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The class of swapped or OTIS (optical transpose interconnect system) networks, built of
n copies of an n-node cluster by connecting node i in cluster j to node j in cluster i
for i �= j, has been studied extensively. One problem with such networks is that node i of
cluster i has no intercluster link. This slight asymmetry complicates a number of algorithms
and hinders both theoretical investigations and practical pursuits, such as building parallel
node-disjoint paths for fault tolerance. We introduce biswapped networks that are fully
symmetric and have cluster connectivity very similar to swapped/OTIS networks. We derive
basic topological parameters, present a simple distributed shortest-path routing algorithm,
and point to a number of other interesting properties under investigation for biswapped
networks.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Symmetry is a very desirable property of an intercon-
nection network. For example, node symmetry (node tran-
sitivity) allows one to develop a single generic algorithm
for routing that is applicable to every node in the network.
If the routing algorithm is to be fully distributed, so that
each node makes its own decision as to how to forward
an incoming message, the advantages of symmetry become
even more pronounced. Symmetry also facilitates theoreti-
cal proofs and certain derivations of practical significance,
such as computing the average internode distance or con-
structing a set of node-disjoint paths between a pair of
nodes (to allow the routing of messages in parallel or to
identify alternate paths in the event of node/link failures).
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Our motivation for this study arose from a small, yet
very important (in both theoretical and practical terms),
asymmetry in swapped [8,6] or OTIS [5,3] networks, that
have been found of interest by researchers in communi-
cations and parallel computing. A swapped/OTIS network
Sw(Ω) is built from n clusters, which are identical copies
of an n-node basis network Ω , by connecting node i of
cluster j to node j of cluster i, for all i �= j. The lat-
ter condition is what causes the asymmetry, because node
i of cluster i, which has no intercluster link, maintains
its original degree δ, whereas all other nodes have de-
gree δ +1. Consequently, many analyses and algorithms for
swapped/OTIS networks become complicated by the need
to treat node (i, i) differently from a typical node (i, j)
having unequal cluster index i and node index j. This lack
of full symmetry prevents us from using results that are
applicable to classes of symmetric networks, such as the
ubiquitous Cayley graphs [1,2,4,7].

We thus pondered the existence question for “an alter-
nate or modified form of swapped network that is a Cay-
ley graph when the basis network is a Cayley graph” [6].
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(a) Sw(C4) (b) Bsw(C4)

Fig. 1. Example 16-node swapped/OTIS network and the corresponding 32-node biswapped network based on Ω = C4. To avoid clutter, the node indices
〈c, g〉 for Sw(C4) and 〈i, c, g〉 for Bsw(C4) are shown as cg and icg, where i, c, and g are part, cluster, and node indices, respectively.
Biswapped networks, being proposed here, constitute our
positive answer to this interesting question.

2. Definitions and basic properties

Let Ω be any undirected graph with the vertex set
V (Ω) = {g1, g2, . . . , gn} and the edge set E(Ω). The
biswapped interconnection network Bsw(Ω) = Σ = (V (Σ),

E(Σ)) is a digraph with its vertex and edge sets specified
as:

V (Σ) = {〈i, c, g〉 ∣∣ i ∈ {0,1}; c, g ∈ V (Ω)
}
,

E(Σ) = {(〈i, c, g1〉, 〈i, c, g2〉
) ∣∣ i ∈ {0,1},

c ∈ V (Ω), (g1, g2) ∈ E(Ω)
}

∪ {(〈0, c, g〉, 〈1, g, c〉) ∣∣ c, g ∈ V (Ω)
}
.

Intuitively, the definition postulates 2n clusters, each
cluster being an Ω graph: n clusters, with nodes in-
dexed 〈0, cluster#,node#〉, form part 0 of the graph, and
n clusters constitute part 1, with associated node indices
〈1, cluster#,node#〉. Each cluster c in either part of Σ has
the same internal connectivity as Ω (intracluster edges,
forming the first set in the definition of E(Σ)). In addi-
tion, node g of cluster c in part i is connected to node c
in cluster g of part 1 − i (intercluster or swap edges form-
ing the second set in the definition for E(Σ)). The name
“biswapped network” arises from two defining properties
of the network just introduced: when clusters are viewed
as supernodes, the resulting graph of supernodes is the
complete 2n-node bipartite graph Kn,n , and the intercluster
links connect nodes in which the cluster number and the
node number within cluster are interchanged or swapped.

For example, when the basis graph is Ω = C4 (undi-
rected cycle of order 4), the resulting Bsw(C4) is shown
in Fig. 1b. Part 0 of the network is drawn at the top and
part 1 at the bottom, with clusters 0–3 positioned from
left to right. For comparison, Sw(C4) is shown in Fig. 1a.

