures. New York: Plenum, 1999, ch. 7.

[19] E. E. Swartzlander, “Parallel counters,” IEEE Trans. Comput., vol. C-22,
no. 11, pp. 1021-1024, Nov. 1973.

[20] B. Parhami and C.-H. Yeh, “Accumulative parallel counters,” in Proc.
Asilomar Conf. Signals, Syst., Comput., 1995, pp. 966-970.

[21] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs.
New York: Oxford, 2000, ch. 8.

[22] B. Parhami, “Parallel counters for signed binary signals,” in Proc. Asilo-
mar Conf. Signals, Syst., Comput., 1989, pp. 513-516.

[23] B.Parhami, “Generalized signed-digit number systems: A unifying frame-
work for redundant number representations,” IEEE Trans. Comput.,
vol. 39, no. 1, pp. 89-98, Jan. 1990.

[24] G. Jaberipur, B. Parhami, and M. Ghodsi, “Weighted two-valued digit-
set encodings: Unifying efficient hardware representation schemes for
redundant number systems,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 52, no. 7, pp. 1348-1357, Jul. 2005.

[25] T. Srikanthan, S. K. Lam, and M. Suman, “Area—time efficient sign de-
tection technique for binary signed-digit number system,” IEEE Trans.
Comput., vol. 53, no. 1, pp. 69-72, Jan. 2004.

[26] J.-F. Lin, Y.-T. Hwang, M.-H. Sheu, and C.-C. Ho, “A novel high-speed
and energy efficient 10-transistor full adder design,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 54, no. 5, pp. 1050-1059, May 2007.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 12, 2009 at 16:38 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

