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Abstract—An optical transpose interconnection system (OTIS) network with n2 nodes is a two-level swapped architecture built of

n copies of an n-node basis network that constitute its clusters. A simple rule for intercluster connectivity (node j in cluster i connected to

node i in cluster j, for all i 6¼ j) leads to regularity, modularity, packageability, fault tolerance, and algorithmic efficiency of the resulting

networks. We prove that an OTIS (swapped) network with a connected basis network possesses maximal fault tolerance, regardless of

whether its basis network is maximally fault tolerant. We also show how the corresponding maximal number of node-disjoint paths

between two nodes of a swapped network can be algorithmically constructed in a manner that is independent of the existence and

construction of node-disjoint paths within its basis network. Our results complement previous studies that show swapped networks

inheriting some desirable properties (e.g., Hamiltonicity) from their basis networks. Here, we show that the swapped connectivity actually

introduces a desirable property that may not exist in the basis network. Furthermore, our general result about maximal connectivity and

the corresponding node-disjoint path construction for swapped networks replace a number of proofs and constructions in the literature for

specific basis networks and obviate the need for proving maximal fault tolerance and dealing with node-disjoint path constructions for

many other basis networks of potential practical interest. Additionally, we use our parallel path constructions to establish that the fault

diameter and wide diameter of an OTIS network is no more than 4 units greater than its diameter.

Index Terms—Connectivity, fault diameter, interconnection network, maximal fault tolerance, node-disjoint paths, OTIS network,

parallel paths, robustness, swapped network, topological properties, wide diameter.

Ç

1 INTRODUCTION

OPTICAL transpose interconnection system (OTIS) net-
works were originally devised to provide efficient

connectivity for new optoelectronic computer architectures
that benefit from both optical and electronic technologies
[6]. In OTIS networks, processors are arranged into clusters.
Electronic interconnects are used between processors with-
in the same cluster, while optical links are used for
intercluster communication. It has been shown [5] that
bandwidth and power consumption are optimized when
the number of processors in a cluster equals the number of
clusters. Thus, we limit our study to such n2-node OTIS
networks with n-node clusters [2], [10]. The OTIS architec-
ture has received considerable attention in recent years and
has a special place among real-world architectures for
parallel and distributed systems [2], [3]. A number of
algorithms have been developed for routing, selection/
sorting [4], [8], [11], [12], [15], certain numerical computa-
tions [7], Fourier transform [1], matrix multiplication [14],
and image processing [13].

Studying properties of general composite interconnection
schemes, such as OTIS (swapped) networks, is important in
that it allows the derivation of results pertaining to a wide

array of network architectures. Several general properties of
OTIS networks have been considered [2], [10]. More recently,
Parhami has established the Hamiltonicity of OTIS
(swapped) networks built of Hamiltonian basis networks
[9]. Fault tolerance of interconnection networks is among the
properties of considerable interest in parallel and distributed
computation. An important aspect of fault tolerance is the
number of node-disjoint (or parallel) paths between nodes of
the networks. Such parallel paths are useful in speeding up
the transfer of large amounts of data between nodes and for
providing alternate routes in cases of node or link failures.
Hence, a network with many parallel paths is robust.

In this paper, we contribute further results in this
direction by studying a general fault tolerance property of
OTIS networks. We prove that an OTIS network is
maximally fault tolerant if its basis network is connected,
and propose a corresponding method for constructing
parallel paths between its nodes. Because the use of
disconnected basis networks is not practically viable, our
result essentially shows that any OTIS network of practical
interest is maximally fault tolerant. This is stronger than the
corresponding result of [2], stating that an OTIS network is
maximally fault tolerant if its basis network possesses
maximal fault tolerance.

One contribution of our work is that our proof of the
maximal fault tolerance property (the corresponding
parallel path construction, respectively) leads to maximal
fault tolerance results (parallel path construction) for a wide
array of interconnection networks. For example, the recent
result of Day [3] on the maximal fault tolerance of optical
transpose k-ary n-cube networks follows as a special case of
our result. Another contribution of our work is showing
that an OTIS network enjoys some new desirable properties,
such as maximal fault tolerance, independent of the fault
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tolerance of its basis network. This is fundamentally
different from those results in the literature [2], [3], [9],
[10] demonstrating that OTIS networks can inherit some
desirable properties, such as short diameter and Hamilto-
nicity, from their basis networks.