We need a few more notational conventions in what
follows. For any graph Γ , the number of its nodes is de-
noted as |Γ |. The degree of a node g in Γ is degΓ (g). The
distance, that is, the length of the shortest path, between
nodes g1 and g2 in Γ is given by distΓ (g1, g2). The diam-
eter of Γ , that is, the maximum distance between any two
nodes in Γ , is D(Γ ). We next prove a number of results
on the basic parameters of Σ = Bsw(Ω).

Theorem 1. Let Σ = Bsw(Ω). Then:

(1) |Σ | = 2|Ω|2;
(2) degΣ(〈i, c, g〉) = degΩ(g) + 1;
(3) distΣ(〈i, c1, g1〉, 〈i, c2, g2〉) equals distΩ(g1, g2)

if c1 = c2;
otherwise, it equals distΩ(c1, c2) + distΩ(g1, g2) + 2;

(4) distΣ(〈i, c1, g1〉, 〈1 − i, c2, g2〉) = distΩ(c1, g2) +
distΩ(c2, g1) + 1.

Proof. Statements (1) and (2) are evident from the defi-
nition of biswapped networks; there are 2n2 nodes in a
biswapped network based on an n-node basis graph, and
the node degree increases by 1 owing to the introduc-
tion of intercluster or swap links. To prove the first part of
statement (3), we note that by the definition of Bsw(Ω),
we have distΣ(〈i, c, g1〉, 〈i, c, g2〉) � distΩ(g1, g2). To com-
plete the first part of the proof for statement (3), we must
show that no shorter path exists between nodes g1 and
g2 of cluster c that goes through other clusters. This is
established by contradiction. Suppose that the following
path from 〈0, c, g1〉 to 〈0, c, g2〉, via intermediate clusters
x1, y1, x2, y2, . . . , xk, yk, xk+1, is shorter than the path of
length distΩ(g1, g2) within cluster c : 〈0, c, g1〉 → · · · →
〈0, c, x1〉 → 〈1, x1, c〉 → · · · → 〈1, x1, y1〉 → 〈0, y1, x1〉 →
· · · → 〈0, y1, x2〉 → 〈1, x2, y1〉 → · · · → 〈1, x2, y2〉 → · · · →
〈1, xk, yk〉 → 〈0, yk, xk〉 → · · · → 〈0, yk, xk+1〉 → 〈1, xk+1, yk〉
→ · · · → 〈1, xk+1, c〉 → 〈0, c, xk+1〉 → · · · → 〈0, c, g2〉. The
length of this path includes distances from g1 to x1, x1
to x2, . . . , xk+1 to g2 within a cluster, plus a number of
other segments. Given that all the clusters are isomorphic,
the latter path cannot be shorter than distΩ(g1, g2). Now
assume c1 �= c2 and consider the following path between
two nodes in part 0 that goes through a single intermedi-
ate cluster c in part 1. The path consists of five segments,
for which the hop distance associated with each segment
is provided below the corresponding arrows:
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〈0, c1, g1〉→ · · · →
distΩ(g1,c)

〈0, c1, c〉→
1

〈1, c, c1〉
→ · · · →
distΩ(c1,c2)

〈1, c, c2〉→
1

〈0, c2, c〉
→ · · · →
distΩ(g,g2)

〈0, c2, g2〉.

Based on the path above, we conclude that

distΣ
(〈i, c1, g1〉, 〈i, c2, g2〉

)

� min
c∈V (Ω)

{
distΩ(g1, c) + distΩ(c, g2)

}

+ distΩ(c1, c2) + 2

= distΩ(g1, g2) + distΩ(c1, c2) + 2.

An argument similar to the one presented for proving the
first part of statement (3) can be used to establish that no
shorter path can go through more than one intermediate
cluster. Statement (4) can be proven similarly by consid-
ering the following three-segment path, which includes
a single intercluster edge, from node 〈i, c1, g1〉 to node
〈1 − i, c2, g2〉:

〈i, c1, g1〉 → · · · →
distΩ(g1,c2)

〈i, c1, c2〉→
1

〈1 − i, c2, c1〉
→ · · · →
distΩ(c1,g2)

〈1 − i, c2, g2〉.

The rest of the argument parallels that used for proving
statement (3), and is thus omitted here. �
Corollary 1. The diameter of Σ = Bsw(Ω) is related to the
diameter of the basis network Ω by the equality D(Σ) =
2D(Ω) + 2.

