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Many complex networks exhibit a scale-free, power-law distribution of vertex degrees. This common feature is a
consequence of two generic mechanisms relating to the formation of real networks: (i) networks tend to expand
over time through the addition of new vertices and (ii) new vertices attach preferentially to those that are already
well connected. We show that for many natural or man-made complex networks possessing a scale-free
power-law distribution with the exponent � � 2, the number of degree-1 vertices, when nonzero, is of the same
order as the network size N and that the average degree is of order at most logN. Our results expose another
necessary characteristic of such networks. Furthermore, our method has the benefit of relying only on conditions
that are static and easily verified for arbitrary networks. We use the preceding results to derive a closed-form
formula approximating the distance distribution in scale-free networks. Such distributions are applied extensively
in the fields of computer communication and software architecture, among other domains.

Keywords: average distance; biological network; complex system; computer network; graph; power-law
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1. Introduction

Complex systems with many components and asso-
ciated interactions arise in nature, society and many
human artefacts. Interactions in such systems can be
modelled by networks composed of vertices and links,
which are in turn abstracted as undirected or directed
graphs. A graph G, denoted as G¼ (V,E), has a set V
of vertices or nodes and a set E of edges or links, where
each edge is defined by a pair of vertices (ordered pair,
for directed graphs). Complex systems in the three
categories of natural, societal and synthetic include:

(1) Protein interactions, metabolic systems, conta-
gious diseases

(2) Acquaintances, movie-actor peer group,
research collaborators

(3) Power grid, Internet connectivity, Worldwide
Web linkages

In citing the above examples, we have limited
ourselves to the better known and most widely
discussed/studied varieties; many other types of com-
plex networks exist. Such complex networks or graphs
are typically neither random (amenable to probabilistic
analysis) nor regular (mathematically tractable), ren-
dering the systematic study of their properties a rather
challenging undertaking. Many interesting results

about such networks have been published over the
past decade and many more await discovery. The

extreme theoretical and practical interest in such

complex networks makes it imperative to develop
tools for their recognition and classification.

Two models of complex networks have been

studied extensively (Watts and Strogatz 1998;

Barabási and Albert 1999; Albert and Barabási 2002;
Newman 2003): the small-world model and the

scale-free one. The small-world model features loca-

lised clusters that are connected by occasional
long-range links, leading to an average distance

between vertices that grows logarithmically with the
network size N. Watts and Strogatz (1998) investigated

mechanisms via which a regular network can be

transformed into a small-world network, without
significantly modifying the vertex-degree distribution,

and quantified the parameters that characterise the

resulting structures.
Scale-free networks, on the other hand, tend to

have uneven vertex connectivities, so that a certain

fraction of vertices, independent of network size, are

highly connected (the hubs). Barabási and Albert
(1999) demonstrated that the scale-free power-law

distribution of vertex degrees in many large networks

is a direct consequence of two generic mechanisms that
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govern network formation: (i) expansion over time
through the addition of new vertices and (ii) preferen-
tial attachment of new vertices to those already well
connected. It is well known that scale-freedom of a
network has significant implications for its diffusion
properties and its robustness.

In this article, we focus on scale-free networks, an
example of which appears in Figure 1 (Barabási and
Bonabeau 2003). We develop analytical tools that help
answer the question of whether a network is scale-free.
Note that visual representations, of the type shown in
Figure 1, reveal much about the structure of a network
that may not be readily discerned from a list of nodes
and links. We will return to discuss our motivation
after we have introduced some needed background in
Section 2.

2. Background and motivation

Despite some similarities, small-world and scale-free
networks have key differences. They both reside at the
boundary between regularity and randomness.
However, small-world networks tend to materialise
when we introduce randomness into an otherwise
regular, locally-connected network. These random
links provide shortcuts, thus reducing the average
distance in the network and eventually leading to short

paths between most vertex pairs (small-world phenom-
enon, which is dubbed ‘six degrees of separation’ in
some popular accounts). Scale-free networks, on the
other hand, typically result when randomness in
network connectivity is reduced (e.g. via preferential
attachment of new nodes).

The literature on small-world and scale-free net-
work phenomena is quite extensive. Following the
introduction of the basic concepts and derivation of
fundamental properties within the physics and natural
sciences communities, the importance of these concepts
in computer and control engineering, as well as in
computer science, was recognised. This recognition led
to numerous studies of real and potential applications
in network stability and synchronisation, information
diffusion and vulnerability to attacks of various kinds
to bring these notions to the attention of engineers and
computer scientists (e.g. Wang and Chen 2002; Li and
Chen 2003; Li, Wang, and Chen 2004; Chakrabarti
and Faloutsos 2006; Griffin and Brooks 2006; Li and
Wang 2006; Deng and Zhang 2007; Xia and Hill 2008).

