

RNS with Special Moduli: Equiv. & Fair Comparisons 1 44th Asilomar Conf. Signals, Systems, and Computers
B. Parhami, U. Calif. SB, Nov. 1, 2010 Pacific Grove, CA, November 7-10, 2010

On Equivalences and Fair Comparisons Among Residue Number Systems

with Special Moduli

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

parhami@ece.ucsb.edu

Abstract

Properties and applications of residue number systems
(RNS) with special moduli of the form 2k ± 1, with a single
power-of-2 modulus often also included, have been
studied extensively. We show that lack of systematic
studies has led to rediscovery of “new” moduli sets that
are really equivalent to previously studied ones and that
certain comparisons presented to show advantages of
some proposed moduli sets are rather unfair. We prove a
general mathematical result that allows us to normalize
the single power-of-2 modulus, thus removing some of the
problematic variations from such proposed sets. We then
offer an assessment strategy based on dynamic ranges of
the RNS sets being compared, rather than on artificial
parameters that may be different for comparable systems.

Keywords–– Computer arithmetic, forward converter,
modular arithmetic, residue number system, residue-to-
binary converter, reverse converter, special RNS moduli.

1. Introduction

Residue number systems (RNS) have been studied for
nearly as long as electronic digital computers [Svob59],
and are still attracting considerable attention from the
research community [Omon07]. They have found niche
applications for certain arithmetic-intensive digital signal
processing (DSP) problems [Sode86].

In an RNS, a number x is represented by a collection of
j residues (r1, r2, r3, . . . , rj), where ri = x mod mi, with the
mi parameters constituting a set of j pairwise relatively
prime moduli. The dynamic range of RNS(m1, m2, ... , mj),
that is, the total number of distinct values that it can
represent, is M = m1m2m3 . . . mj.

A fundamental operation in computing with RNS
representations is that of modular addition. For a general
modulus m, modular addition is both more costly and
slower than ordinary addition: much slower if addition
and modular reduction are done in successive stages.
Even a fast implementation, where x + y and x + y – m are
computed concurrently and the appropriate one is then
chosen as the modular sum (Fig. 1), is slightly slower
than ordinary addition, given the presence of a carry-save
adder and a multiplexer on the critical path.

Multiplication is another important operation in signal
processing applications forming the main target of RNS.
Modular multiplication can be performed by interleaving
addition and modular reduction steps in a sequential
algorithm, thus essentially reducing the problem to
multiple modular additions. Alternatively, one can use
modular multioperand addition that leads to faster tree
multipliers. However, modular multioperand addition is
rather costly and slow for an arbitrary modulus m.

Fig. 1. Fast modular addition for a general modulus m.

0 1

RNS with Special Moduli: Equiv. & Fair Comparisons 2 44th Asilomar Conf. Signals, Systems, and Computers
B. Parhami, U. Calif. SB, Nov. 1, 2010 Pacific Grove, CA, November 7-10, 2010

2. RNS with Special Moduli

Certain special sets of moduli, in which each mj is of
the form 2k, 2k – 1, or 2k + 1 lead to simplifications in
hardware and reduction of latency for many operations of
interest, including binary-to-RNS and RNS-to-binary
conversions and the associated forward and reverse
hardware converters. Modulo-2k operations are trivially
simple. For example in both 2-operand and multioperand
mod-2k addition, we simply discard any carry that goes
into position k (Fig. 2a).

Integers of the form 2k – 1 constitute low-cost RNS
moduli [Parh76], because as in low-cost arithmetic error
codes [Aviz71] they lead to simplified hardware
realizations. Mod-m addition for a low-cost modulus m is
performed by simply connecting an ordinary adder’s
carry-out signal to its carry-in line, a scheme known as
end-around carry. The equivalent correction in the case of
multioperand addition is to reinsert a carry bit that goes to
column k into column 0 (Fig. 2b).

Moduli of the form 2k + 1, though not as simple to
handle as the aforementioned two types (2k and 2k – 1),
still lead to efficient hardware realizations by using the
diminished-1 encoding (Fig. 3). In the latter encoding,
one bit is used to distinguish 0 from nonzero residues. For
the latter residues, k bits are used to encode a magnitude
that is one less than the true residue. It can be readily
proven that an inverted end-around carry performs the
necessary correction in this case, in a manner that is
similar to the role of end-around carry in mod-(2k – 1)
addition (Fig. 2c).

