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Abstract The existence of parallel node-disjoint paths between any pair of nodes is
a desirable property of interconnection networks, because such paths allow tolerance
to node and/or link failures along some of the paths, without causing disconnec-
tion. Additionally, node-disjoint paths support high-throughput communication via
the concurrent transmission of parts of a message. We characterize maximum-sized
families of parallel paths between any two nodes of alternating group networks. More
specifically, we establish that in a given alternating group network ANn, there exist
n− 1 parallel paths (the maximum possible, given the node degree of n− 1) between
any pair of nodes. Furthermore, we demonstrate that these parallel paths are optimal
or near-optimal, in the sense of their lengths exceeding the internode distance by no
more than four. We also show that the wide diameter of ANn is at most one unit
greater than the known lower bound D + 1, where D is the network diameter.
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1 Introduction

Designers of massively parallel computers, interconnection structures, and networked
distributed systems seek desirable attributes that include low node degree, structural
regularity, small diameter, rich connectivity, support for simple and efficient routing
algorithms, and strong fault tolerance [6, 23, 25]. The efforts to achieve reliability, ro-
bustness, maximum concurrency, and minimal transmission delay, exhibited in many
recent studies [3, 5–11, 14, 15, 18, 19, 24, 25], will likely intensify as the extent of
parallelism and interconnection complexity, both on- and off-chip, continue to in-
crease. Topologies proposed to interconnect the nodes in both parallel and distributed
systems have been modeled as graphs, in which the vertices/nodes correspond to
processors or routers and the edges/links represent communication channels.

Interestingly, the existence of node-disjoint paths between arbitrary source-
destination pairs bears on all the important objectives above, given that the exis-
tence of such “parallel” paths can help improve reliability, fault tolerance, message
throughput, and communication latency. Greater reliability results from tolerance to
node and/or link failures along some paths. Improved throughput and communication
latency result from the possibility of concurrent transmission of message segments.
It is thus of great practical interest to compare various networks with respect to the
multiplicity and ease of construction for such parallel paths.

Despite a large collection of widely studied interconnection networks and their as-
sociated graphs, each with its proponents and staunch defenders, new networks con-
tinue to emerge. It is well known in the parallel and distributed processing community
that there is no such thing as a “best” network [20]; assessment of networks with re-
gard to their suitability requires attention to a multitude of structural and performance
parameters. A parallel system composed of custom chip-multiprocessors has different
bandwidth and latency requirements than a data center or cloud-computing hub with
independently operating commodity nodes. Similarly, on-chip [22], system-area [12],
and long-haul [13] networks entail different challenges, optimality criteria, and trade-
offs, as do a variety of virtual structures, such as peer-to-peer overlay networks [21].

As we scale up to multimillion-node systems of each type, reliance on commod-
ity interconnects will become increasingly problematic. System performance in such
large-scale deployments will likely be limited by communication latency and band-
width, thus necessitating highly optimized interconnection structures. At such large
scales, both richly connected networks (exemplified by high-dimensional k-ary n-
cubes) and hierarchical networks with ad hoc connectivity (clusters and the like)
would be unmanageable. Efficient routing decisions and rapid reconfiguration in the
event of link and node failures would only be possible if the network in question had
systematic properties that could be exploited within the framework of low-complexity
and readily scalable distributed algorithms.

Within families of networks that possess desirable uniformity and regularity prop-
erties, and hence theoretically tractable (efficient, flexible, and provably correct) dis-
tributed algorithms for adaptive routing and reconfiguration, a class based on finite
mathematical groups, dubbed Cayley graphs [1], has shown great promise. A wide
array of rigorous theoretical results have been obtained for such networks. Among
the Cayley graph interconnection architectures studied over the past three decades,
the hypercube has drawn the greatest attention, given its many attractive properties,
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including small degree, low diameter, symmetry, strong fault tolerance, and efficient
routing algorithms. The hypercube and its numerous modified forms or variants, such
as crossed, folded, twisted, and enhanced cubes, have been studied extensively [25].
These classes of networks are collectively known as hypercubic networks. A method
to construct n (the maximum possible) vertex-disjoint paths for the n-dimensional
hypercube Qn has been proposed in [3]. Duh, Chen, and Hsu [8] investigated combi-
natorial properties of generalized hypercubes, including best containers, wide diam-
eter, and fault diameter. Xu [26] obtained results on the wide diameters of Cartesian
product graphs, a class of interconnection networks that includes the hypercune as a
special case.

A widely studied alternative to the hypercube, the star graph [2], enjoys most of
the desirable properties of the hypercube at considerably lower cost, accommodating
more nodes with less interconnection hardware and smaller communication delay.
Like the hypercube, the star graph is hierarchically structured and is a member of
the class of Cayley graphs. Day and Tripathi [6] identified the n − 1 (maximum pos-
sible) vertex-disjoint paths of the star graph Sn and presented a comparative study
of Sn and Qn. Recently, Lin and Duh [19] described a novel routing algorithm for
constructing a container of width n − 1 between any pair of vertices in a generalized
star graph, denoted as the (n, k)-star graph.

The alternating group network ANn, which has a construction similar to the star
graph, was proposed by Youhu [27] to improve upon the alternating group graph
AGn, originally advocated by Jwo, Lakshmivarahan, and Dhall [16, 17]. Chen, Xiao,
and Parhami [4] presented an optimal routing algorithm for the class of alternating
group networks. It is the potential advantages of alternating group networks over their
better-known brethren that attracts us to them as candidate networks for providing
large-scale connectivity in parallel and distributed systems.

In this paper, we expand on the previously known results about ANn by construct-
ing containers of maximum width, deriving the best containers, and computing the
wide diameter and fault diameter for ANn. The rest of the paper is organized as fol-
lows. Section 2 introduces ANn, along with some definitions and notation needed for
our discussion. Section 3 is devoted to the construction of containers of ANn and the
presentation of upper and lower bounds on its wide diameter for n ≥ 4. Section 4
concludes the paper.

2 Background and definitions

This section is devoted to introducing background material and notational con-
ventions needed to understand the rest of the paper. In the study of multiproces-
sor systems, the topology of a system is often adequately represented by a graph
G = G(V,E), where each node u ∈ V denotes a processor and each edge (u, v) ∈ E

denotes a link between nodes u and v. The distance from vertex u to vertex v, rep-
resented by d(u, v), refers to the length of a shortest path from u to v in G. The
diameter of G, denoted by D(G), is defined as the maximum distance for all pairs of
distinct vertices u and v in G. For a subset S ⊂ V of nodes, the notation G−S repre-
sents the subgraph obtained by removing the vertices in S from G and also deleting
all edges with at least one end vertex in S. If G − S is disconnected, then S is called
a vertex cut or a separating set.
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The connectivity κ(G) of a graph G(V,E), or simply κ if the intended graph is
unambiguous, is the minimum number of nodes whose removal results in a discon-
nected or a trivial (one-node) graph. Let κ(G) be the connectivity of G. According
to Menger’s theorem, at least κ(G) vertex-disjoint paths exist between arbitrary dis-
tinct vertices u and v in G. The set Cκ(u, v) of such paths is also called a container
of width κ between u and v. The length l(Cκ(u, v)) of Cκ(u, v) is defined as the
length of the longest path in Cκ(u, v). A best container between u and v, denoted by
C∗

κ (u, v), is a container of shortest length. Let dκ(u, v) be the κ-wide distance from
u to v, that is, dκ(u, v) = l(C∗

κ (u, v)). The κ-wide diameter (or wide diameter) of
G, denoted by dκ(G), is defined as the maximum of dκ(u, v) for all pairs of distinct
vertices u and v in G [7, 9, 14, 18, 25].