As mentioned in Section 1, our focus in this article
is on scale-free networks. In a scale-free network, the
fraction Pd (k) of vertices having degree k, that is, with
k connections, asymptotically equals k��, where the
characteristic constant � is typically between 2 and 3,
although on occasion it may lie outside these bounds.

Figure 1. Example scale-free network, representing interacting proteins in yeast (Barabási and Bonabeau 2003).
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Despite this rather strong common characteristic, there
is no unique model for such networks, as many
connectivity patterns and growth rules lead to
scale-freedom. This is why laws applying to scale-free
and other types of complex networks are often
approximate. One cannot say with certainty that a
particular property will be observed in all scale-free
networks, or even in all previously discovered complex
networks of a particular kind. Hence, the prevalence of
qualifiers such as ‘most’, ‘a vast majority’ and ‘nearly
all’ in characterising the degree to which a given
generic property is observed in natural or synthetic
scale-free networks.

Far from being useless, such imprecise statements
still allow us to study and make practically important
deductions about various network classes, despite the
fact that we cannot characterise them with mathemat-
ical precision. In fact, two of the authors have
previously proposed deterministic models for certain
complex networks (Xiao and Parhami 2006) that allow
more precise characterisations. Note, however, that
this approach simply replaces imprecision in the
discussion of properties with inexactness at the mod-
elling stage. In other words, we can derive very precise
results about the deterministic model, but the model is
only an approximate representation of real networks of
interest.

Given the broad interest in scale-free networks as
facilitators of scientific inquiries and tools in a number
of important practical applications, the questions of
identifying, relating and categorising such networks
arise. For example, it would be quite helpful to find
simple and quick ways of telling whether a network is
scale-free (sufficient conditions) or for ruling out
scale-freedom (necessary conditions). In the latter
case, the necessary conditions can be used to rule out
scale-freedom in a vast majority of networks encoun-
tered in practice, thus obviating the need for more
extensive and computationally more costly investiga-
tion. We offer such a necessary condition in this article.
Our proposed condition, that is the multiplicity of
degree-1 vertices in the graph, is easily verified based
on the static network structure (its topology or
connectivity). While the running time for verifying
our condition varies with the specific graph represen-
tation, it will never exceed O(n2) for an n-vertex graph
and is usually as low as O(n), the least possible. As a
by-product of our results, we have been able to
characterise the distance distribution in scale-free
networks, which is a result of interest in its own right.

The rest of this article is organised as follows.
After reviewing the parameters and key attributes of
scale-free complex networks in Section 3, we provide
characteristic conditions for such networks and show
that these conditions are both easy to verify and

satisfied by many natural and man-made scale-free
networks (Section 4). Section 5 is devoted to an
analysis of distance distributions in scale-free networks
based on the results of Section 4. Section 6 contains
our conclusion and some directions for further
research.

3. Scale-free networks

A graph G¼ (V,E) has a number of local and
aggregate parameters that characterise its structure
(regularity, modularity, dimension), connectivity (den-
sity, ease/speed of diffusion) and robustness (resilience
to random or malicious faults). The parameters that
are of interest in this article appear in the following list.
Throughout this article, we use ‘�’ to denote compar-
ableness in terms of the order of magnitude; that is,
A�B is synonymous with A¼�(B).

M Number of edges; M¼ |E|
N Number of vertices; N¼ |V|

d(v) Degree of the vertex v 2 V
�d Average vertex degree of the network;

�d¼�v2V d(v) / N
nk Number of degree-k vertices; nk¼

|{v | d(v)¼ k}|
�(u, v) Distance between vertices u and v

D Network diameter; D¼maxu,v2V �(u, v)
�� Average distance; ��¼�u,v2V �(u, v) / N2 [We

use this more convenient definition, rather
than excluding the case u¼ v and dividing the
sum of distances by N(N� 1)]

qk Number of node pairs that are of distance k;
qk¼ |{(u, v) | �(u, v)¼ k}|

Pd(k) Degree distribution, or fraction of vertices
that are of degree k; Pd(k)¼ nk/N [Probability
that a randomly chosen vertex is of degree k]

P�(k) Distance distribution, or fraction of vertex
pairs at distance k; P�(k)¼ qk/N

2 [Probability
that the distance between a randomly chosen
vertex pair is k]

For many complex networks, the probability dis-
tribution Pd(k) of the number of degree-k vertices, also
known as the degree distribution, can be represented
(independent of scale, hence the designation
‘scale-free’) by a power law with characteristic expo-
nent �:

Pd ðkÞ ¼ k��=c ð1Þ

The term c in the denominator of Equation (1) is a
normalising constant, defined as c¼�k2K k��, where K
is the set of all node degrees occurring in the network.