For these reasons, scores of papers have been written
about moduli sets comprised of such special moduli, the
attendant algorithms, and hardware implementations for
various arithmetic operations [Abda95], [Abda05],
[Anan07], [Anan07a], [Conw99], [Hias03], [Tomc08],
[Wang00]. Other special moduli, such as those taking the
forms 2k ± c, where c is a small constant greater than 1, or
2k ± 2l ± 1, for 1 < l < k, are also of some interest
[Hias03a], [Pate07], [Sheu04], but dealing with them is
beyond the scope of this paper.

Fig. 2. Modular multioperand addition with special moduli.

Fig. 3. Standard binary vs. diminished-1 representation of

mod-(2k + 1) residues.

Some special sets of moduli are listed in Table 1 as a

small representative sample. The set M4 was proposed in
[Anan07a], M1-M3 are sets against which advantages are
claimed for M4, and M5 is a set that we use to support
our main idea that more systematic assessments and fairer
comparisons are needed, both among RNS representations
with special moduli and in general. We note that the
moduli sets appearing in Table 1 require different widths
in their representations, ranging from 3n – 1 bits for M2
to 4n + 2 bits for M3. They also offer different dynamic
ranges (shown in an approximate manner in the rightmost
column of Table 1), ranging from 23n–1 to 24n+1. Thus, any
comparative assessment of implementation cost (VLSI
area) and latency as functions of n would be inherently
unfair. What we need are cost and latency functions that
are expressed in terms of the dynamic range M or another
parameter that bears a direct relationship to M.

More specifically, because the dynamic range of an
RNS with special moduli of the form considered here is
always close to a power of 2, we can take the associated
power as a rough indication of the word width in an
equivalent binary representation and use it to normalize
all comparisons. Put another way, if we start with a
desired dynamic range and proceed to choosing one of the
moduli sets in Table 1 for the application at hand,
different values of n may have to be used. This unfairness
in comparison, though quite important, isn’t the only
problem with the comparative assessments offered in
published studies.

Table 1. Some special sets of 3 or 4 RNS moduli. __
Set m1 m2 m3 m4 Width Range __
M1 2n – 1 2n 2n + 1 ― 3n + 1 23n
M2 2n – 1 2n 2n–1 – 1 ― 3n – 1 23n–1
M3 2n – 1 2n 2n + 1 2n+1 – 1 4n + 2 24n+1
M4 2n+1 – 1 2n 2n – 1 ― 3n + 1 23n+1
M5 2n+1 – 1 2n+1 2n – 1 ― 3n + 2 23n+2 __

RNS with Special Moduli: Equiv. & Fair Comparisons 3 44th Asilomar Conf. Signals, Systems, and Computers
B. Parhami, U. Calif. SB, Nov. 1, 2010 Pacific Grove, CA, November 7-10, 2010

3. Normalizing the Moduli Set

To treat RNS choices with special moduli methodically,
we need some terminology and background.

Definition 1: An RNS with special moduli has a power-
of-2 modulus 2b, plus an arbitrary number of moduli of
the form 2k ± 1, that is, it has the moduli set:

{2k – 1 | k = a1, a2, ...} ∪ {2b} ∪ {2k + 1 | k = c1, c2, ...}

Without loss of generality, we assume:

a1 > a2 > ... and c1 > c2 > ... 

We know from number theory that for the low-cost

moduli of the form 2k – 1 to be pairwise relatively prime,
it is necessary and sufficient for the parameters a1, a2, . . .
to be pairwise relatively prime. There is, of course, only
one parameter b. As for the ci parameters, defining the
subset of moduli of the form 2k + 1, selection rules to
ensure relative primality are not widely known. If a is
odd, then 2a – 1 is guaranteed to be relatively prime with
respect 2c + 1. Only one of the a parameters can be even,
in which case it must be factorized to determine
limitations on other ai and cj values. Numbers of the form
2c + 1 can be divided into well-defined classes, with no
more than one number allowed from each class [Abda95].