Suppose that H is a group and S is a generating set. The Cayley graph G =
Cay(H,S) is constructed as follows: (1) Each element h of H is assigned a ver-
tex, the vertex set V (G) of G is identified with H ; (2) for any h ∈ H and s ∈ S,
the vertices corresponding to the elements h and hs are joined by a directed edge
(h,hs). Thus the edge set E(G) consists of pairs of the form (h,hs). The Cayley
graph G = Cay(H,S) is undirected if the set S is symmetric, i.e. S = S−1; the graph
G = Cay(H,S) has no loop if the identity element e of the group H is not in S, i.e.
e �∈ S.

Many important and extensively studied interconnection networks, such as the
super-torus, hypercube, star graph, and alternating group graph, are Cayley graphs
[1, 17]. Define 〈n〉 as the set {1,2, . . . , n} and let p = p1p2 . . . pn be a permutation
of the elements of 〈n〉, that is, pi ∈ 〈n〉 and pi �= pj for i �= j . We may refer to
pi as p(i), or the ith element of p, or use brackets to delineate elements of a per-
mutation when simply juxtaposing them would lead to ambiguities. A permutation
p = p1p2 . . . pn of the elements in 〈n〉 can be represented by its cycle structure, i.e.,
cyclically ordered sets of symbols with the property that each symbol’s desired po-
sition is that occupied by the next symbol in the set. For example, the permutation
p = 64725831 consists of the three cycles C1 = (681),C2 = (42), and C3 = (73).
Let p = C1C2 . . .Cke1e2 . . . el , where Ci is a cycle of length |Ci | ≥ 2, for 1 ≤ i ≤ k,
and ej is an invariant for 1 ≤ i ≤ l. Thus, we have n = |C1| + |C2| + · · · + |Ck| + l.

An alternating group network ANn [27] is defined to be a Cayley graph G =
G(V,E) on the alternating group An, where V is the set of all even permuta-
tions of 〈n〉 = {1,2, . . . , n} and E consists of symmetric edges (u,v) such that two
permutations u and v are connected by an edge iff one can be reached from the
other through the operations v = f (u), f ∈ {gl, gr , zi |i = 4, . . . , n}. In the latter
set, gl = ( 1 2 3 4 ··· n

2 3 1 4 ··· n

) = (123) corresponds to shifting the first (leftmost) three sym-

bols cyclically to the left by one position. Similarly, gr = ( 1 2 3 4 ··· n
3 1 2 4 ··· n

) = (312) im-
plies shifting the first three symbols cyclically to the right by one position. Finally,
zi = ( 1 2 3 4 ··· i ··· n

2 1 i 4 ··· 3 ··· n

) = (12)(3i) corresponds to swapping symbols 1 and 2, as well
as symbols 3 and i, for some i = 4, . . . , n. So, the alternating group network ANn is a
regular graph with n!/2 nodes, n!(n−1)/4 edges, and node degree n−1. Youhu [27]
has shown that ANn is Hamiltonian and has a diameter of 
3(n − 2)/2�. Each alter-
nating group network ANn can be decomposed into n sub-alternating group networks
AN1

n,AN2
n, . . . ,ANn

n, where each ANi
n fixes i in the last position of the label strings

representing the vertices and is isomorphic to ANn−1. The edges that cross between
these sub-alternating group networks constitute a perfect matching.
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Let p = p1p2 . . . pn be an even permutation representing one vertex of ANn. The
symbol pi in p = p1p2 . . . pn is fixed if pi = i, and it is misplaced if pi �= i. The ver-
tex e = 12 . . . n is the identity vertex for which pi = i for all 1 ≤ i ≤ n. In devising a
routing algorithm, the vertex symmetry of ANn allows us to assume that e is the desti-
nation vertex. We aim to construct n−1 vertex-disjoint paths from an arbitrary vertex
p to e by “correcting” each non-fixed symbol to a fixed symbol. Similar to the corre-
sponding operations for the star graph and the (n, k)-star, a non-fixed symbol should
be moved to its desired position by first moving it to position 3. Non-fixed symbols
can be presented within a cycle representation, and cyclically shifting the symbols
in one cycle does not alter the occupying property of each symbol. Assume that the
cycle representation for vertex p is C1C2 . . .Ck with Ci = (ri,1, ri,2, . . . , ri,ki), where
ki is the length of the cycle Ci . The symbol ri,j is the j th symbol of Ci , and ri,1 is
the head of Ci . In particular, if a cycle contains the symbol 3, we always assume the
cycle is C1, and normalize C1’s representation via rotations, so that the symbol 3 is
the tail (last) symbol r1,k1 and p3 is the head symbol r1,1. Figure 1 depicts the first
three alternating group networks AN3,AN4, and AN5.

To prepare for the rest of our discussion, we reproduce in the following an optimal
routing algorithm that can generate a shortest path between any two vertices of ANn

[4]. Algorithm 1 is fully distributed, in the sense that it quickly determines the next
node p′ on a shortest path from the current node p to the destination node e, using
only the identities of p and e.

Note that Algorithm 1 leads to the construction of a single shortest path from a
source node to a destination node in ANn, thus demonstrating that finding a short-
est path for an alternating group network is relatively straightforward. We will see
shortly, in Theorem 1 and its proof, that constructing the maximum number of paral-
lel (node-disjoint) paths, all of which are close to minimum length, is a significantly
more difficult endeavor.

The following result (Lemma 1) from reference [4] is needed for our subsequent
discussion.

Lemma 1 [4] For any node p of ANn, let the canonical cycle structure be
C1C2 . . .Ck , and define m = |C1| + |C2| + · · · + |Ck|. If 3 is an invariant, then the
distance d(p, e) from node p to the identity node e is given by h(p) defined below:

h(p) = m + k if p1 = 1 and p2 = 2
= m + k − 3 if p1 = 2 and p2 = 1
= m + k if |{p1,p2} ∩ {1,2}| = 1, and 1 or 2 is an invariant
= m + k − 1 if |{p1,p2} ∩ {1,2}| = 1, and 1, 2 belong to the same cycle Ci

= m + k if |{p1,p2} ∩ {1,2}| = 0, and 1, 2 belong to the same cycle Ci

= m + k − 1 if |{p1,p2} ∩ {1,2}| = 0, and 1, 2 belong to different cycles

If 3 is not an invariant, then d(p, e) = h(p) − 2.