2 BASIC DEFINITIONS AND RELATED WORK

Let G be a simple undirected graph (graph, for short) with
the vertex set VG and the edge set EG. For v 2 VG, we denote
by degGðvÞ the degree of v in G, by NGðvÞ ¼ fu 2 V jðv; uÞ 2
EGg the open neighborhood of v, and by NG½v� ¼
NGðvÞ [ fvg its closed neighborhood. The maximum degree
among the vertices of G is denoted by �ðGÞ and the
minimum degree by �ðGÞ. The distance between two nodes
u and v, denoted as dGðu; vÞ, is the length of a shortest path
between u and v. The diameter DðGÞ of G is the maximal
distance between any two nodes in G. Other notation and
terminology used in this paper follow those in [16]. In the
remainder of this paper, we use the terms graph and
network interchangeably.

Definition 1 (OTIS (Swapped) network [6], [17], [18]). The
OTIS (swapped) network OTIS-�, derived from the graph �,
is a graph with vertex set VOTIS-� ¼ fhg; pijg; p 2 V�g
and edge set EOTIS-� ¼ fðhg; p1i; hg; p2iÞjg 2 V�; ðp1; p2Þ 2
E�g [ fðhg; pi; hp; giÞjg; p 2 V� and g 6¼ pg.

In OTIS-�, the graph � is called the basis (factor) graph
or network. If the basis network � has n nodes, then
OTIS-� is composed of n node-disjoint subnetworks called
clusters, each of which is isomorphic to �. The node label
hg; pi in OTIS-� identifies the node indexed p in cluster g.
We refer to g as the cluster address of node hg; pi and p as its
processor address.

In such an OTIS network, an intercluster or swap
(optical) link connects processor p of cluster g to processor
g of cluster p, for all p 6¼ g. No intercluster link is incident to
processor g of cluster g. All the intracluster (electronic) links
in a cluster form an interconnection topology corresponding
to the basis graph. Fig. 1 depicts example OTIS networks
with the 4-node cycle C4 and the 6-node complete graph K6

as the basis graphs.
The following topological parameters of OTIS-�, needed

later in this paper, are easily derived from Definition 1.
These OTIS-� parameters have been formulated as func-
tions of the corresponding metrics of �:

. degOTIS-�ðhg; giÞ ¼ deg�ðgÞ.

. For g 6¼ p, degOTIS-�ðhg; piÞ ¼ deg�ðpÞ þ 1:

. �ðOTIS-�Þ ¼ �ð�Þ þ 1.

. �ðOTIS-�Þ ¼ �ð�Þ.

. DðOTIS-�Þ ¼ 2Dð�Þ þ 1.

There are two main measures for good connectivity in
networks: invulnerability to deletions and multiplicity of
alternate paths.

Definition 2 (Connectivity [16]). The connectivity kðGÞ of a
graph G is the minimum size of a node set S such that G� S
is either disconnected or has a single node. A graph G is
c-connected if its connectivity is at least c.

The connectivity kðGÞ of G always satisfies the inequality
kðGÞ � �ðGÞ [16].

Definition 3 (Fault tolerance [16]). In a graph G, for u,

v 2 VG, a path from u to v is called a ðu; vÞ-path for short. Two

ðu; vÞ-paths are node-disjoint if they have no common internal

node. A measure of network fault tolerance is the existence of

alternative paths between nodes: the more node-disjoint paths,

the better.

One of Menger’s fundamental theorems in graph theory
(see [16, p. 169], for example) states that there exists a close
relationship between the notions of connectivity and fault
tolerance of a graph.

Theorem 1 (Menger’s theorem). The connectivity of a graph G

equals the maximum k such that �ðx; yÞ � k for all x, y 2 VG,

where �ðx; yÞ is the maximum number of (pairwise) node-

disjoint ðx; yÞ-paths.

Therefore, the fault tolerance of a network can be measured
byits connectivity, anda network is maximally fault tolerant if
its connectivity equals its minimum node degree.