Equation (1) holds in an approximate manner,
often providing greater precision for node
degrees that are neither too small nor too large.

International Journal of Systems Science 953
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Nevertheless, network attributes predicted when

Equation (1) is deemed to be exact often match

remarkably well with the corresponding attributes of

real complex networks. The characteristic exponent �
is observed to be in the range 2–3 for most actual

complex networks.
Certain network attributes can be derived from

Equation (1). For example, the high resilience of

scale-free networks in the face of random node failures

and their vulnerability to deliberate attacks against

selected nodes are consequences of Equation (1), with

certain mild assumptions. The fact that scale-free

networks exhibit the small-world phenomenon, with

the attendant high-clustering coefficients, can be

deduced likewise. Interestingly, the small-world phe-

nomenon persists, even if distances are not measured

along shortest paths (a feature that would require

global knowledge for routing decisions, which is not

likely to be available in practice), but rather according

to a near-optimal routing strategy with localised

decisions (Kim, Yoon, Han, and Jeong 2002). Table

1 lists the parameters N, M, �d and � for several real

scale-free networks (Albert and Barabási 2002;

Newman 2003). It demonstrates that scale-free

networks with 2� � � 3 are of diverse types that
include technological, social and natural networks.
The parameters listed are also relevant to our study of
distance distribution in Section 5. An augmentation to
this table will be presented later on (see Table 2).

4. Necessary conditions for scale-freedom

In this section, we study the conditions for vertex
degrees of complex networks having scale-free
power-law distribution. We assume that the network
is connected; similar arguments apply to disconnected
networks. Recall that Pd(k) stands for the probability
distribution of the number of degree-k vertices, �d
represents the average vertex degree and nk denotes the
number of vertices of degree k. We haveM¼½N �d and
nk¼NPd (k), where N and M are number of vertices
and edges, respectively. The preceding definitions
imply that

XN�1
k¼1

nk ¼ N ð2aÞ

XN�1
k¼1

knk ¼ 2M ð2bÞ

Supposing that n1 6¼ 0, a condition that is almost
guaranteed to be satisfied for actual networks with
large N, we have nk¼ n1Pd(k)/Pd(1) and

XN�1
k¼1

Pd ðkÞ=Pd ð1Þ½ � ¼ N=n1 ð3aÞ

XN�1
k¼1

kPd ðkÞ=Pd ð1Þ½ � ¼ 2M=n1 ð3bÞ

Table 2. Relationship of n1 versus N and �d versus logN, in a number of example networks of biological (Bio), scientific
collaboration (SC) and software (SW) types.

Network Type N M n1 �d n1/N �d/log N

Elegans Bio 314 363 203 2.312 0.646 0.279
Grassland Bio 88 137 23 3.114 0.261 0.482
Helicon Bio 710 1396 267 3.932 0.376 0.415
Mouse Bio 13 12 7 1.846 0.538 0.499
Silwood Bio 153 365 55 4.771 0.359 0.657
Ythan Bio 135 596 7 8.830 0.052 1.248
NCSTRL SC 6396 15,872 894 4.963 0.140 0.393
AbiWord SW 1035 1719 447 3.322 0.432 0.332
Digital Material SW 162 252 59 3.111 0.364 0.424
Linux SW 5285 11,352 1200 4.296 0.227 0.347
MySQL SW 1480 4190 258 5.662 0.174 0.538
VTK SW 771 1357 348 3.520 0.451 0.367
XMMS SW 971 1802 300 3.712 0.309 0.374

Notes: For data on biological networks, see: www.cosin.org/extra/data. Data for NCSTRL was supplied by E.J. Newman. For
software networks, see: www.tc.cornell.edu/�myers/Data/SoftwareGraphs/index.html.

Table 1. Number of vertices (N), number of edges (M),
average degree ( �d ) and characteristic exponent (�) for some
complex networks.