3 Construction of parallel paths

In the following, we address the problem of constructing parallel paths between two
arbitrary nodes of the alternating group network ANn. The ideas for our construc-
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Fig. 1 The first three alternating group networks with 3, 12, and 60 nodes
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tions originated from Day and Tripathi [6], and Lin and Duh [19]. We first construct
a family of parallel paths of minimum distance, and then extend this family to its
maximum possible size, n − 1, by adding parallel paths that are only slightly longer
than the shortest paths. We distinguish two cases. In the first case, the source and the
destination permutations have the same third symbol, while in the second case, they
have different third symbols. Because the alternating group network ANn is vertex-
symmetric, we need only deal with the construction of parallel paths between an ar-
bitrary node and the special node labeled with the identity permutation e = 12 . . . n.

Let ej , where 1 ≤ j ≤ n − m, be a fixed symbol in a vertex p, excluding the
symbol 3. Note that we do not allow ej = 3, even when p3 = 3 is fixed. An ej -path is
generated by first moving the symbol ej to position 3, and then keeping ej away from
its desired position, until all other symbols have been corrected. The ej -path thus
constructed is denoted by π(ej ). Clearly, no π(ej ) path can be constructed if m = n.
We use underlining at each step to indicate which symbol is being corrected. Some
steps in these paths do not correspond to a symbol correction, but to a preparation for
a symbol correction by moving the desired symbol to the third position.

Theorem 1 There are n − 1 vertex-disjoint paths between any two vertices of the
alternating group network ANn. Furthermore, the length of each of these paths is
bounded by d(u, v) ≤ l ≤ d(u, v)+ 4, where d(u, v) is the distance between u and v.
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Table 1 The structure of the proof of Theorem 1 in terms of parts (A/B), cases (1–6), and subcases (a/b).
The label given in the leftmost column corresponds to the (sub)section in Appendix A or B where the
corresponding proof can be found

Case p3 p1,p2 Status of 1 and 2 Status of 3 when p3 �= 3

A1 p3 = 3 {p1,p2} = {1,2} p1 = 1 and p2 = 2

A2 p1 = 2 and p2 = 1

A3 {p1,p2} ∩ {1,2} = {r} p1 = 1 or p2 = 2

A4 1, 2 in same cycle

A5 1, 2 in different cycles

A6 {p1,p2} ∩ {1,2} = � 1, 2 in same cycle

B1 p3 �= 3 {p1,p2} = {1,2} p1 = 1 and p2 = 2 (no subcase used)

B2 p1 = 2 and p2 = 1

B3a {p1,p2} ∩ {1,2} = {r} p1 = 1 or p2 = 2 3, r in same cycle

B3b 3, r in different cycles

B4a 1, 2 in same cycle 3 in same cycle as 1, 2

B4b 3 in different cycle from 1, 2

B5a 1, 2 in different cycles 3 in same cycle as 1 or 2

B5b 3 in different cycle from 1, 2

B6a {p1,p2} ∩ {1,2} = � 1, 2 in same cycle 3 in same cycle as 1,2

B6b 3 in different cycle from 1, 2

Proof By the vertex symmetry of ANn, it suffices to show the result for one vertex
labeled with an arbitrary even permutation p = C1C2 . . .Cke1e2 . . . el and the special
vertex labeled with the identity permutation e = 12 . . . n. The proof is composed of
two parts, each with several cases. Because of the many cases and tedious derivations
involved, the proof is given in Appendices A (the case of p3 = 3) and B (the case of
p3 �= 3). Table 1 lists the various cases and subcases in the proof for ready reference
and to illustrate the proof outline. �

Theorem 2 The family of n − 1 paths from any vertex to the identity vertex e con-
structed by the parallel routing rule above are internode-disjoint, meaning that they
do not share any vertex other than their endpoints.

Proof We only show that the family of n − 1 paths from any vertex p with p3 �= 3 to
e are node-disjoint. The proof of the case with p3 = 3 is similar and is thus omitted
for brevity.

(1) Let π(ri,1) denote the path constructed from p to e along which the m misplaced
symbols are corrected according to the order (Ci,Ci+1, . . . ,Ck,C1,C2, . . . ,

Ci−1). Similarly, let π(rj,1) be the path constructed from p to e along which the
m misplaced symbols are corrected according to the order (Cj ,Cj+1, . . . ,Ck,C1,

C2, . . . ,Cj−1), where i < j . Let πt (ri,1) be the t th vertex in the path π(ri,1),
where, π0(ri,1) = p. Obviously, π1(ri,1) is different from every vertex in π(rj,1),
because π1(ri,1) and π1(rj,1) are distinct neighbors of p and a symbol rj,1 in
π1(rj,1), with the exception of p, has already been corrected to its desired po-
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sition. Each vertex πt (ri,1), t ≥ 2, has the symbol ri,1 fixed, but ri−1,ki−1 mis-
placed. By the rotation property, the correction order of ri−1,ki−1 precedes that of
ri,1 in the path π(rj,1). So, there are no vertices in π(rj,1) that have the symbol
ri,1 fixed, but ri−1,ki−1 misplaced. Therefore, π(ri,1) and π(rj,1) are disjoint.

(2) For each ri,j �= ri,1 (2 ≤ i ≤ k,2 ≤ j ≤ ki), the path π(ri,j ) is constructed from
p to e along which the m misplaced symbols are corrected according to the or-
der (ri,j , ri,j+1, . . . , ri,ki ,Ci+1, . . . ,Ck, r1,k1, r1,1, r1,2, . . . , r1,k1−1,C2, . . . ,Ci−1,

ri,1, ri,2, . . . , ri,j−1). The fact that the paths constructed by this rule are disjoint
from each other can be proven by a method similar to that in paragraph (1)
above. Because the correction order of the element ri,j−1 precedes that of ri,j in
the paths constructed in paragraph (1) but not in (2), the two sets of paths under
(1) and (2) must be disjoint.

(3) For each ri,j �= ri,1 (i = 1, k1 ≥ 3,2 ≤ j ≤ k1),π(r1,j ) with 3 ≤ j ≤ k1 − 1 is
constructed along which m misplaced symbols are corrected according to the or-
der (r1,j , r1,j+1, . . . , r1,k1,C2, . . . ,Ck, r1,1, r1,2, . . . , r1,j−1). Similarly, π(r1,k1)

with k1 ≥ 3 is constructed along which m misplaced symbols are corrected ac-
cording to the order (r1,k1,C2, . . . ,Ck, r1,2, . . . , r1,k1−1, r1,1). Arguments similar
to those under paragraphs (1) and (2) establish that the paths constructed in (3)
are disjoint from each other and from those constructed earlier.