The following results about the fault tolerance of an OTIS
network have been proven by Day and Al-Ayyoub [2].

Theorem 2 (Connectivity of OTIS-�). Let the graph � be

connected:
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Fig. 1. Two example OTIS networks, one built of the 4-node cycle C4

as the basis network and the other based on the 6-node complete

graph K6. A few node labels are shown on the first network as

examples. (a) OTIS-C4. (b) OTIS-K6.
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1. If hg1; pi and hg2; pi are two nodes in OTIS-� such
that g1 6¼ g2 and deg�ðpÞ ¼ d, then there are d node-
disjoint ðhg1; pi; hg2; piÞ-paths in OTIS-�.

2. If hg1; p1i and hg2; p2i, with p1 6¼ p2, are two nodes in
OTIS-�, such that there are d node-disjoint
ðp1; p2Þ-paths in �, then there are d node-disjoint
ðhg1; p1i; hg2; p2iÞ-paths in OTIS-�.

The following corollary readily follows from Theorem 2.

Corollary 1. OTIS-� is maximally fault tolerant if the basis

network � is maximally fault tolerant.

3 PROOF OF MAXIMAL FAULT TOLERANCE

In this section, we provide an algorithmic construction of

node-disjoint paths between nodes in OTIS-�, with � being

connected, which is straightforward and independent of

node-disjoint path constructions between nodes in �. By

showing that OTIS-� contains at least �ðOTIS-�Þ node-

disjoint paths between two nodes, we prove that OTIS-�

enjoys the maximal fault tolerance property, regardless of

whether its basis network � is maximally fault tolerant. In

the following, we establish this result by proving two main

subcases in Lemmas 1 and 2.
We begin by introducing several additional notational

tools needed throughout this section. Let Y and Z be two

disjoint subsets of V�. A maximal match M from Y to Z is a

subset of Y � Z, with jMj ¼ minfjY j; jZjg, such that for any

two distinct ðy; zÞ, ðy0; z0Þ 2M, we have y 6¼ y0 and z 6¼ z0.
We denote by p! q a link from p to q in �, by hg; pi ! hp; gi
a swap link from hg; pi to hp; gi in OTIS-�, where g 6¼ p,

and by hg; p1 ! p2 ! � � � ! phi or hg; path�ðp1; phÞi a path

hg; p1i; hg; p2i; . . . ; hg; phi in OTIS-� that is completely con-

tained in cluster g, with p1; p2; . . . ; ph forming a shortest path

from p1 to ph in �. In addition, to achieve consistency and

brevity, null links such as p! p and hg; pi ! hg; pi are

allowed in representing paths.

Lemma 1. Let � be a connected graph. If hg; p1i and hg; p2i are

nodes in OTIS-� such that p1 6¼ p2, then there are d or dþ 1

node-disjoint ðhg; p1i; hg; p2iÞ-paths in OTIS-�, where

d ¼ minfdeg�ðp1Þ; deg�ðp2Þg.

Proof. Without loss of generality, we assume deg�ðp1Þ �
deg�ðp2Þ. Then, we have jN�ðp1Þj ¼ d, jN�½p1�j ¼ dþ 1,
jN�ðp2Þj � d and jN�½p2�j � dþ 1. We next construct d or
dþ 1 paths between hg; p1i and hg; p2i in OTIS-�, and, at
the end, show these paths to be pairwise node-disjoint.

First, we construct the following shortest path from
hg; p1i to hg; p2i based on a shortest path from p1 to p2 in �:

g; path�ðp1; p2Þh i; ð1Þ

where path�ðp1; p2Þ ¼ p1 ! path�ðs1; s2Þ ! p2 for some
s1 2 N�ðp1Þ and some s2 2 N�ðp2Þ. In the special case of
p2 2 N�ðp1Þ, we have path�ðp1; p2Þ ¼ p1 ! p2; s1 ¼ p2,
a n d s2 ¼ p1. D e f i n e X ¼ N�½p1� \N�½p2� � fs1; s2g,
Y ¼ N�½p1� �X � fs1; gg, and Z ¼ N�½p2� �X � fs2; gg.
It is readily verified that X, Y , and Z are pairwise
disjoint sets, and that we have X � N�½p1� and
X � N�½p2�. Let M be a maximal match from Y to Z.
Then, we construct jXj þ jMj paths from hg; p1i to hg; p2i
as follows: For every x 2 X, we have the paths