Because in addition and multiplication operations,
residues are processed independently and in parallel,
operation latency is determined by the dominating
parameters a1, b, and c1, given that operations with
smaller moduli of the same kind are always faster. Let
T(b) be the operation latency for the modulus 2b and
assume that T– and T+ denote the corresponding latency
functions for moduli of the form 2k – 1 and 2k + 1,
respectively. Then, the operation latency for our RNS
with special moduli can be written as:

TRNS = max(T–(a1), T(b), T+(c1))
Operations with a power-of-2 modulus are always

simpler than the corresponding operations with moduli of
the form 2k ± 1, and operations for low-cost moduli 2k – 1
are simpler than corresponding operations for moduli of
the form 2k + 1, for the same value of k. Thus, we will not
lose any performance or efficiency if we assume:

c1 < a1 ≤ b (*)

Using the notation introduced, the defining parameters

of the RNS moduli sets of Table 1 are as follows:

M1: c1 = a1 = b M2: a1 = b M3: c1 = b < a1
M4: b < a1 M5: a1 = b

We see that M1, M3, and M4 do not satisfy the
requirements (*) for optimal latency. Consequently, the
choice of the corresponding moduli cannot be justified
based on the speed of arithmetic operations alone. We
thus introduce the following definition.

Definition 2: An RNS with special moduli {2k – 1 | k =
a1, a2, ...} and {2k + 1 | k = c1, c2, ...}, with a1 > a2 > ...
and c1 > c2 > ... , and a power-of-2 modulus 2b is in
normal form if b = max(a1, c1 + 1). 

For a particular set of special moduli, a normal-form
RNS maximizes the dynamic range, without any speed
penalty, as demonstrated later. Forward and reverse
conversion latencies are discussed next.

In converting from RNS to binary, certain methods
require that the multiplicative inverse of one modulus
with respect to another modulus be found and multiplied
by other terms, with the results then summed up.

Example 1: Inverses for M4 of Table 1.

XA = (2n)–1 mod (2n+1 – 1) = 2
XB = (2n)–1 mod (2n – 1) = 1
XC = (2n – 1)–1 mod (2n+1 – 1) = –2
XD = (2n+1 – 1)–1 mod (2n – 1) = 1

These results can be readily confirmed. For example, 2 is
the mod-(2n+1 – 1) inverse of 2n because 2 × 2n = 1 mod
(2n+1 – 1). Clearly, 2, 1, and –2 are quite easily multiplied
by other quantities, because the product can be derived by
mere shifting and complementation. 

Example 2: Inverses for M5 of Table 1.

XA′ = (2n+1)–1 mod (2n+1 – 1) = 1
XB′ = (2n+1)–1 mod (2n – 1) = 2

We also have XC′ = XC and XD′ = XD, as in Example 1.
The moduli set M5 has a range that is double that of M4,
while its widest residue has the same width. Given that
speed of arithmetic in RNS is dictated by the width of the
widest residue, M4 with its more limited range offers no
advantage over M5 that could justify its use. 

It is seen from Examples 1 and 2 that the multiplicative
inverses of M5’s moduli are as simple as those for M4,
producing identical circuit speedups and simplifications.
Similar results can be obtained for all other multiplicative
inverses reported in the literature. To generalize the
discussion above, we need the following definition.

Definition 3: The (arithmetic) weight of an integer x is
the minimum number of powers of 2, with positive or
negative signs, that add up to x. So, the arithmetic weight
of ±2i is 1, while that of ±(2j ± 2k), j ≠ k, is 2. 

RNS with Special Moduli: Equiv. & Fair Comparisons 4 44th Asilomar Conf. Signals, Systems, and Computers
B. Parhami, U. Calif. SB, Nov. 1, 2010 Pacific Grove, CA, November 7-10, 2010

Multiplying y by a weight-1 integer x requires only
shifting and possibly complementation. In the case of a
weight-2 multiplier x, a single addition is also needed.
The one extra addition in the latter case may not affect the
critical path length if it is merged into a multioperand
addition process. For example, adding 6 integers is not
any slower than adding 5 items.

We now have all the tools and concepts needed to
present the following general result.

Theorem 1: Changing the modulus 2b in the RNS of
Definition 1 to 2b+1 increases the weight of the inverses of
moduli with respect to each other by at most 1.