(4) The paths π(ej ) are obtained by first diverting one fixed symbol ej , other than
3, by moving it from its correct position to the third position, then along the
correction order sequence (C1,C2, . . . ,Ck). Finally, the diverted symbol ej is
returned to its desired position. Such a path π(ej ) is node-disjoint from any path
π(ri,j ) constructed in paragraphs (1)–(3), because the symbol ej is misplaced
all along π(ej ), while ej is in its desired position in π(ri,j ). On the other hand,
the two paths obtained by diverting ei and ej (ei �= ej ), respectively, are node-
disjoint because ej is misplaced all along the path π(ei) but fixed all along the
path π(ej ), while ej is misplaced along the path π(ej ) but fixed in the path π(ei).

�

Lemma 2 [19] If G is a regular graph with connectivity κ ≥ 2, then dκ(G) ≥
D(G) + 1, where D(G) is the diameter of G.

Theorem 3 The wide diameter dn−1(ANn) of ANn is bounded as D(ANn) + 1 ≤
dn−1(ANn) ≤ D(ANn) + 2, which means that it is within one unit of the smallest
possible.

Proof By Lemma 2, we only need to show that dn−1(ANn) ≤ D(ANn) + 2. For con-
venience, we use dn−1(p, e) to denote the length of the longest of the n − 1 paths
constructed in the proof of Theorem 1. We limit our proof to a single case, A1, where
dn−1(p, e) = m + k + 2 = n − l + k + 2, with l ≥ 3. Other cases can be dealt with
similarly. Note that 
3(n − 2)/2� equals the diameter D(ANn) of ANn.

(1) If n − l = 0 mod 4, that is, (n − l)/2 is an even integer, then k ≤ (n − l)/2 and
dn−1(p, e) = n − l + k + 2 ≤ 3(n − l)/2 + 2 ≤ 3(n − 3)/2 + 2 = 3(n − 2)/2 +
1/2 ≤ 
3(n − 2)/2� + 1/2.
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(2) If n− l = 2 mod 4, that is, (n− l)/2 is an odd integer, then k ≤ (n− l)/2 − 1 and
dn−1(p, e) = n − l + k + 2 ≤ 3(n − l)/2 + 1 ≤ 3(n − 3)/2 + 1 = 3(n − 2)/2 −
1/2 ≤ 
3(n − 2)/2� − 1/2.

(3) If n− l = 1 mod 4, that is, (n− l −1)/2 is an even integer, then k ≤ (n− l −1)/2
and dn−1(p, e) = n − l + k + 2 ≤ 3(n − l)/2 + 1/2 ≤ 3(n − 3)/2 + 1/2 = 3(n −
2)/2 − 1 ≤ 
3(n − 2)/2� − 1.

(4) If n− l = 3 mod 4, that is, (n− l − 1)/2 is an odd integer, then k ≤ (n− l − 1)/2
and dn−1(p, e) = n − l + k + 2 ≤ 3(n − l)/2 + 3/2 ≤ 3(n − 3)/2 + 3/2 = 3(n −
2)/2 ≤ 
3(n − 2)/2�.

The results of paragraphs (1)–(4) above imply that dn−1(p, e) ≤ D(ANn) + 2. �

4 Conclusion

The node-to-node internally disjoint paths problem is to find k paths between two
arbitrary nodes u and v in a k-connected graph such that these paths do not share
any nodes other than their two endpoints. The existence of such paths is an indication
of the robustness of an interconnection network, in the sense of it being maximally
fault tolerant, given that (by definition) a k-connected graph must contain some pairs
of nodes that are not connected by more than k parallel paths. Once such paths are
obtained, they enable fault-tolerant routing by using alternate paths when a particular
path is unavailable. Similarly, high-throughput routing becomes possible by using
parallel paths to send multiple pieces of long messages at once.

Alternating group networks are not the only networks to be maximally fault toler-
ant in the sense defined above. However, in general, some of the k parallel paths be-
tween nodes u and v may be significantly longer than the minimum distance d(u, v).
If, in a particular network, the k parallel paths can be constructed so that their length
is bounded by d(u, v) + ε, for some small constant ε, then the network is not only
highly robust, but also can maintain its high performance in the presence of multiple
faulty nodes and links. We have shown ANn to be such a network and established that
ε ≤ 4. Of course, we are assuming that faults are readily detectable, so that message
transmission over the associated paths can be avoided by means of suitably updating
routing tables or other routing mechanisms. This is not an unreasonable assumption,
given the use of error-detecting codes and other concurrent monitoring schemes.

A useful variation on the node-to-node internally disjoint paths problem is the
node-to-set disjoint paths problem, defined as follows. Given a node u and k other
nodes w1,w2, . . . ,wk , find k node-disjoint paths that connect node u to the nodes
wi,1 ≤ i ≤ k. Our ongoing research is centered on this problem. A solution to the
node-to-set disjoint paths problem would be quite helpful in broadcasting or multi-
casting. A set of desired destination nodes can be reached by choosing k intermediate
nodes, sending messages to those nodes via disjoint paths, and recursively spreading
the message from the newly informed k sources.
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Appendix A: Proof of Theorem 1 for p3 = 3

Please refer to Sect. 3 of the paper, Table 1 in particular, for the outline and structure
of the proof.

A.1 The case of p1 = 1 and p2 = 2

(1) For each ri,j (1 ≤ i ≤ k,1 ≤ j ≤ ki) in the cycle representation of p, a path
π(ri,j ) of minimum length m + k is constructed from p to e along which m

misplaced symbols are corrected in order of the sequence (ri,j , ri,j+1, . . . , ri,ki ,

Ci+1, . . . ,Ck,C1,C2, . . . ,Ci−1, ri,1, ri,2, . . . , ri,j−1). Since the m misplaced el-
ements each can be seen as the first element of the correction sequence by a
suitable number of left circular shifts, we have m vertex-disjoint paths, each of
length m+k. For example, given p = 12367458 = (46)(57)(1)(2)(3)(8) in AN8,
we construct these optimal parallel paths:

π1 = 12367458 → 21467358 → 12647358 → 21347658 → 12547638

→ 21745638 → e

π2 = 12367458 → 21637458 → 12437658 → 21537648 → 12735648

→ 21435678 → e

π3 = 12367458 → 21567438 → 12765438 → 21365478 → 12465378

→ 21645378 → e

π4 = 12367458 → 21763458 → 12563478 → 21463578 → 12643578

→ 21543678 → e

(2) An ej -path is generated by first moving one fixed ej to position 3, and then
keeping ej away from its desired position until the other symbols have been
corrected in order of the sequence (C1,C2, . . . ,Ck). The j th ej -path in this set,
π(ej ), is of length m+k+2 and is constructed in order of the correction sequence
(ej ,C1,C2, . . . ,Ck, ej ).

