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Abstract 
 
Properties and applications of residue number systems 
(RNS) with special moduli of the form 2k ± 1, with a single 
power-of-2 modulus often also included, have been 
studied extensively. We show that lack of systematic 
studies has led to rediscovery of “new” moduli sets that 
are really equivalent to previously studied ones and that 
certain comparisons presented to show advantages of 
some proposed moduli sets are rather unfair. We prove a 
general mathematical result that allows us to normalize 
the single power-of-2 modulus, thus removing some of the 
problematic variations from such proposed sets. We then 
offer an assessment strategy based on dynamic ranges of 
the RNS sets being compared, rather than on artificial 
parameters that may be different for comparable systems. 
 
Keywords–– Computer arithmetic, forward converter, 
modular arithmetic, residue number system, residue-to-
binary converter, reverse converter, special RNS moduli. 
 
1. Introduction 
 

Residue number systems (RNS) have been studied for 
nearly as long as electronic digital computers [Svob59], 
and are still attracting considerable attention from the 
research community [Omon07]. They have found niche 
applications for certain arithmetic-intensive digital signal 
processing (DSP) problems [Sode86]. 

In an RNS, a number x is represented by a collection of 
j residues (r1, r2, r3, . . . , rj), where ri = x mod mi, with the 
mi parameters constituting a set of j pairwise relatively 
prime moduli. The dynamic range of RNS(m1, m2, ... , mj), 
that is, the total number of distinct values that it can 
represent, is M = m1m2m3 . . . mj.  

A fundamental operation in computing with RNS 
representations is that of modular addition. For a general 
modulus m, modular addition is both more costly and 
slower than ordinary addition: much slower if addition 
and modular reduction are done in successive stages. 
Even a fast implementation, where x + y and x + y – m are 
computed concurrently and the appropriate one is then 
chosen as the modular sum (Fig. 1), is slightly slower 
than ordinary addition, given the presence of a carry-save 
adder and a multiplexer on the critical path. 

Multiplication is another important operation in signal 
processing applications forming the main target of RNS. 
Modular multiplication can be performed by interleaving 
addition and modular reduction steps in a sequential 
algorithm, thus essentially reducing the problem to 
multiple modular additions. Alternatively, one can use 
modular multioperand addition that leads to faster tree 
multipliers. However, modular multioperand addition is 
rather costly and slow for an arbitrary modulus m. 

 

 
Fig. 1. Fast modular addition for a general modulus m. 
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2. RNS with Special Moduli 
 

Certain special sets of moduli, in which each mj is of 
the form 2k, 2k – 1, or 2k + 1 lead to simplifications in 
hardware and reduction of latency for many operations of 
interest, including binary-to-RNS and RNS-to-binary 
conversions and the associated forward and reverse 
hardware converters. Modulo-2k operations are trivially 
simple. For example in both 2-operand and multioperand 
mod-2k addition, we simply discard any carry that goes 
into position k (Fig. 2a).  

Integers of the form 2k – 1 constitute low-cost RNS 
moduli [Parh76], because as in low-cost arithmetic error 
codes [Aviz71] they lead to simplified hardware 
realizations. Mod-m addition for a low-cost modulus m is 
performed by simply connecting an ordinary adder’s 
carry-out signal to its carry-in line, a scheme known as 
end-around carry. The equivalent correction in the case of 
multioperand addition is to reinsert a carry bit that goes to 
column k into column 0 (Fig. 2b). 

Moduli of the form 2k + 1, though not as simple to 
handle as the aforementioned two types (2k and 2k – 1), 
still lead to efficient hardware realizations by using the 
diminished-1 encoding (Fig. 3). In the latter encoding, 
one bit is used to distinguish 0 from nonzero residues. For 
the latter residues, k bits are used to encode a magnitude 
that is one less than the true residue. It can be readily 
proven that an inverted end-around carry performs the 
necessary correction in this case, in a manner that is 
similar to the role of end-around carry in mod-(2k – 1) 
addition (Fig. 2c). 