Proof. By statement (3) in Theorem 1, D(Σ) � 2D(Ω) + 2.
Let distΩ(g1, g2) = D(Ω). Then, we have distΣ(〈i, g1, g1〉,
〈i, g2, g2〉) = 2 distΩ(g1, g2) + 2, which establishes the de-
sired result. �
3. Distributed shortest-path routing

Let Ω be any undirected graph with the vertex set
V (Ω) = {g1, g2, . . . , gn} and the edge set E(Ω). Based on
Theorem 1, we can easily obtain a shortest-path (opti-
mal) routing algorithm for a biswapped network, given the
availability of an optimal routing algorithm for the basis
graph Ω . Assume that the latter routing algorithm is a
distributed one, using the local function nextΩ(g1, g2) to
obtain the first intermediate node in the routing path from
g1 to g2. Then, the algorithm in Fig. 2 can be used to de-
rive the first intermediate node on a shortest routing path
from node 〈i, c1, g1〉 to node 〈 j, c2, g2〉 in Σ = Bsw(Ω).
Optimality of this algorithm is proven in Theorem 2.

Theorem 2. The routing function nextΣ , defined in Fig. 2, is
optimal, that is, it guarantees shortest-path routing, provided
nextΩ is an optimal routing function for Ω .

Proof. A routing path in Bsw(Ω) may be one of three
types. First, for a routing path that begins and ends in
the same cluster (i = j, c1 = c2, g1 �= g2), the forwarding
function nextΣ(〈i, c1, g1〉, 〈 j, c2, g2〉)
if i = j
then // i = j; routing in the same part

if c1 = c2 and g1 = g2

then return 〈i, c1, g1〉 // destination has been reached
else

if g1 = g2

then return 〈1 − i, g1, c1〉 // g1 = g2 and c1 �= c2

else return 〈i, c1,nextΩ(g1, g2)〉 // g1 �= g2

endif
endif

else // i �= j; routing between parts
if c1 = g2 and g1 = c2

then return 〈 j, c2, g2〉 // destination is one hop away
else

if g1 = c2

then return 〈 j, g1, c1〉 // 〈 j, g1, c1〉 = 〈1 − i, g1, c1〉
else return 〈i, c1,nextΩ(g1, c2)〉
endif

endif
endif

Fig. 2. Optimal routing function for a biswapped network Bsw(Ω) based
on the optimal routing function nextΩ(g1, g2) for its basis network Ω .

node chosen by nextΣ is 〈i, c1,nextΩ(g1, g2)〉. Thus, the
forwarding path, which remains in the same cluster un-
til g1 = g2 holds, is optimal by our assumption regarding
the optimality of nextΩ . Second, for a path that begins
and ends in the same part, but not in the same cluster
(i = j, c1 �= c2), the routing algorithm first causes the mes-
sage to be moved within the source cluster until the node
〈i, c1, g2〉 has been reached (note that if g1 = g2, this seg-
ment of the path is empty). Then, the intercluster link to
〈1 − i, g2, c1〉 is used, followed by routing within the same
cluster to 〈1 − i, g2, c2〉 using nextΩ , and finally via an in-
tercluster link to 〈i, c2, g2〉. This path is an instance of the
five-segment shortest path hypothesized in the proof of
Theorem 1, with g2 here taking the place of c in that path,
thus making the fifth segment unnecessary (of length 0).
The third case pertains to a path that begins in part i and
ends in part j = 1 − i. In this case, the algorithm first aims
to reach the node 〈i, c1, c2〉 in the source cluster. Routing
is then completed via 〈1 − i, c2, c1〉, followed by a path
dictated by nextΩ within the destination cluster to the
final destination 〈1 − i, c2, g2〉. The preceding path is pre-
cisely the three-segment shortest path hypothesized near
the end of the proof of Theorem 1. �
4. Comparison with swapped/OTIS networks

Because swapped/OTIS networks are known to have
advantages over other well-known networks in terms
of topological properties, performance, scalability, and
fault tolerance (see, e.g., [6] and the references therein),
demonstrating that biswapped networks are preferable to
swapped networks can be taken as indirect evidence of
advantages over those other networks.

A biswapped network of node degree δ + 1 (where
δ is the node degree of its n-node basis graph Ω) has
2n2 nodes, compared with n2 nodes for a degree-(δ + 1)

swapped network formed from the same basis graph. The
only penalty for doubling the number of nodes is a unit in-
crease in network diameter, from 2D + 1 for swapped/OTIS
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to 2D + 2 for biswapped, where D is the diameter of Ω .
This doubling of network size for a unit increase in di-
ameter is a worthwhile trade-off, in that for most com-
ponent networks that already have the maximum number
of nodes for their node degree and diameter (this is true
of square meshes/tori, hypercubes, star graphs, and so on),
increasing the size of Ω to approximately 1.4n so as to
have close to 2n2 nodes in a swapped/OTIS network would
lead to a 1-unit increase in D , and thus a 2-unit increase
in the network diameter.