π5 = 12367458 → 23167458 → 32467158 → 23647158 → 32147658

→ 23547618 → 32745618 → 23145678 → e

π6 = 12367458 → 31267458 → 13467258 → 31647258 → 13247658

→ 31547628 → 13745628 → 31245678 → e

π7 = 12367458 → 21867453 → 12467853 → 21647853 → 12847653

→ 21547683 → 12745683 → 21845673 → e
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A.2 The case of p1 = 2 and p2 = 1

Since the elements of (12) are placed at their desired positions only at the end of the
correction process, that is to say, (12) automatically gets sorted when all the non-fixed
symbols have been sorted, we may always set Ck = (12).

(1) For each ri,j (1 ≤ i ≤ k,1 ≤ j ≤ ki) in the cycle representation of p, a path
π(ri,j ) of minimum length m + k − 3 is constructed from p to e along which
m − 2 misplaced symbols, excluding the elements of Ck = (12), are corrected in
order of the sequence (ri,j , ri,j+1, . . . , ri,ki ,Ci+1, . . . ,Ck−1,C1,C2, . . . ,Ci−1,

ri,1, ri,2, . . . , ri,j−1). Since the m − 2 misplaced elements each can be seen as
the first element of the correction sequence by a suitable number of left circular
shifts, we have m − 2 disjoint paths each of length m − 2 + k − 1 = m + k − 3.
For example, given p = 213749586 = (475)(69)(21)(3)(8) in AN9, we construct
these parallel paths:

π1 = 213749586 → 124739586 → 217439586 → 125439786 → 213459786

→ 126459783 → 219456783 → e

π2 = 213749586 → 127349586 → 215349786 → 124359786 → 216359784

→ 129356784 → 214356789 → e

π3 = 213749586 → 125749386 → 214759386 → 126759384 → 219756384

→ 124756389 → 217456389 → e

π4 = 213749586 → 126749583 → 219746583 → 123746589 → 214736589

→ 127436589 → 215436789 → e

π5 = 213749586 → 129743586 → 216743589 → 124763589 → 217463589

→ 125463789 → 216453789 → e

(2) An ej -path is generated by first moving one fixed symbol ej to position 3,
and then keeping ej away from its desired position until the other symbols
have been corrected according to the order of the sequence (C1,C2, . . . ,Ck−1).
The j th ej -path in this set, π(ej ), is of length m − 2 + k − 1 + 2 = m +
k − 1 and is constructed according to the order of the correction sequence
(ej ,C1,C2, . . . ,Ck−1, ej ), where ej can be an element of Ck = (12).

π6 = 213749586 → 321749586 → 234719586 → 327419586 → 235419786

→ 321459786 → 236459781 → 329456781 → 231456789 → e

π7 = 213749586 → 132749586 → 314729586 → 137429586 → 315429786

→ 132459786 → 316459782 → 139456782 → 312456789 → e

π8 = 213749586 → 128749536 → 214789536 → 127489536 → 215489736

→ 128459736 → 216459738 → 129456738 → 218456739 → e
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A.3 The case of {p1,p2} ∩ {1,2} = {r}, with p1 = 1 or p2 = 2

The construction in this case is similar to that of Sect. A.1.

A.4 The case of {p1,p2} ∩ {1,2} = {r}, with 1 and 2 in the same cycle Ci

(1) For each ri,j (1 ≤ i ≤ k,1 ≤ j ≤ ki) in the cycle representation of p, a
path π(ri,j ) of minimum length m + k − 1 is constructed from p to e

along which m misplaced symbols are corrected in order of the sequence
(ri,j , ri,j+1, . . . , ri,ki ,Ci+1, . . . ,Ck,C1,C2, . . . ,Ci−1, ri,1, ri,2, . . . , ri,j−1).
Since m misplaced elements each can be seen as the first element of the correc-
tion sequence by a suitable number of left circular shifts, we have m disjoint paths
each of length m+ k −1. For example, given p = 27356418 = (712)(456)(3)(8)

in AN8, we construct these parallel paths:

π1 = 27356418 → 32756418 → 23156478 → 12356478 → 21456378

→ 12546378 → 21645378 → e

π2 = 27356418 → 72156438 → 21756438 → 12456738 → 21546738

→ 12645738 → 21745638 → e

π3 = 27356418 → 72456318 → 27546318 → 72645318 → 27345618

→ 32745618 → 23145678 → e

π4 = 27356418 → 72536418 → 27635418 → 72435618 → 24735618

→ 42135678 → 21435678 → e

π5 = 27356418 → 72636418 → 27453618 → 42753618 → 24153678

→ 12453678 → 21543678 → e

(2) An ej -path is generated by first moving one fixed symbol ej (where ej = 2 is
possible) to position 3, and then keeping ej away from its desired position until
the other symbols have been corrected. The j th ej -path in this set, π(ej ), is
of length m + k + 1 and is constructed in the order of the correction sequence
(ej ,C1,C2, . . . ,Ck−1, ej ).

π6 = 27356418 → 73256418 → 37156428 → 13756428 → 31456728

→ 13546728 → 31645728 → 13745628 → 31245678 → e

π7 = 27356418 → 72856413 → 27156483 → 12756483 → 21456783

→ 12546783 → 21645783 → 12745683 → 21845673 → e

A.5 The case of {p1,p2} ∩ {1,2} = {r}, with 1 and 2 in different cycles

The construction in this case is similar to that of Sect. A.4.
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A.6 The case of {p1,p2} ∩ {1,2} = �, with 1 and 2 in the same cycle Ci

The construction in this case is similar to that of Sect. A.1.
This concludes the first part of the proof of Theorem 1, corresponding to the con-

dition p3 = 3. The second part of the proof, for p3 �= 3, is presented in Appendix B.

Appendix B: Proof of Theorem 1 for p3 �= 3

Please refer to Sect. 3 of the paper, Table 1 in particular, for the outline and structure
of the proof.

B.1 The case of p1 = 1 and p2 = 2

(1) For each head in the cycle representation of p, that is, ri,1 (1 ≤ i ≤ k), a path
π(ri,j ) is constructed from p to e along which m misplaced symbols are cor-
rected in order of the sequence (Ci,Ci+1, . . . ,Ck,C1,C2, . . . ,Ci−1), where this
order is obtained by performing on (C1,C2, . . . ,Ck) a number of left circular
shifts which make the head of the cycle Ci become the first element of the cor-
rection sequence. So, we have k paths of minimum length m+k−2. For example,
given p = 125463978 = (563)(798)(1)(2)(4) in AN9, we construct two optimal
parallel paths as follows:

π1 = 125463978 → 216453978 → 123456978 → 217456938 → 129456738

→ 218456739 → e

π2 = 125463978 → 217463958 → 129463758 → 218463759 → 125463789

→ 216453789 → e

(2) For each ri,j �= ri,1 (2 ≤ i ≤ k,2 ≤ j ≤ ki) in the cycle representation of p, a
path π(ri,j ) is built from p to e along which m misplaced symbols are corrected
in order of the sequence (ri,j , ri,j+1, . . . , ri,ki ,Ci+1, . . . ,Ck, r1,k1, r1,1, r1,2, . . . ,

r1,k1−1,C2, . . . ,Ci−1, ri,1, ri,2, . . . , ri,j−1). So we have m− (k −1)−|C1| paths,
each of length m + k. Continuing with our example, we have:

π3 = 125463978 → 219463578 → 128463579 → 217463589 → 123467589

→ 215467389 → 126457389 → 217456389 → e

π4 = 125463978 → 218463975 → 127463985 → 213467985 → 125467983

→ 216457983 → 127456983 → 219456783 → e

(3) For each ri,j �= ri,1 (i = 1,1 ≤ j ≤ k1) in the cycle representation of p, a path
π(ri,j ) is constructed as follows; note that the path π(r1,1) is the same as the path
π(r1,2):

Each path π(r1,j ), with k1 ≥ 3, is constructed along which m misplaced sym-
bols are corrected in order of the sequence (r1,j , r1,j+1, . . . , r1,k1,C2, . . . ,Ck,

r1,1, r1,2, . . . , r1,j−1).
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Each path π(r1,k1) is constructed along which m misplaced symbols are
corrected according to the order of the sequence (r1,k1,C2, . . . ,Ck, r1,2, . . . ,

r1,k1−1, r1,1).
So we have |C1|−2 paths, each of length m+k. Continuing with our example,

we get:

π5 = 125463978 → 213465978 → 127465938 → 219465738 → 128465739

→ 213465789 → 12645789 → 215436789 → e

(4) An ej -path is generated by first moving a fixed element ej to position 3, and then
keeping ej away from its desired position until the other symbols have been cor-
rected. The j th ej -path, π(ej ), is constructed in order of the correction sequence
(ej ,C2, . . . ,Ck, r1,k1, r1,1, r1,2, . . . , ri,k1−1, ej ). This process yields n−m paths,
each of length m + k + 2. For our example, the paths are:

π6 = 125463978 → 251463978 → 527463918 → 259463718 → 528463719

→ 251463789 → 523461789 → 235461789 → 326451789

→ 231456789 → e

π7 = 125463978 → 512463978 → 157463928 → 519463728 → 158463729

→ 512463789 → 153462789 → 315462789 → 136452789

→ 312456789 → e

π8 = 125463978 → 214563978 → 127563948 → 219563748 → 128563749

→ 214563789 → 123564789 → 215364789 → 126354789

→ 214356789 → e

B.2 The case of p1 = 2 and p2 = 1

(1) For each head in the cycle representation of p, that is, ri,1 (1 ≤ i ≤ k − 1),
a path π(ri,1) is constructed from p to e along which m − 2 misplaced sym-
bols, excluding elements of Ck = (12), are corrected in order of the sequence
(Ci,Ci+1, . . . ,Ck−1,C1,C2, . . . ,Ci−1), where the order is obtained by perform-
ing on (C1,C2, . . . ,Ck−1) a number of left circular shifts which make the head
of the cycle Ci become the first element of the correction sequence. This process
yields k − 1 paths of optimal length m − 2 − (k − 1) − 2 = m + k − 5. For exam-
ple, given p = 21583476 = (53)(486)(12)(7) in AN8, we construct the following
k − 1 parallel paths:

π1 = 21583476 → 12385476 → 21485376 → 12845376 → 21645378 → e

π2 = 21583476 → 12483576 → 21843576 → 12643578 → 21543678 → e

(2) For each ri,j �= ri,1 (2 ≤ i ≤ k,2 ≤ j ≤ k1) in the cycle representation of p, a
path π(ri,j ) is constructed from p to e along which the m misplaced symbols are
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corrected in order of the sequence (ri,j , ri,j+1, . . . , ri,ki ,Ci+1, . . . ,Ck, r1,k1, r1,1,

r1,2, . . . , r1,k1−1,C2, . . . ,Ci−1, ri,1, ri,2, . . . , ri,j−1). The process results in m −
(k − 1) − |C1| paths, each with length m + k − 3.

π3 = 21583476 → 12853476 → 21653478 → 12453678 → 21354678

→ 12534678 → 21435678 → e

π4 = 21583476 → 12683475 → 21386475 → 12586473 → 21685473

→ 12485673 → 21845673 → e

(3) For each ri,j �= ri,1 (i = 1,3 ≤ j ≤ k1, k1 ≥ 3) in the cycle representation of p, a
path π(ri,j ) is constructed as follows:

Each path π(r1,j ), with 3 ≤ j ≤ k1 −1, is constructed along which m misplaced
symbols are corrected in order of the sequence (r1,j , r1,j+1, . . . , r1,k1,C2, . . . ,Ck,

r1,1, r1,2, . . . , r1,j−1).
Each path π(r1,k1), with k1 ≥ 3, is constructed along which m misplaced

symbols are corrected in order of the sequence (r1,k1,C2, . . . ,Ck, r1,2, . . . ,

r1,k1−1, r1,1).
The processes outlined above yield |C1| − 2 paths, each of length m + k − 3.

Continuing with our example, since we have k1 = 2, no path belonging this class
exists.

(4) An ej -path is generated by first moving a fixed element ej to position 3, and
then keeping ej away from its desired position until the other symbols have been
corrected. Each such ej -path, π(ej ), is built in order of the correction sequence of
(ej ,C2, . . . ,Ck, r1,k1, r1,1, r1,2, . . . , r1,k1−1, ej ). The process outlined yields n −
(m − 2) − 1 = n − m + 1 paths, each of length m + k − 1.

π5 = 21583476 → 52183476 → 25483176 → 52843176 → 25643178

→ 52143678 → 25341678 → 32541678 → 23145678 → e

π6 = 21583476 → 15283476 → 51483276 → 15843276 → 51643278

→ 15243678 → 51342678 → 13542678 → 31245678 → e

π7 = 21583476 → 12783456 → 21483756 → 12843756 → 21643758

→ 12743658 → 21347658 → 12547638 → 21745638 → e

B.3 The case of {p1,p2} ∩ {1,2} = {r}, with p1 = 1 or p2 = 2

Each of the two subcases B3a and B3b of this case, corresponding to 3 and r being
in the same cycle or in different cycles, can be handled in a manner similar to that of
Sect. B.1.