For these reasons, scores of papers have been written 
about moduli sets comprised of such special moduli, the 
attendant algorithms, and hardware implementations for 
various arithmetic operations [Abda95], [Abda05], 
[Anan07], [Anan07a], [Conw99], [Hias03], [Tomc08], 
[Wang00]. Other special moduli, such as those taking the 
forms 2k ± c, where c is a small constant greater than 1, or 
2k ± 2l ± 1, for 1 < l < k, are also of some interest 
[Hias03a], [Pate07], [Sheu04], but dealing with them is 
beyond the scope of this paper.  

 

 
Fig. 2. Modular multioperand addition with special moduli. 

 
Fig. 3. Standard binary vs. diminished-1 representation of 

mod-(2k + 1) residues. 
 
Some special sets of moduli are listed in Table 1 as a 

small representative sample. The set M4 was proposed in 
[Anan07a], M1-M3 are sets against which advantages are 
claimed for M4, and M5 is a set that we use to support 
our main idea that more systematic assessments and fairer 
comparisons are needed, both among RNS representations 
with special moduli and in general. We note that the 
moduli sets appearing in Table 1 require different widths 
in their representations, ranging from 3n – 1 bits for M2 
to 4n + 2 bits for M3. They also offer different dynamic 
ranges (shown in an approximate manner in the rightmost 
column of Table 1), ranging from 23n–1 to 24n+1. Thus, any 
comparative assessment of implementation cost (VLSI 
area) and latency as functions of n would be inherently 
unfair. What we need are cost and latency functions that 
are expressed in terms of the dynamic range M or another 
parameter that bears a direct relationship to M.  

More specifically, because the dynamic range of an 
RNS with special moduli of the form considered here is 
always close to a power of 2, we can take the associated 
power as a rough indication of the word width in an 
equivalent binary representation and use it to normalize 
all comparisons. Put another way, if we start with a 
desired dynamic range and proceed to choosing one of the 
moduli sets in Table 1 for the application at hand, 
different values of n may have to be used. This unfairness 
in comparison, though quite important, isn’t the only 
problem with the comparative assessments offered in 
published studies. 
 

Table 1. Some special sets of 3 or 4 RNS moduli.  __________________________________________ 
Set m1 m2 m3 m4 Width Range       __________________________________________ 
M1 2n – 1 2n 2n + 1 ― 3n + 1 23n 
M2 2n – 1 2n 2n–1 – 1 ― 3n – 1 23n–1 
M3 2n – 1 2n 2n + 1 2n+1 – 1 4n + 2 24n+1 
M4 2n+1 – 1 2n 2n – 1 ― 3n + 1 23n+1 
M5 2n+1 – 1 2n+1 2n – 1 ― 3n + 2 23n+2  __________________________________________ 
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3. Normalizing the Moduli Set 
 

To treat RNS choices with special moduli methodically, 
we need some terminology and background.  

Definition 1: An RNS with special moduli has a power-
of-2 modulus 2b, plus an arbitrary number of moduli of 
the form 2k ± 1, that is, it has the moduli set: 

 
{2k – 1 | k = a1, a2, ...} ∪ {2b} ∪ {2k + 1 | k = c1, c2, ...} 
 

Without loss of generality, we assume: 
 
a1 > a2 > ...     and     c1 > c2 > ...    
 
We know from number theory that for the low-cost 

moduli of the form 2k – 1 to be pairwise relatively prime, 
it is necessary and sufficient for the parameters a1, a2, . . . 
to be pairwise relatively prime. There is, of course, only 
one parameter b. As for the ci parameters, defining the 
subset of moduli of the form 2k + 1, selection rules to 
ensure relative primality are not widely known. If a is 
odd, then 2a – 1 is guaranteed to be relatively prime with 
respect 2c + 1. Only one of the a parameters can be even, 
in which case it must be factorized to determine 
limitations on other ai and cj values.  Numbers of the form 
2c + 1 can be divided into well-defined classes, with no 
more than one number allowed from each class [Abda95]. 