hg; p1 ! x! p2i; ð2Þ

and for every ðy; zÞ 2M, we build the paths

hg; p1 ! yi ! y; path�ðg; zÞh i ! z; path�ðy; gÞh i
! hg; z! p2i: ð3Þ

The constructions in two typical cases are depicted in
Fig. 2 (when N�½p1� \N�½p2� 6¼ ;) and Fig. 3 (when
N�½p1� \N�½p2� ¼ ;).

By the definitions of X and M, the number of paths
given in (1)-(3) above is 1þ jXj þ jMj. Considering
jN�½p1�j ¼ dþ 1, X � N�½p1�, s1 2 N�½p1�, and s1 62 X, we
have jY j ¼ d� jXj � 1 if g 2 N�½p1� �X � fs1g; other-
wise, jY j ¼ d� jXj. Similarly, because jN�½p2�j � dþ 1,
we have jZj � d� jXj � 1 if g 2 N�½p2� �X � fs2g; other-
wise, jZj � d� jXj. Hence, jMj ¼ d� jXj � 1 or d� jXj
due to jMj ¼ minfjY j; jZjg, and the number 1þ jXj þ
jMj of paths is d or dþ 1, as claimed. In particular, if
g 62 N�½p1� [N�½p2�, then jMj ¼ d� jXj, and the number
of paths reaches its maximum of dþ 1.

To complete the proof, we must show the paths defined
in (1)-(3) to be pairwise node-disjoint. BecauseX, Y , andZ
are pairwise disjoint sets, no cluster, other than cluster g, is
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Fig. 2. Constructing dþ 1 node-disjoint paths, shown as heavy
lines, in OTIS-� between hg; p1i and hg; p2i for p1 6¼ p2,
N�½p1� \N�½p2� 6¼ ;, and g 62 N�½p1� [N�½p2�, where s1 ¼ s2 ¼ x1,
X ¼ fx2; . . . ; xag, Y ¼ fp1; y1; . . . ; ybg, Z¼fp2; z1; . . . ; zb; . . . ; zcg,
and M¼fðp1; p2Þ; ðy1; z1Þ; . . . ; ðyb; zbÞg.

Fig. 3. Constructing dþ 1 node-disjoint paths, shown as heavy lines, in

OTIS-� between hg; p1i and hg; p2i for p1 6¼ p2, N�ðp1Þ \N�ðp2Þ ¼ ;, and

g 62 N�½p1� [N�½p2�, where s1 ¼ y1, s2 ¼ z1, X ¼ ;, Y ¼ fp1; y2; . . . ; ybg,
Z ¼ fp2; z2; . . . ; zb; . . . ; zcg, and M ¼ fðp1; p2Þ; ðy2; z2Þ; . . . ; ðyb; zbÞg.
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visited by more than one of these paths. So, if any pair of
paths were not node-disjoint, they would only intersect in
cluster g. However, the latter is impossible, given that all
segments of these paths contained in cluster g are pairwise
node-disjoint by construction. tu

Lemma 2. Let � be a connected graph. If hg1; p1i and hg2; p2i are

nodes in OTIS-� such that g1 6¼ g2, then there are d or dþ 1

node-disjoint ðhg1; p1i; hg2; p2iÞ-paths in OTIS-�, where

d ¼ minfdeg�ðp1Þ; deg�ðp2Þg.
Proof. Assume, without loss of generality, that deg�ðp1Þ �
deg�ðp2Þ. We then have jN�ðp1Þj ¼ d, jN�½p1�j ¼ dþ 1,

jN�ðp2Þj � d, and jN�½p2�j � dþ 1. We next construct d or

dþ 1 paths between hg1; p1i and hg2; p2i in OTIS-�, and,

at the end, show these paths to be pairwise node-disjoint.
First, we construct the following path from hg1; p1i to

hg2; p2i based a shortest path from p1 to g2 and a shortest
path from g1 to p2 in �:

g1; path�ðp1; g2Þh i ! g2; path�ðg1; p2Þh i; ð4Þ

where path�ðp1; g2Þ ¼ p1 ! path�ðs1; g2Þ for some s1 2
N�½p1� and path�ðg1; p2Þ ¼ path�ðg1; s2Þ ! p2 for some
s2 2 N�½p2�. We should point out that in the special case
of p1 ¼ g2, path�ðp1; g2Þ ¼ p1 ! p1 is null, and we have
s1 ¼ p1. Similarly, in the special case of g1 ¼ p2,
path�ðg1; p2Þ ¼ p2 ! p2 is null, and we have s2 ¼ p2.
Define X ¼ N�½p1� \N�½p2� � fs1; s2; g1; g2g, Y ¼ N�½p1� �
X � fs1; g1g, and Z ¼ N�½p2� �X � fs2; g2g. It is readily
verified that X, Y , and Z are pairwise disjoint sets, and
that we have X � N�½p1� and X � N�½p2�. Let M be a
maximal match from Y toZ. Then, we construct jXj þ jMj
paths from hg1; p1i to hg2; p2i as follows: For every x 2 X,
we have the paths

hg1; p1 ! xi ! x; path�ðg1; g2Þh i ! hg2; x! p2i; ð5Þ

and for every ðy; zÞ 2M, we build the paths

hg1; p1 ! yi ! y; path�ðg1; zÞh i ! z; path�ðy; g2Þh i
! hg2; z! p2i: ð6Þ

The constructions in two typical cases are depicted in
Fig. 4 (when g1 6¼ g2, p1 ¼ p2 ¼ p, and g1, g2 62 N�½p�)
and Fig. 5 (when g1 6¼ g2, p1 6¼ p2, and g1, g2 62
N�½p1� [N�½p2�).

By definitions of X and M, the number of paths
given in (4)-(6) above is 1þ jXj þ jMj. Considering
jN�½p1�j ¼ dþ 1, X � N�½p1�, s1 2 N�½p1�, and s1 62 X, we
have jY j ¼ d� jXj � 1 if g1 2 N�½p1� �X � fs1g; other-
wise, jY j ¼ d� jXj. Similarly, because jN�½p2�j � dþ 1,
we have jZj � d� jXj � 1 if g2 2 N�½p2� �X � fs2g;
otherwise, jZj � d� jXj. Hence, jMj ¼ d� jXj � 1 or
d� jXj due to jMj ¼ minfjY j; jZjg, and the number 1þ
jXj þ jMj of paths is d or dþ 1, as claimed. In
particular, if g1 62 N�½p1� and g2 62 N�½p2�, then jMj ¼
d� jXj and the number of paths reaches its maximum
of dþ 1.

To complete the proof, we must show the paths
defined in (4)-(6) to be pairwise node-disjoint. Because

364 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 3, MARCH 2009

Fig. 4. Constructing dþ 1 node-disjoint paths, shown as heavy lines,

in OTIS-� between hg1; pi and hg2; pi for g1 6¼ g2, and g1, g2 62 N�½p�,
where s1 ¼ x1, s2 ¼ x2, X ¼ fp; x3; . . . ; xag, Y ¼ fx2g, Z ¼ fx1g, and

M ¼ fðx2; x1Þg.

Fig. 5. Constructing dþ 1 node-disjoint paths, shown as heavy lines, in OTIS-� between hg1; p1i and hg2; p2i for g1 6¼ g2, p1 6¼ p2, and g1,

g2 62 N�½p1� [N�½p2�, where s1 ¼ y1, s2 ¼ x1, X ¼ fx2; . . . ; xag, Y ¼ fp1; x1; y2; . . . ; ybg, Z ¼ fp2; z1; . . . ; zb; . . . ; zcg, and M ¼ fðp1; p2Þ; ðx1; z1Þ;
ðy2; z2Þ; . . . ; ðyb; zbÞg.
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X, Y , and Z are pairwise disjoint sets, no cluster other
than g1 and g2 is visited by more than one of these paths.
So, if any pair of paths were not node-disjoint, they
would only intersect in clusters g1 or g2. However, the
latter is impossible, given that all segments of these paths
contained in clusters g1 and g2 are pairwise node-disjoint
by construction. tu

Put together, Lemmas 1 and 2 establish the following
result.