Proof: First, consider the inverse of the power-of-2
modulus. In this case, the following more general results
can be proven that show the weight of the inverse to be 1
(the inverse is a positive or negative power of 2):

(2i)–1 mod (2j – 1) = 2(–i) mod j
(2i)–1 mod (2j + 1) = ±2(–i) mod j

In the latter equality, the sign depends on the parity of l,
where i = lj + (i mod j). Next, let (2a – 1)–1 mod 2b = x,
with x of weight w; the final case of (2c + 1)–1 mod 2b is
similar and is thus omitted in this proof. Let (2a – 1)–1
mod 2b+1 = y. The fact that x(2a – 1) = 1 mod 2b implies
x(2a – 1) = h2b + 1 for some integer h. It is readily verified
that for h even, we have y = x, while for h odd, y = x + 2b,
thus establishing the desired result.

Based on Theorem 1, doubling the power-of-2 modulus
in a special set of moduli either has no effect on the
simplicity of modular inverse computations or has a very
small effect on cost and latency. We can thus modify the
M3 and M4 example systems in Table 1 by doubling their
power-of-2 moduli without an adverse effect on the speed
of arithmetic. Once we have done this, we normalize the
power-of-2 modulus to be 2n in all cases, to get the
equivalent normalized RNSs in Table 2.

As shown in Table 3, in normalizing an RNS with
special moduli, we sometimes increase the value of the
parameter n required to achieve a desired dynamic range.
However, as noted earlier, it is not the value of the
parameter n, but rather the latency of the slowest RNS
channel that determines the overall latency.

Table 2. Three RNSs from Table 1, in normalized form. __

Set m1 m2 m3 m4 Width Range __
M1′ 2n – 1 2n 2n–1 + 1 ― 3n 23n–1
M3′ 2n–1 – 1 2n 2n–1 + 1 2n – 1 4n – 1 24n–2
M4′ 2n – 1 2n 2n–1 – 1 ― 3n – 1 23n–1 __

Table 3. Some specific RNSs with special moduli. __
Equiv. range (b) 12 16 20 24 28 32 __
n for M1/M1′ 3/4 6/6 7/7 8/9 10/10 11/11
n for M3/M3′ 3/4 4/5 5/6 6/7 7/8 8/9
n for M4/M4′ 4/5 5/6 7/7 8/9 9/10 11/11 __

4. Implications of Our Results

Our results find applications in selecting special moduli
for an RNS with a desired dynamic range, so as to
minimize the operation latencies. Of course, latency is not
the only consideration and we must also take into account
implementation cost (VLSI area) and power consumption.
Let us focus on area and take power to be roughly
proportional to area. The moduli 2k – 1, 2k, and 2k + 1
have nearly identical contributions to the dynamic range.
It thus makes sense to use larger moduli of the form 2k + 1
only when an equivalent range extension cannot be
achieved by raising the other moduli, especially 2k. We
are thus led to the following (this is an informal result,
rather than a theorem, because modification of the moduli
must be done with an eye toward keeping them pairwise
relatively prime and may thus entail some trial and error).

Assertion: If the conditions (*) are not satisfied for an
RNS with special moduli, then a lower latency or wider
range can always be achieved by changing the moduli,
that is, modifying the parameters a1, b, and c1. 

A final observation is in order here. Comparing M5
with M2 of Table 1, we note that the former is in fact M2,
but with the parameter n replaced by n + 1. In other
words, M5 is nothing but an instance of M2. We are thus
led to the conclusion that the moduli set M4 proposed and
evaluated in [Anan07a] is neither novel nor offers
advantages over the already proposed moduli sets that
have been extensively studied in the literature on
computer arithmetic and DSP.

5. Conclusion

We have pointed out certain features of special RNS
moduli of the form 2k ± 1, with one power-of-2 modulus,
exposing some equivalences and redundancies of efforts
in the process. There do exist other classes of special
moduli that can be studied separately or in combination
with moduli of the form 2k ± 1. One interesting example
is moduli of the form βk for different values of β and k,
which lead to simplifications if radix-βi representation is
used in the ith RNS channel [Pali00].

RNS with Special Moduli: Equiv. & Fair Comparisons 5 44th Asilomar Conf. Signals, Systems, and Computers
B. Parhami, U. Calif. SB, Nov. 1, 2010 Pacific Grove, CA, November 7-10, 2010

References

[Abda95] M. Abdallah and A. Skavantzos, “New Multi-

Moduli Residue and Quadratic Residue Systems
for Large Dynamic Ranges,” Proc. 29th Asilomar
Conf. Signals, Systems, and Computers, 1995,
pp. 961-965.