B.4 The case of {p1,p2} ∩ {1,2} = {r}, with 1, 2 in the same cycle Ci

Since 1 and 2 have the same function, we discuss the construction in terms of r ∈
{1,2}.
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B4a. The subcase of 1, 2, 3 in the same cycle Ci

(1) For each head in the cycle representation of p, that is, ri,1 (1 ≤ j ≤ k), a path
π(ri,1) is constructed from p to e along which m misplaced symbols are cor-
rected in order of the sequence (Ci,Ci+1, . . . ,Ck,C1,C2, . . . ,Ci−1), where the
ordering is obtained by performing on (C1,C2, . . . ,Ck) a number of left circular
shifts which make the head of the cycle Ci become the first element of the cor-
rection sequence. This process yields k optimal paths of length m + k − 3. For
example, given p = 31247856 = (213)(57)(68)(4) in AN8, we construct these
parallel paths:

π1 = 31247856 → 12347856 → 21547836 → 12745836 → 21345876

→ 12645873 → 21845673 → e

π2 = 31247856 → 13547826 → 31745826 → 13245876 → 31645872

→ 13845672 → 31245678 → e

π3 = 31247856 → 13647852 → 31847652 → 13247658 → 21347658

→ 12547638 → 21745638 → e

(2) For each ri,j �= ri,1 (2 ≤ i ≤ k,2 ≤ j ≤ ki) in the cycle representation of p, a
path π(ri,j ) is constructed from p to e along which the m misplaced symbols are
corrected in order of the sequence (ri,j , ri,j+1, . . . , ri,ki ,Ci+1, . . . ,Ck, r1,k1, r1,1,

r1,2, . . . , r1,k1−1,C2, . . . ,Ci−1, ri,1, ri,2, . . . , ri,j−1). From this process, we have
m − (k − 1) − |C1| paths, each of length m + k. For our example:

π4 = 31247856 → 13742856 → 31542876 → 13642875 → 31842675

→ 13542678 → 51342678 → 15243678 → 21543678 → e

π5 = 31247856 → 13847256 → 31647258 → 16347258 → 61247358

→ 12647358 → 21547368 → 12745368 → 21645378 → e

(3) For each ri,j �= ri,1 (i = 1,3 ≤ j ≤ k1, k1 ≥ 3) in the cycle representation of p,
a path π(ri,j ) is constructed as follows; note that the path π(r1,1) is the same as
the path π(r1,2):

Each path π(r1,j ), with 3 ≤ j ≤ k1 − 1, is constructed along which m mis-
placed symbols are corrected in order of the sequence (r1,j , r1,j+1, . . . , r1,k1,

C2, . . . ,Ck, r1,1, r1,2, . . . , ri,j−1).
Each path π(r1,k1), with k1 ≥ 3, is constructed along which m misplaced sym-

bols are corrected in order of the sequence (r1,k1,C2, . . . ,Ck, r1,2, . . . , r1,k1−1,

r1,1).
The process above yields |C1| − 2 paths, each of length m + k − 1. For our

example, we have:

π6 = 31247856 → 23147856 → 32547816 → 23745816

→ 32145876 → 23645871 → 32845671 → 23145678 → e
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(4) An ej -path is generated by first moving a fixed element ej to position 3, and
then keeping ej away from its desired position until the other symbols have been
corrected. Such an ej -path, π(ej ), is constructed in order of the correction se-
quence (ej ,C2, . . . ,Ck, r1,k1, r1,1, r1,2, . . . , r1,k1−1, ej ). From this process, we
obtain n − m paths, each of length m + k + 1. For our example, we get:

π7 = 31247856 → 13427856 → 31527846 → 13725846 → 31425876

→ 13625874 → 31825674 → 13425678 → 41325678 → 14235678

→ 21435678 → e

B4b. The subcase of 3 not in the cycle Ci that contains 1, 2

(1) For each head in the cycle representation of p, that is, ri,1 (1 ≤ i ≤ k), a path
π(ri,1) is constructed from p to e along which m misplaced symbols are cor-
rected in order of the sequence (Ci,Ci+1, . . . ,Ck,C1,C2, . . . ,Ci−1), where the
ordering is obtained by performing on (C1,C2, . . . ,Ck) a number of left cir-
cular shifts which make the head of the cycle Ci become the first element of
the correction sequence. From this process, we obtain k optimal paths of length
m + k − 3. For example, given p = 25841763 = (83)(512)(67)(4) in AN8, we
construct these parallel paths:

π1 = 25841763 → 52341768 → 23541768 → 32145768 → 21345768

→ 12645738 → 21745638 → e

π2 = 25841763 → 82541763 → 28145763 → 82645713 → 28745613

→ 82145673 → 21845673 → e

π3 = 25841763 → 52641783 → 25741683 → 52841673 → 25341678

→ 32541678 → 23145678 → e

(2) For each ri,j �= ri,1 (2 ≤ i ≤ k,2 ≤ j ≤ ki) in the cycle representation of p,
a path π(ri,j ) is constructed from p to e along which m misplaced symbols are
corrected in order of the sequence (ri,j , ri,j+1, . . . , ri,ki ,Ci+1, . . . ,Ck, r1,k1, r1,1,

r1,2, . . . , r1,k1−1,C2, . . . ,Ci−1, ri,1, ri,2, . . . , ri,j−1). We thus obtain m − (k −
1) − |C1| paths, each of length m + k − 1. For our example, we have:

π4 = 25841763 → 52741863 → 25641873 → 52341876 → 25841376

→ 52641378 → 26541378 → 62145378 → 21645378 → e

π5 = 25841763 → 52148763 → 25648713 → 52748613 → 25148673

→ 52348671 → 25843671 → 52143678 → 21543678 → e

(3) For each ri,j �= ri,1 (i = 1,3 ≤ j ≤ k1, k1 ≥ 3) in the cycle representation of p, a
path π(ri,j ) is constructed as follows:
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Each path π(r1,j ), with 3 ≤ j ≤ k1 − 1, is constructed along which m mis-
placed symbols are corrected in order of the sequence (r1,j , r1,j+1, . . . , r1,k1,

C2, . . . ,Ck, r1,1, r1,2, . . . , r1,j−1).
Each path π(r1,k1), with k1 ≥ 3, is constructed along which m misplaced

symbols are corrected in order of the sequence (r1,k1,C2, . . . ,Ck, r1,2, . . . ,

r1,k1−1, r1,1).
From the above, we obtain |C1| − 2 paths, each of length m + k − 1. Since

k1 = 2 in our example, there exists no path in this class.
(4) An ej -path is generated by first moving a fixed element ej to position 3, and

then keeping ej away from its desired position until the other symbols have been
corrected. Such an ej -path, π(ej ), is constructed in the order of the correction
sequence (ej ,C2, . . . ,Ck, r1,k1, r1,1, r1,2, . . . , r1,k1−1, ej ). As a result, we have
n − m − 1 paths, each of length m + k + 2. For our example, the paths are:

π6 = 25841763 → 58241763 → 85641723 → 58741623 → 85241673

→ 58341672 → 35841672 → 53241678 → 35142678 → 13542678

→ 31245678 → e

π7 = 25841763 → 52481763 → 25681743 → 52781643 → 25481673

→ 52381674 → 25831674 → 52431678 → 24531678 → 42135678

→ 21435678 → e

B.5 The case of {p1,p2} ∩ {1,2} = {r}, with 1 and 2 in different cycles

Each of the two subcases B5a and B5b of this case, corresponding to 3 and r being
in the same cycle or in different cycles, can be handled in a manner similar to that of
Sect. B.4.