Network N M �d �

Internet 10,687 31,992 5.98 2.5
Film actors 449,913 25,516,482 113.43 2.3
Metabolic network 765 3686 9.64 2.2
Protein interactions 2115 2240 2.12 2.4
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For scale-free networks, we have Pd(k)¼Pd(1) k
��,

which leads to

XN�1
k¼1

k�� ¼ N=n1 ð4Þ

Therefore, using the assumption � � 2, a condition
which is known to hold for many scale-free networks
(Albert and Barabási 2002; Newman 2003), we have

N=n1 �
X1
k¼1

k�� �
X1
k¼1

k�2 ¼ �2=6 ð5Þ

This leads to the result N� n1. Let f(k)¼Pd(k)/
Pd(1)¼ k��. When N� n1, Equation (3) yields

XN�1
k¼1

f ðkÞ � 1 ð6aÞ

XN�1
k¼1

kf ðkÞ � �d ð6bÞ

Taking all logarithms to be in base 2, and in view of
the assumption � � 2, Equation (6) yields
15 �d� logN, given that

PN
k¼1k

�1
� logN. Thus, we

have proved that for many real complex networks of
scale-free power-law distribution with � � 2, the
number of degree-1 vertices, when nonzero, is of
the same order as the network size N and that the
average degree is of order logN. Furthermore, if
log logN� �d� logN, then Equation (6) implies in
many cases that

f ðkÞ � k�� ð7Þ

Elaborating on Equation (7), three canonical cases
can be distinguished for the function f(k) when
log logN� �d� logN: (a) f(1)¼ 1 and f(k) a constant
for k 6¼ 1, (b) f(k)¼ e1�k and (c) f (k)� k��. For case
(c), Equation (6) holds when 2� �5 3. However, for
cases (a) and (b), Equation (6b) is not satisfied if
Equation (6a) holds. Note that more complex func-
tions satisfying Equation (6) exist. For example, one
can define the following function which satisfies
Equation (6):

f ðkÞ � e1�k, if k � logN; f ðkÞ � k�� , otherwise

ð8Þ

As a consequence of our above results, the
scale-free property of complex networks must be
viewed as an approximate or fuzzy property.

Referring to Table 1, which lists the parameters N,
M, �d and � for several real scale-free networks, we note
that �d�½logN (respectively, 5 logN, logN or
log logN) for the Internet (film actors, metabolic or
protein interaction) network. A wider range of

examples from the domains of biological networks, a
particular instance of scientific collaboration networks
and various types of software graphs appear in
Table 2. Recall that N, M, n1 and �d are, respectively,
number of vertices, number of edges, number of
degree-1 vertices and average vertex degree in the
network, and that logarithms are in base 2.

The data presented in Table 2 allow further
evaluation and verification of our results and the
associated points discussed above. Note that in all
these examples, n1 is a sizable fraction of N. The
variation in n1/N in the sample of Table 2 is approx-
imately an order of magnitude (a factor of about 12.4,
to be more precise), while �d/logN has a three times
narrower variation range. We do not know all the �
values for these networks, but the Ythan network, with
worst match to our results has �¼ 1.04, well below
the lower limit of 2 for which we have proved our
results.

For many real scale-free networks (Albert and
Barabási 2002; Newman 2003), the exponent � satisfies
�5 3. We now proceed to show that this property also
follows from our analysis. A connected scale-free
network has �5 3 when n1� 1 and N� 6. In fact, for
� � 3, we have

M ¼ ðn1=2Þ
XN�1
k¼1

k1�� � ð�2=12Þn1 5 ð5=6Þn1 ð9Þ

We see that the assumption � � 3 leads to the
impossible result N�M4N/6� 1.

5. Distance distribution

Using the method of Section 4, we can obtain other
interesting results on the distance distribution of
complex networks. Recall that D and �� represent the
diameter and average distance of a complex network,
respectively. Assume that there are qk vertex pairs of
distance k, where for simplicity we include the pairs
(v, v) and count both (u, v) and (v, u) for u 6¼ v; that is,
we consider the pairs to be ordered. Then we have

XD
k¼0

qk ¼ N 2 ð10aÞ

XD
k¼1

kqk ¼ N 2 �� ð10bÞ

Clearly, q1¼ 2M. For scale-free networks with
� � 2, we have M�½NlogN. These networks are
also believed to satisfy D� c logN, where c is
constant. Now, suppose that M¼½NlogN,
D¼ logN, ��¼½ logN and g(k)¼ qk / (2M).

