
www.ietdl.org
Published in IET Computers & Digital Techniques
Received on 21st April 2011
Revised on 13th January 2012
doi: 10.1049/iet-cdt.2011.0059

Special Issue: High-Performance Computing System
Architectures: Design and Performance

ISSN 1751-8601

Efficient realisation of arithmetic algorithms with
weighted collection of posibits and negabits
G. Jaberipur1,2 B. Parhami3

1Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran1983963113, Iran
2School of Computer Science, Institute for Research in Fundamental Science (IPM), Tehran, Iran
3Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA93106-9560, USA
E-mail: jaberipur@sbu.ac.ir

Abstract: Most common uses of negatively weighted bits (negabits), normally assuming arithmetic value 21(0) for logical 1(0)
state, are as the most significant bit of 2’s-complement numbers and negative component in binary signed-digit (BSD)
representation. More recently, weighted bit-set (WBS) encoding of generalised digit sets and practice of inverted encoding of
negabits (IEN) have allowed for easy handling of any equally weighted mix of negabits and ordinary bits (posibits) via
standard arithmetic cells (e.g., half/full adders, compressors, and counters), which are highly optimised for a host of simple
and composite figures of merit involving delay, power, and area, and are continually improving due to their wide
applicability. In this paper, we aim to promote WBS and IEN as new design concepts for designers of computer arithmetic
circuits. We provide a few relevant examples from previously designed logical circuits and redesigns of established circuits
such as 2’s-complement multipliers and modified booth recoders. Furthermore, we present a modulo-(2n + 1) multiplier,
where partial products are represented in WBS with IEN. We show that by using standard reduction cells, partial products
can be reduced to two. The result is then converted, in constant time, to BSD representation and, via simple addition, to final sum.
1 Introduction

In the past couple of decades, the computing discipline and its
associated products market have been increasingly dominated
by media processing and a host of supporting
communications and digital signal processing (DSP)
applications. The steady rise in the performance of general
purpose and DSP chips has driven not only the market for
embedded computing devices, but also influenced the
broader scene, from personal computing platforms to
supercomputers. Greater technological capabilities and the
ever-increasing demand for more functionality in computing
and communication devices have driven a tightly wound
cycle of advances that has increased not only the processing
speed, but has done so more economically and at lower
energy dissipation. The demand for even greater
performance continues to drive the development of
hardware for signal processing, to the extent that DSP and
graphics chips are now at the leading edge of performance,
cost-effectiveness and energy efficiency.

One way to improve the speed and efficiency of DSP and
other arithmetic-intensive applications is through non-
standard number formats. Residue number system (RNS)
representations have led the way in this regard since the
1980s [1–3]. Redundant number representations [4, 5] have
also been used widely, particularly in reducing the
complexity of digital filter implementation via multiplierless
designs [6]. Of course, the main strength of redundant
representations is in their carry-free addition property,
IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 259–268
doi: 10.1049/iet-cdt.2011.0059
making addition even faster than in RNS. Although
redundant representations lead to slower multiplication
compared with RNS, they can be quite competitive overall,
given the elimination of the final carry-propagate addition
required in standard weighted representations. Furthermore,
elimination of forward (binary to RNS) and reverse (RNS
to binary) conversions, and the possibility of multiplierless
implementation in some cases can mitigate the speed loss.

One drawback of redundant and other unconventional
number representations, as currently used in various
applications, is their need for non-standard hardware
building blocks that must be designed from scratch. In this
paper, we show how speed can be improved via the
introduction and uniform treatment of positively and
negatively weighted bits, allowing virtually any arithmetic
algorithm on signed operands (including signed-digit, and
other redundant or hybrid-redundant arithmetic operations)
to be performed using the same highly efficient and
extensively optimised circuitry used for unsigned values.

Considering the most-significant bit of a 2’s-complement
number as having a negative weight is a well-known
method for simplifying direct signed multiplication [7].
Similarly, negatively weighted bit positions have been used
to simplify the interpretation of, and algorithm development
for, number systems with negative and imaginary radices
[8]. Negatively weighted bits (negabits) have also been used
in the kn, pl encoding of binary signed digits [9] and, more
recently, in weighted bit-set (WBS) encoding of redundant
number systems [10], signed-LSB representation of
259

& The Institution of Engineering and Technology 2012

www.ietdl.org
modulo-(2n + 1) residues [11] and signed-digit adders [12,
13], where a combination of weighted encoding of a digit
set and a power-of-2 radix allows efficient implementation
of arithmetic with redundant operands.