Lemma 3. Let � be a connected graph. If hg1; p1i and hg2; p2i are
two distinct nodes in OTIS-�, then there exist d or dþ 1
node-disjoint ðhg1; p1i; hg2; p2iÞ-paths in OTIS-�, where
d ¼ minfdeg�ðp1Þ; deg�ðp2Þg.

We are now set to state and prove our main result.

Theorem 3. OTIS-� is maximally fault tolerant if � is a
connected graph.

Proof. Let � be a connected graph and v 2 V� be a node such
that deg�ðvÞ ¼ �ð�Þ. By Definition 1, we have hv; vi 2
VOTIS-� a n d degOTIS-�ðhv; viÞ ¼ �ð�Þ ¼ �ðOTIS-�Þ ¼ d.
Then, from Lemma 3, there are at least d node-disjoint
paths between any two nodes in OTIS-�, proving the
desired result. tu

The fault diameter and wide diameter are two important
parameters for measuring the reliability and efficiency of
interconnection networks. The fault diameter of a
k-connected graph G is defined as the diameter of the
graph that results from G after removing at most k� 1
nodes. The wide diameter of G is defined as the minimum
number w such that there exist k node-disjoint paths of
length at most w between any two distinct nodes in G. The
constructions of Lemmas 1 and 2 provide an upper bound
on the fault diameter and wide diameter of OTIS-�.

Theorem 4. If � is a connected graph, then both the fault
diameter and the wide diameter of OTIS-� are at most Dþ 4,
where D is the diameter of OTIS-�.

Proof. From Lemma 3, it suffices to show that the length of
every constructed path is at most Dþ 4. Let Dð�Þ be the
diameter of �. Then, we have D ¼ 2Dð�Þ þ 1, where D is
the diameter of OTIS-�. Since the length of path�ðu; vÞ is
at most Dð�Þ for all u, v 2 V�, it is readily verified that
the length of every path in (1)-(3) in the proof of
Lemma 1 and (4)-(6) in the proof of Lemma 2 is at most
2Dð�Þ þ 5, i.e., Dþ 4, as claimed. tu

4 CONCLUSIONS

We have shown that any OTIS (swapped) network built of a
connected basis network enjoys the maximal fault tolerance
property. This result supersedes a number of maximal fault
tolerance proofs for networks that are special cases of OTIS
networks and will obviate the need for additional proofs for
other basis networks of potential interest. One example is
the recent result of Day [3] on optical transpose k-ary n-cube
networks, which can be stated as a corollary to our
Theorem 3. Our result is stronger than the corresponding
result of [2] (restated in our Theorem 2). For example, in an
OTIS network with its basis graph � depicted in Fig. 6,

Theorem 2 suggests no guaranteed node-disjoint paths
between nodes hg1; ui and hg2; vi in OTIS-� for all g1 and g2,
while by our Lemma 3, there are four or five such paths,
depending on the cluster numbers g1 and g2 and the
numbering of the neighbors of u and v in Fig. 6.

Intuitively, the reason for both maximal fault tolerance
and the corresponding construction of node-disjoint paths
between nodes in OTIS-� being independent of the basis
network �, and only requiring its connectivity, is due to the
intercluster connection scheme. If we consider each cluster
as a supernode, then all supernodes are connected as a
complete graph via intercluster links. It is this intercluster
connectivity that enriches the node connectivity of an OTIS
network compared with its basis graph. Therefore, our
result should be viewed as a new attribute arising from the
OTIS architecture and not from its basis graph. This result
further confirms the suitability of OTIS architectures for
multiprocessor interconnection networks, benefiting from
both optical and electronic technologies.

One possible avenue for future research is determining
whether fault tolerance can be improved by rendering a
swapped (OTIS) network regular. As defined, for a regular
n-node degree-d basis network, n2 � n nodes of the associated
swapped network have degree dþ 1, with the remaining
n nodes having degree d. When n is even, the n nodes that do
not possess intercluster links can be connected pairwise to
make all nodes of degree dþ 1. Can this be done in a way to
guarantee the existence of dþ 1 node-disjoint paths for every
node pair?
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