[Abda05] M. Abdallah and A. Skavantzos, “On Multi
Moduli Residue Number Systems with Moduli of
Forms ra, rb – 1, rc + 1,” IEEE Trans. Circuits and
Systems I, Vol. 52, No. 7, pp. 1253-1266, 2005.

[Anan07] P. V. Ananda Mohan and A. B. Premkumar,
“RNS-to-Binary Converters for Two Four-Moduli
Sets {2n–1, 2n, 2n+1, 2n+1–1} and {2n–1, 2n, 2n+1,
2n+1+1},” IEEE Trans. Circuits and Systems I,
Vol. 54, No. 6, pp. 1245-1254, 2007.

[Anan07a] P. V. Ananda Mohan, “RNS-to-Binary Converter
for a New Three-Moduli Set {2n+1–1, 2n, 2n–1},”
IEEE Trans. Circuits and Systems II, Vol. 54,
No. 9, pp. 775-779, 2007.

[Aviz71] A. Avizienis, “Arithmetic Error Codes: Cost and
Effectiveness Studies for Application in Digital
System Design,” IEEE Trans. Computers, Vol. 20,
No. 11, pp. 1322-1331, 1971.

[Bi88] G. Bi and E. V. Jones, “Fast Conversion Between
Binary and Residue Numbers,” Electronics
Letters, Vol. 24, No. 19, pp. 1195-1197, 1988.

[Cao07] B. Cao, C. H. Chang, and T. Srikanthan, “A
Residue-to-Binary Converter for a New Five-
Moduli Set,” IEEE Trans. Circuits and Systems I,
Vol. 54, No. 5, pp. 1041-1049, 2007.

[Conw99] R. Conway and J. Nelson, “Fast Converter for 3
Moduli RNS Using New Property of CRT,” IEEE
Trans. Computers, Vol. 48, No. 8, pp. 852-860,
1999.

[Conw03] R. Conway and J. Nelson, “New CRT-Based RNS
Converter Using Restricted Moduli Set,” IEEE
Trans. Computers, Vol. 52, No. 5, pp. 572-578,
2003.

[Conw04] R. Conway and J. Nelson, “Improved RNS FIR
Filter Architectures,” IEEE Trans. Circuits and
Systems II, Vol. 51, No. 1, pp. 26-28, 2004.

[Gall97] D. Gallaher, F. E. Petry, and P. Srinivasan, “The
Digit Parallel Method for Fast RNS to Weighted
Number System Conversion for Specific Moduli
(2k – 1, 2k, 2k + 1),” IEEE Trans. Circuits and
Systems II, Vol. 44, No. 1, pp. 53-57, 1997.

[Hias98] A. A. Hiasat and H. S. Abdel-Aty-Zohdy,
“Residue to Binary Arithmetic Converter for the
Moduli Set (2k, 2k – 1, 2k–1 – 1),” IEEE Trans.
Circuits and Systems II, Vol. 45, No. 2, pp. 204-
209, 1998.

[Hias03] A. Hiasat and A. Sweiden, “Residue Number
System to Binary Converter for the Moduli Set
(2n–1, 2n – 1, 2n + 1),” J. Systems Architecture,
Vol. 49, Nos. 1-2, pp. 53-58, 2003.

[Hias03a] A. Hiasat, “An Arithmetic Residue to Binary
Conversion Technique,” Integration, the VLSI J.,
Vol. 36, Nos. 1-2, pp. 13-25, 2003.

[Mola10] A. S. Molahosseini, K. Navi, C. Dadkhah, O.
Kavehei, and S. Timarchi, “Efficient Reverse
Converter Designs for the New 4-Moduli Sets
{2n–1, 2n, 2n+1, 22n+1–1} and {2n–1, 2n+1, 22n, 22n+1}
Based on New CRTs,” IEEE Trans. Circuits and
Systems I, Vol. 57, No. 4, pp. 823-835, 2010.

[Omon07] A. Omondi and B. Premkumar, Residue Number
Systems: Theory and Implementation, World
Scientific, 2007.

[Pali00] V. Paliouras and T. Stouraitis, “Novel High-Radix
Residue Number System Architectures,” IEEE
Trans. VLSI, Vol. 8, No. 3, pp. 1059-1073, 2000.