In describing arithmetic algorithms and associated
transformations, it is customary to denote an ordinary bit, or
posibit, by a heavy dot (†), thus producing a visual
representation of numbers and algorithm steps in ‘dot
notation’ (Fig. 1a). Using a small hollow circle (W) to
denote a negabit allows us to visualize 2’s-complement
numbers (Fig. 1b), negabinary or radix-(–2) numbers
(Fig. 1c), and other representations formed by a specific
mix of posibits and negabits in an extended dot notation.
Redundant representations, with multiple dots in some
positions, allow us to take advantage of their carry-free
arithmetic property. In addition, representational redundancy
can lead to faithful representation of arbitrary digit sets such
as [0, 9] (Fig. 1d) and [–6, 6] (Fig. 1e), which would
otherwise have to be encoded using the wider ranges of [0,
15] and [–8, 7] (e.g. as in Figs. 1a and b), respectively.

It is the mixed use of arbitrary combination of posibits and
negabits in various bit positions (e.g. Fig. 1e) that forms the
focus of this paper. In general, there may be several WBS
encodings for a given digit set. For example, a collection of
six negabits and six posibits, all weighted 1, also faithfully
represent [–6, 6]. However, two-deep or canonical WBS
encodings (i.e. those containing at most two bits in each
binary position, as in Fig. 1) are preferred because of the
possibility of more efficient implementation of arithmetic
operations [10].

Any non-canonical WBS encoding can be converted to an
equivalent canonical one using the range-preserving

Fig. 2 Range-preserving transformations for WBS encodings

Fig. 1 Number representations of varying ranges in extended dot
notation

a Unsigned binary number in [0, 15]
b Two’s-complement number in [28, 7]
c Negabinary number in [210, 5]
d A faithful encoding of digit set [0, 9]
e A failthful encoding of digit set [26, 6]
260

& The Institution of Engineering and Technology 2012
transformations of Fig. 2 to redistribute the extra dots in
columns with more than two dots. Some results on WBS
encodings, and associated arithmetic algorithms, follow
immediately from the preceding discussion. For example, it
is easy to see that any arbitrary digit set [2a, b] can be
faithfully represented using canonical (two-deep) WBS
encoding; simply encode the set with a negabits and b
posibits of weight 1 and then apply the transformations of
Fig. 2 in multiple rounds to reduce the depth to 2. Fig. 3
depicts such transformations for a ¼ b ¼ 6. Also, adding
two WBS-encoded numbers can be viewed as the operation
of depth reduction from 4 to 2, where the depth of four
results from aligning the corresponding positions of the
two-deep operands. Finally, subtraction can be converted to
addition by changing posibits to negabits, and vice versa, in
the subtrahend.

In this paper, we aim to promote the use of WBS and
inverted encoding of negabits (IEN) in the design of digital
arithmetic circuits. Therefore we reproduce relevant
examples (Examples 1 and 3 in Section 2, and Examples
4–6 in Section 4) from some of the previously published
works [12, 14], and our corresponding conference paper
[15]. Furthermore, we present an efficient method for
converting any canonical WBS encoding to any desired
two-deep encoding (see Example 7 in Section 4). In
particular, conversion from two-deep WBS to BSD is
important because of ease of converting the latter to its
equivalent 2’s-complement number. As another new
example, we present the design strategy for a modulo-
(2n + 1) multiplier (see Example 8 in Section 4), where we
show how WBS and IEN techniques help in reducing the
design effort and increase design reliability.

2 Representations and algorithms

One of the important notions in the design of digital circuits
for arithmetic-intensive and other applications is that of bit
compression. For example, a half-adder (HA) can be

Fig. 4 Basic bit compression and redistribution operations in dot
notation

a HA
b FA
c (4; 2)
d (4; 2) in multiple columns

Fig. 3 Four faithful WBS representations of the digit set [–6, 6]
IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 259–268
doi: 10.1049/iet-cdt.2011.0059

www.ietdl.org
viewed as a dot redistribution tool that takes two dots in the
same column and produces one dot each in the same and
the next higher position, as depicted in Fig. 4a. Similarly, a
full-adder (FA), also known as (3; 2)-counter, compresses
three dots to two dots, corresponding to the sum and carry
bits, as shown in Fig. 4b. When applied to multiple
columns of three dots at once, this leads to reduction of
three binary numbers to two binary numbers in a scheme
known as carry-save addition. Finally, the (4; 2)-compressor
of Fig. 4c is capable of compressing a column of four dots
into two dots in adjacent columns, plus a carry bit that is
sent to the next higher column. This is possible because
four dots in a column when combined with an incoming
carry (the fifth dot) represent a value in [0, 5] and thus can
be represented by one dot of the same weight and two dots
of double that weight (Fig. 4d).