Because in addition and multiplication operations, 
residues are processed independently and in parallel, 
operation latency is determined by the dominating 
parameters a1, b, and c1, given that operations with 
smaller moduli of the same kind are always faster. Let 
T(b) be the operation latency for the modulus 2b and 
assume that T– and T+ denote the corresponding latency 
functions for moduli of the form 2k – 1 and 2k + 1, 
respectively. Then, the operation latency for our RNS 
with special moduli can be written as: 

 
TRNS = max(T–(a1), T(b), T+(c1))  
Operations with a power-of-2 modulus are always 

simpler than the corresponding operations with moduli of 
the form 2k ± 1, and operations for low-cost moduli 2k – 1 
are simpler than corresponding operations for moduli of 
the form 2k + 1, for the same value of k. Thus, we will not 
lose any performance or efficiency if we assume: 

 
c1 < a1 ≤ b     (*) 
 
Using the notation introduced, the defining parameters 

of the RNS moduli sets of Table 1 are as follows: 
 
M1:  c1 = a1 = b M2:  a1 = b M3:  c1 = b < a1 
M4: b < a1 M5:  a1 = b  

We see that M1, M3, and M4 do not satisfy the 
requirements (*) for optimal latency. Consequently, the 
choice of the corresponding moduli cannot be justified 
based on the speed of arithmetic operations alone. We 
thus introduce the following definition. 

Definition 2: An RNS with special moduli {2k – 1 | k = 
a1, a2, ...} and {2k + 1 | k = c1, c2, ...}, with a1 > a2 > ...     
and c1 > c2 > ... , and a power-of-2 modulus 2b is in 
normal form if b = max(a1, c1 + 1).  

For a particular set of special moduli, a normal-form 
RNS maximizes the dynamic range, without any speed 
penalty, as demonstrated later. Forward and reverse 
conversion latencies are discussed next. 

In converting from RNS to binary, certain methods 
require that the multiplicative inverse of one modulus 
with respect to another modulus be found and multiplied 
by other terms, with the results then summed up.  

Example 1: Inverses for M4 of Table 1. 
 
XA = (2n)–1 mod (2n+1 – 1) = 2  
XB = (2n)–1 mod (2n – 1) = 1  
XC = (2n – 1)–1 mod (2n+1 – 1) = –2  
XD = (2n+1 – 1)–1 mod (2n – 1) = 1  
 

These results can be readily confirmed. For example, 2 is 
the mod-(2n+1 – 1) inverse of 2n because 2 × 2n = 1 mod 
(2n+1 – 1). Clearly, 2, 1, and –2 are quite easily multiplied 
by other quantities, because the product can be derived by 
mere shifting and complementation.  

Example 2: Inverses for M5 of Table 1. 
 
XA′ = (2n+1)–1 mod (2n+1 – 1) = 1  
XB′ = (2n+1)–1 mod (2n – 1) = 2 
 

We also have XC′ = XC and XD′ = XD, as in Example 1. 
The moduli set M5 has a range that is double that of M4, 
while its widest residue has the same width. Given that 
speed of arithmetic in RNS is dictated by the width of the 
widest residue, M4 with its more limited range offers no 
advantage over M5 that could justify its use.  

It is seen from Examples 1 and 2 that the multiplicative 
inverses of M5’s moduli are as simple as those for M4, 
producing identical circuit speedups and simplifications. 
Similar results can be obtained for all other multiplicative 
inverses reported in the literature. To generalize the 
discussion above, we need the following definition. 

Definition 3: The (arithmetic) weight of an integer x is 
the minimum number of powers of 2, with positive or 
negative signs, that add up to x. So, the arithmetic weight 
of ±2i is 1, while that of ±(2j ± 2k), j ≠ k, is 2.  
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Multiplying y by a weight-1 integer x requires only 
shifting and possibly complementation. In the case of a 
weight-2 multiplier x, a single addition is also needed. 
The one extra addition in the latter case may not affect the 
critical path length if it is merged into a multioperand 
addition process. For example, adding 6 integers is not 
any slower than adding 5 items. 

We now have all the tools and concepts needed to 
present the following general result. 

Theorem 1: Changing the modulus 2b in the RNS of 
Definition 1 to 2b+1 increases the weight of the inverses of 
moduli with respect to each other by at most 1. 