[Parh76] B. Parhami, “Low-Cost Residue Number Systems
for Computer Arithmetic,” AFIPS Conf. Proc.,
Vol. 45 (1976 National Computer Conf.), AFIPS
Press, pp. 951-956.

[Pate07] R. A. Patel, M. Benaissa, and S. Boussakta, “Fast
Modulo 2n – (2n–2 + 1) Addition: A New Class of
Adders for RNS,” IEEE Trans. Computers,
Vol. 56, No. 4, pp. 572-576, 2007.

[Pies95] S. J. Piestrak, “A High-Speed Realization of
Residue to Binary System Converter,” IEEE
Trans. Circuits and Systems II, Vol. 42, No. 12,
pp. 661-663, 1995.

[Sheu04] M.-H. Sheu, S.-H. Lin, C. Chen, and S.-W. Yang,
“An Efficient VLSI Design for a Residue to
Binary Converter for General Balance Moduli
(2n – 3, 2n + 1, 2n – 1, 2n + 3),” IEEE Trans.
Circuits and Systems II, Vol. 51, No. 3, pp. 152-
155, 2004.

[Sode86] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien,
and F. J. Taylor (eds.), Residue Number System
Arithmetic, IEEE Press, 1986.

[Svob59] A. Svoboda, “The Numerical System of Residual
Classes in Mathematical Machines,” in
Information Processing (Proc. UNESCO Conf.,
1959), pp. 419-422.

[Tomc08] T. Tomczak, “Fast Sign Detection for RNS (2n–1,
2n, 2n+1),” IEEE Trans. Circuits and Systems I,
Vol. 55, No. 6, pp. 1502-1511, 2008.

[Wang99] Y. Wang, M. N. S. Swamy, and M. O. Ahmad,
“Residue to Binary Number Converters for Three
Moduli Sets,” IEEE Trans. Circuits and Systems
II, Vol. 46, No. 2, pp. 180-183, 1999.

[Wang00] W. Wang, M. N. S. Swamy, M. O. Ahmad, and Y.
Wang, “A High-Speed Residue-to-Binary
Converter for Three-Moduli (2k, 2k – 1, 2k–1 – 1)
RNS and a Scheme for Its VLSI Implementation,”
IEEE Trans. Circuits and Systems II, Vol. 47,
No. 12, pp. 1576-1581, 2000.

[Wang00a] Z. Wang, G. A. Jullien, and W. C. Miller, “An
Improved Residue to Binary Converter,” IEEE
Trans. Circuits and Systems I, Vol. 47, No. 9, pp.
1437-1440, 2000.

	1. Introduction
	2. RNS with Special Moduli
	__
	Set m1 m2 m3 m4 Width Range
	__
	M1 2n – 1 2n 2n + 1 ― 3n + 1 23n
	M2 2n – 1 2n 2n–1 – 1 ― 3n – 1 23n–1
	M3 2n – 1 2n 2n + 1 2n+1 – 1 4n + 2 24n+1
	M4 2n+1 – 1 2n 2n – 1 ― 3n + 1 23n+1
	M5 2n+1 – 1 2n+1 2n – 1 ― 3n + 2 23n+2
	__
	3. Normalizing the Moduli Set
	XA = (2n)–1 mod (2n+1 – 1) = 2
	XB = (2n)–1 mod (2n – 1) = 1
	XA(= (2n+1)–1 mod (2n+1 – 1) = 1
	XB(= (2n+1)–1 mod (2n – 1) = 2
	__
	Set m1 m2 m3 m4 Width Range
	__
	M1(2n – 1 2n 2n–1 + 1 ― 3n 23n–1
	M3(2n–1 – 1 2n 2n–1 + 1 2n – 1 4n – 1 24n–2
	M4(2n – 1 2n 2n–1 – 1 ― 3n – 1 23n–1
	__
	__
	Equiv. range (b) 12 16 20 24 28 32
	__
	n for M1/M1(3/4 6/6 7/7 8/9 10/10 11/11
	n for M3/M3(3/4 4/5 5/6 6/7 7/8 8/9
	n for M4/M4(4/5 5/6 7/7 8/9 9/10 11/11
	__
	4. Implications of Our Results
	5. Conclusion
	References