Another way to look at the trade-off just discussed is
that if D = log2 n, the diameter of a swapped network is
log2(n

2) + 1 and the diameter of a biswapped network
is log2(2n2) + 1; i.e., with logarithmic-diameter basis net-
works, the two networks are similar in terms of diameter,
given their sizes. For any basis network that has super-
logarithmic diameter, however, biswapped networks would
win on account of their diameter. Note that biswapped
networks are similar to swapped/OTIS networks in two
other important respects: (1) they have power-of-2 size
when n is a power of 2; and (2) their incremental scal-
ability, that is, the relative expansion in size when n is
increased to n + 1, is approximately 2/n.

As evidence of algorithmic simplicity, we point to the
simple and elegant distributed routing algorithm depicted
in Fig. 2, which requires only a few numerical comparisons
between the components of the current node’s address and
those of the destination address to decide on the outgoing
channel belonging to a shortest path. These comparisons
can be performed in hardware and imply a very small
routing latency (pipelined, if necessary), thus enabling fast
wormhole switching. By contrast, known optimal routing
algorithms for swapped/OTIS networks are quite compli-
cated and require computing and comparing distances in
the basis network. This is because the shortest path from
node (i, j) to node (k, l) can be one of the two paths,
that include one and two intercluster links: which one
is shorter depends on the intracluster distances between
certain intermediate nodes. In effect, we would need sep-
arate optimal routing algorithms for swapped/OTIS net-
works built of different basis networks (referred to in the
literature as OTIS-mesh, OTIS-hypercube, OTIS-star, and so
on). Other evidence of the superiority of biswapped net-
works to swapped/OTIS networks will be reported in the
near future.

To summarize, in view of indirect evidence of supe-
riority for biswapped networks, arising from properties
that they inherit from swapped/OTIS networks, biswapped
networks constitute an important addition to the reper-
toire of parallel computer designers. These networks are
at the same time competitive with, and complementary
to, existing interconnection networks. They are competi-
tive because they offer a cost-effective way of scaling net-
work size, while maintaining desirable architectural fea-
tures. They are complementary owing to the fact that they
allow the use of virtually any existing network as the basis
network, thus combining the advantages of particular clus-
ter interconnections with the benefits resulting from the
biswapped connectivity.
Table 1
Comparison of topological, cost-effectiveness, and robustness parameters
of a network as it is scaled up from n nodes to 2n2 nodes.

Network Degree Diameter Cost ratio Connectivity

Cycle (ring) δ = 2 4D2 4D κ = 2
Square 2D torus δ = 4 ≈ 1.4D2 ≈ 1.4D κ = 4
Hypercube 2δ + 1 2D + 1 ≈ 4 2κ + 1
Biswapped δ + 1 2D + 2 ≈ 2 δ + 1

5. Conclusions

A biswapped network, which has a two-level struc-
ture, takes any graph as modules and connects them
in a complete bipartite manner. Hence, the architecture
of biswapped networks offers a simple general scheme
for constructing larger networks from any component or
basis network. Since the topology of a biswapped net-
work is closely related to the topology of its basis net-
work, it inherits some favorable properties from the latter.
We have derived some general properties of a biswapped
network based on parameters and structure of its ba-
sis network. Examples of properties that are inherited by
biswapped networks, and which will be reported sepa-
rately in the near future, include hamiltonicity and being
a Cayley graph.

Biswapped networks offer advantages over the widely
studied swapped networks, as previously discussed in
Section 4. Table 1 shows how the topological, cost-
effectiveness, and robustness parameters of a network
change as it is scaled up from n nodes to 2n2 nodes,
that is, the same size expansion offered by the biswapped
architecture. The network’s original node degree δ, diam-
eter D , and connectivity κ change to values shown in
Table 1. For example, when an n-node hypercube with
node degree and diameter δ = D = log2 n is scaled up
to include 2n2 nodes, its node degree and diameter be-
come log2(2n2) = 2δ + 1 = 2D + 1. In particular, we note
that a biswapped network is nearly twice as cost-effective
as a hypercube of equal size using the commonly sug-
gested degree-diameter product as an indicator. More
importantly, we note that the biswapped structure of-
fers maximal fault tolerance (connectivity) for its node
degree, independent of the robustness of the basis net-
work. This is an important advantage brought about by the
biswapped architecture that we will exploit in our future
work.

Results in this paper bring some closure to the topic of
swapped/OTIS networks, which as previously defined lack
full symmetry. Biswapped networks are completely sym-
metric and offer twice as many nodes as the corresponding
swapped networks with the same node degree and with
a unit increase in network diameter. This is an advanta-
geous tradeoff for nearly all basis networks of practical
interest.
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