Proof: First, consider the inverse of the power-of-2 
modulus. In this case, the following more general results 
can be proven that show the weight of the inverse to be 1 
(the inverse is a positive or negative power of 2): 

 
(2i)–1 mod (2j – 1) = 2(–i) mod j 
(2i)–1 mod (2j + 1) = ±2(–i) mod j 
 

In the latter equality, the sign depends on the parity of l, 
where i = lj + (i mod j). Next, let (2a – 1)–1 mod 2b = x, 
with x of weight w; the final case of (2c + 1)–1 mod 2b is 
similar and is thus omitted in this proof. Let (2a – 1)–1 
mod 2b+1 = y. The fact that x(2a – 1) = 1 mod 2b implies 
x(2a – 1) = h2b + 1 for some integer h. It is readily verified 
that for h even, we have y = x, while for h odd, y = x + 2b, 
thus establishing the desired result. 

Based on Theorem 1, doubling the power-of-2 modulus 
in a special set of moduli either has no effect on the 
simplicity of modular inverse computations or has a very 
small effect on cost and latency. We can thus modify the 
M3 and M4 example systems in Table 1 by doubling their 
power-of-2 moduli without an adverse effect on the speed 
of arithmetic. Once we have done this, we normalize the 
power-of-2 modulus to be 2n in all cases, to get the 
equivalent normalized RNSs in Table 2. 

As shown in Table 3, in normalizing an RNS with 
special moduli, we sometimes increase the value of the 
parameter n required to achieve a desired dynamic range. 
However, as noted earlier, it is not the value of the 
parameter n, but rather the latency of the slowest RNS 
channel that determines the overall latency. 

 
Table 2. Three RNSs from Table 1, in normalized form.  __________________________________________ 

Set m1 m2 m3 m4 Width Range       __________________________________________ 
M1′ 2n – 1 2n 2n–1 + 1 ― 3n 23n–1 
M3′ 2n–1 – 1 2n 2n–1 + 1 2n – 1 4n – 1 24n–2 
M4′ 2n – 1 2n 2n–1 – 1 ― 3n – 1 23n–1  __________________________________________ 

Table 3. Some specific RNSs with special moduli.  __________________________________________ 
Equiv. range (b) 12 16 20 24 28 32  __________________________________________ 
n for M1/M1′ 3/4 6/6 7/7 8/9 10/10 11/11 
n for M3/M3′ 3/4 4/5 5/6 6/7 7/8 8/9 
n for M4/M4′ 4/5 5/6 7/7 8/9 9/10 11/11  __________________________________________ 
 

 
4. Implications of Our Results 
 

Our results find applications in selecting special moduli 
for an RNS with a desired dynamic range, so as to 
minimize the operation latencies. Of course, latency is not 
the only consideration and we must also take into account 
implementation cost (VLSI area) and power consumption. 
Let us focus on area and take power to be roughly 
proportional to area. The moduli 2k – 1, 2k, and 2k + 1 
have nearly identical contributions to the dynamic range. 
It thus makes sense to use larger moduli of the form 2k + 1 
only when an equivalent range extension cannot be 
achieved by raising the other moduli, especially 2k. We 
are thus led to the following (this is an informal result, 
rather than a theorem, because modification of the moduli 
must be done with an eye toward keeping them pairwise 
relatively prime and may thus entail some trial and error). 

Assertion: If the conditions (*) are not satisfied for an 
RNS with special moduli, then a lower latency or wider 
range can always be achieved by changing the moduli, 
that is, modifying the parameters a1, b, and c1.   

A final observation is in order here. Comparing M5 
with M2 of Table 1, we note that the former is in fact M2, 
but with the parameter n replaced by n + 1. In other 
words, M5 is nothing but an instance of M2. We are thus 
led to the conclusion that the moduli set M4 proposed and 
evaluated in [Anan07a] is neither novel nor offers 
advantages over the already proposed moduli sets that 
have been extensively studied in the literature on 
computer arithmetic and DSP. 

 
5. Conclusion 
 

We have pointed out certain features of special RNS 
moduli of the form 2k ± 1, with one power-of-2 modulus, 
exposing some equivalences and redundancies of efforts 
in the process. There do exist other classes of special 
moduli that can be studied separately or in combination 
with moduli of the form 2k ± 1. One interesting example 
is moduli of the form βk for different values of β and k, 
which lead to simplifications if radix-βi representation is 
used in the ith RNS channel [Pali00]. 
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