B.6 The case of {p1,p2} ∩ {1,2} = �, with 1 and 2 in the same cycle Ci

B6a. The subcase of 1, 2, 3 in the same cycle Ci

(1) For each head in the cycle representation of p, that is, ri,1 (1 ≤ i ≤ k), a path
π(ri,1) is constructed from p to e along which m misplaced symbols are cor-
rected in order of the sequence (Ci,Ci+1, . . . ,Ck,C1,C2, . . . ,Ci−1), where the
ordering sequence is obtained by performing on (C1,C2, . . . ,Ck) a number of
left circular shifts which make the head of the cycle Ci become the first ele-
ment of the correction sequence. This process yields k optimal paths of length
m + k − 2. For example, given p = 3526147 = (2513)(46)(7) in AN7, we ob-
tain:

π1 = 3526147 → 2356147 → 3216547 → 2136547 → 1246537

→ 2164537 → e

π2 = 3526147 → 5346127 → 3564127 → 5324167 → 3254167

→ 2314567 → e
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(2) For each ri,j �= ri,1 (2 ≤ i ≤ k,2 ≤ j ≤ ki) in the cycle representation of p, a
path π(ri,j ) is constructed from p to e along which the m misplaced symbols are
corrected in order of the sequence (ri,j , ri,j+1, . . . , ri,ki ,Ci+1, . . . ,Ck, r1,k1, r1,1,

r1,2, . . . , r1,k1−1,C2, . . . ,Ci−1, ri,1, ri,2, . . . , ri,j−1). The results of this process
are m − (k − 1) − |C1| paths, each of length m + k. For our example:

π3 = 3526147 → 5362147 → 6532147 → 5623147 → 6253147 → 2613547

→ 1263547 → 2143567 → e

(3) For each ri,j �= ri,1 (i = 1,3 ≤ j ≤ k1, k1 ≥ 3) in the cycle representation of p, a
path π(ri,j ) is constructed as follows:

Each path π(r1,j ), with 3 ≤ j ≤ k1 − 1, is constructed along which m mis-
placed symbols are corrected in order of the sequence (r1,j , r1,j+1, . . . , r1,k1,

C2, . . . ,Ck, r1,1, r1,2, . . . , r1,j−1).
Each path π(r1,k1), with k1 ≥ 3, is constructed along which m misplaced sym-

bols are corrected in order of the sequence (r1,k1,C2, . . . ,Ck, r1,2, . . . , r1,k1−1,

r1,1).
From this process, we have |C1| − 2 paths, each of length m + k. For our

example:

π4 = 3526147 → 5316247 → 1536247 → 5126347 → 1546327 → 5164327

→ 1524367 → 2154367 → e

π5 = 3526147 → 5236147 → 2546137 → 5264137 → 2654137 → 6214537

→ 1624537 → 2164537 → e

(4) An ej -path is generated by first moving a fixed element ej to position 3, and
then keeping ej away from its desired position until the other symbols have been
corrected. Such an ej -path, π(ej ), is constructed in order of the correction se-
quence (ej ,C2, . . . ,Ck, r1,k1, r1,1, r1,2, . . . , r1,k1−1, ej ). The results are n − m

paths, each of length m + k + 2. For our example, we obtain:

π6 = 3526147 → 5376142 → 3546172 → 5364172 → 3574172 → 5734162

→ 7524162 → 2754163 → 7214563 → 2174563 → e

B6b. The subcase of 3 not in the cycle Ci that contains 1, 2

(1) For each head in the cycle representation of p, that is ri,1 (1 ≤ i ≤ k), a path
π(ri,1) is constructed from p to e along which m misplaced symbols are cor-
rected in order of the sequence (Ci,Ci+1, . . . ,Ck,C1,C2, . . . ,Ci−1), where the
ordering sequence is obtained by performing on (C1,C2, . . . ,Ck) a number of
left circular shifts which make the head of the cycle Ci become the first element
of the correction sequence. As a result of this process, we obtain k optimal paths
of length m + k − 2. For example, given p = 4572163 = (73)(4251)(6) in AN7,
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we construct these parallel paths:

π1 = 4572163 → 5432167 → 3542167 → 5324167 → 3254167

→ 2314567 → e

π2 = 4572163 → 5742166 → 7524163 → 2754163 → 7214563

→ 2174563 → e

(2) For each ri,j �= ri,1 (2 ≤ i ≤ k,2 ≤ j ≤ ki) in the cycle representation of p, a
path π(ri,j ) is constructed from p to e along which the m misplaced symbols are
corrected in order of the sequence (ri,j , ri,j+1, . . . , ri,ki ,Ci+1, . . . ,Ck, r1,k1, r1,1,

r1,2, . . . , r1,k1−1,C2, . . . ,Ci−1, ri,1, ri,2, . . . , ri,j−1). This process yields m −
(k − 1) − |C1| paths, each of length m + k. For our example, we have:

π3 = 4572163 → 5427163 → 4257163 → 2417563 → 1247563 → 2137564

→ 1273564 → 2143567 → e

π4 = 4572163 → 7452163 → 4712563 → 7142563 → 1732564 → 3172564

→ 1342567 → 3124567 → e

π5 = 4572163 → 5412763 → 1542763 → 5132764 → 1572364 → 5142367

→ 1524367 → 2154367 → e

(3) For each ri,j �= ri,1 (i = 1,3 ≤ j ≤ k1, k1 ≥ 3) in the cycle representation of p,
a path π(ri,j ) is constructed as follows; note that the path π(r1,1) is the same as
the path π(r1,2):

Each path π(r1,j ), with 3 ≤ j ≤ k1 − 1, is constructed along which m mis-
placed symbols are corrected in order of the sequence (r1,j , r1,j+1, . . . , r1,k1,

C2, . . . ,Ck, r1,1, r1,2, . . . , r1,j−1).
Each path π(r1,k1), with k1 ≥ 3, is constructed along which m misplaced

symbols are corrected in order of the sequence (r1,k1,C2, . . . ,Ck, r1,2, . . . ,

r1,k1−1, r1,1).
From the above, we have |C1|−2 paths, each of length m+k−1. Since k1 = 2

in our example, there exists no path in this class.
(4) An ej -path is generated by first moving a fixed element ej to position 3, and

then keeping ej away from its desired position until the other symbols have been
corrected. Such an ej -path, π(ej ), is constructed in order of the correction se-
quence (ej ,C2, . . . ,Ck, r1,k1, r1,1, r1,2, . . . , r1,k1−1, ej ). From this process, we
obtain n − m paths, each of length m + k + 2. For our example:

π6 = 4572163 → 5462173 → 6542173 → 5624173 → 6254173 → 2614573

→ 1264573 → 2134576 → 1274536 → 2164537 → e

This concludes the final part of the proof of Theorem 1, corresponding to the
condition p3 �= 3; the complementary part, associated with p3 = 3 was covered in
Appendix A.
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