International Journal of Systems Science 955
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Then, Equation (10) yields

XlogN
k¼0

gðkÞ � N= logN ð11aÞ

XlogN
k¼1

kgðkÞ � N=2 ð11bÞ

The following identities involving binomial coeffi-

cients are well known:

r
0

� �
þ

r
1

� �
þ

r
2

� �
þ � � � þ

r
r

� �
¼ 2r ð12aÞ

r
1

� �
þ 2

r
2

� �
þ 3

r
3

� �
þ � � � þ r

r
r

� �
¼ r2r�1 ð12bÞ

By Equation (12), g(k)¼ logN
k

� �
/logN satisfies

Equation (11). Hence, qk�N logN
k

� �
. Thus, we have

obtained the distance distribution for vertex pairs in

scale-free complex networks:

P�ðkÞ ¼ qk=N
2 �

logN
k

� �
=N ð13Þ

One should note that the distance distribution of

networks are quite complicated and the formulas

derived for qk and P�(k) are approximate. In the case

of certain regular networks, closed-form expressions

for distance distribution can be obtained. For example,

the corresponding formulas for m	m torus networks

(N¼m2) are as follows:

q0 ¼ N; qk ¼ qm�k ¼ 4kNð1 � k5m=2Þ for all m

ð14aÞ

qm=2 ¼ ð2m� 2ÞN; qm ¼ N for m even ð14bÞ

Many real networks, with which we have experi-

mented, have a distance distribution curve that rises at

P
d
(k

)
P

d
(k

)

Distance k

Distance k

(a) 

(b) 

Figure 4. Distance distribution in the maximum component
of two actual complex networks: (a) NCSTRL graph
(Newman 2001) with 6396 vertices and diameter of 31, and
(b) Linux graph (Myers 2003) with 5285 vertices and
diameter of 17.

10 D2
Distance k

1 / N

2M / N 2

Probability Pd (k )

Figure 3. Generic distance distribution in a diameter-D
network with N vertices and M edges.

40 2

Probability Pd (k )

86 1210 1614

0.2

0.0

0.1

7 × 7

10 × 10

13 × 13

16 × 16

Distance k

Figure 2. Distance distribution for small, square torus
networks.
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first, and then exhibits a declining trend, much like

those in Figure 2. So, both extremely short and very

long distances are less common than values closer to

the average. Figure 3 depicts the general form of the

distance distribution in complex networks. Figure 4
depicts the distance distributions in two actual complex

networks.

6. Conclusions

Despite extensive research on large-scale complex

networks within multiple scientific disciplines over
the past decade, there are still gaping holes in our

understanding of such networks (Dorogovtsev and

Mendes 2002). New results that shed light on the static

structure (topology) and dynamic properties (node
interactions) of different classes of large-scale networks

are needed to facilitate further progress. We have

shown that, when vertex degrees of large networks

follow a scale-free power-law distribution with the

exponent � � 2, the number of degree-1 vertices, when
nonzero, tends to be of the same order as the network

size N, and that the average node degree is of order at

most logN. Our method can be applied with advan-

tage, because it relies on conditions that are static and
easily verified for any network.

We have also derived a closed-form formula

approximating the probability that a randomly

chosen pair of vertices are at distance k (distance

distribution) in scale-free networks. Such distributions
are known to be applicable to diverse fields of study,

including software architecture and computer commu-

nications (Yook, Jeong, and Barabási 2002). Our

results on distance distribution are extensible to the

case when distances are measured according to a
routing strategy with localised decisions (Kim et al.

2002), in lieu of globally optimal routes which are

much harder to compute, and thus less likely to be

practically useful. Pursuing this and similar extensions
constitute fruitful directions for further research.

Our discussion of Section 4 leads to a model for

scale-free networks, which are known to satisfy

k�¼Pd(1)/Pd(k)¼ n1/nk. Taking this equality to be

exact and noting that n1 / nk is a rational number, it
follows that k� must be an integer that divides n1.

Consequently, n1 must be divisible by the least

common multiple of k�1 , k
�
2 , . . . , k�l , where

1¼ k15 k25 � � �5 kl is the degree sequence of the
network. This yields a general model for scale-free

networks that we will aim to study further in the

future. Such extensions and variations will further

broaden the applications of our results in diverse

subfields within computing, communication, biology
and the social sciences.
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