In the rest of this section, we present three examples to
illustrate the applications and advantages of our unifying
framework.

(Unsigned and 2’s-complement multiplication): Steps of
conventional unsigned multiplication and 2’s-complement
multiplication based on Baugh–Wooley [7] scheme for
4-bit operands are depicted in Figs. 5a and b, respectively.
The essence of the Baugh–Wooley conversion step is the
replacement of any negabit 2b by the posibit 1–b (logical
complement of b) and the constant negabit 21. Constant
negabits are then gradually shifted to the left, and
eventually discarded at the left end [5], using the identity
(0 2 1)two ¼ (21 1)two. However, Fig. 5b is a
demonstration of our new interpretation of the Baugh–
Wooley technique, with the use of negabit symbols. The
three horizontally aligned negabits, in the bottom row of
partial products, collectively represent a negative number
(e.g. 2xyz) that can be replaced by a 2’s-complement
number (e.g. −1 �x �y �z + 1 composed of a ‘–1’ in the
column of the leftmost posibit, inversion of the three
negabits regarded as posibits, and a ‘1’ in the intermediate
column. The same is true for the other three diagonally
aligned negabits. Therefore we get at all-posibit partial
products, with the two 1’s (–1’s) becoming a single 1 (–1)
in the next more significant column. The partial products
with negabits are only for illustration purpose and the all-
posibit partial products are directly generated via an AND/
NAND matrix, where the NAND gates produce the posibits
that correspond to the aforementioned negabits.

(Partial-product generation in mod-(2n + 1) multiplication):
In mod-(2n + 1) multiplication, each posibit c in position
n + i (0 ≤ i ≤ n 2 1) of a partial product is ruled by (1),
where c2 denotes a negabit whose arithmetic value equals
2c and �c = 1 − c. Thus, a posibit c of weight 2n+i may be
removed and a negabit c2 of weight 2i introduced instead

|2n+ic|2n+1 = |2i(2n + 1 − 1)c|2n+1 = 2i(−c)

= 2ic− = 2i�c − 2i (1)

Based on this transformation, Fig. 6 illustrates a dot-notation
representation of mod-(2n + 1) partial product generation for
n ¼ 4. The product *4 × *4, of the most-significant bits
(MSBs), originally weights 22n and since
22n ¼ (2n + 1)(2n 2 1) + 1 it appears as a posibit in
position 0. Note that each operand is represented with n + 1
bits, with MSB being 1 only for 2n. The previously
proposed partial product reduction schemes (e.g. [16])
IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 259–268
doi: 10.1049/iet-cdt.2011.0059
require that each negabit c2 be replaced with a posibit �c
and a constant negabit 21, a scheme that entails a non-
trivial algorithm to compute the collective value of the
constant negabits to form a new operand below the partial
products. We will see in Section 3 that IEN allows the
authors to manipulate the negabits directly, thus widening
the design space, saving some design effort, possibly circuit
resources and latency.

(Booth recoding for radix-4 multiplication): Booth recoding
can be more readily understood with the help of WBS. For
example, the modified (i.e. radix-4) Booth recoding, is
essentially converting a 2’s-complement number to its
equivalent number in the minimally redundant radix-4
number system (i.e. conversion from the digit set [0, 3] to
[–2, 2]). Let Y = y−2n−1y2n−2 . . . y2i+1y2iy2i−1 . . . y1y0 where
a ‘–’ superscript identifies a negabit, represents a 2’s
complement number to be Booth recoded. This can be
accomplished by simply shifting each posibit y2i+1 one
binary position to the left and filling its place by a negabit
y−2i+1 with the same logical state (see Fig. 7). This process
leads to a canonical WBS representation of the desired
minimally redundant radix-4 number, where the ith radix-4

Fig. 6 Partial product generation in modulo-17 multiplication

Fig. 5 Integer multiplication viewed as bit compression and
addition

a Unsigned
b Two’s complement

Fig. 7 Justification of modified Booth’s recoding via extended dot
notation
261

& The Institution of Engineering and Technology 2012

www.ietdl.org
digit is represented by a doubled negabit y−2i+1 and two
posibits y2i and y2i21. Note that this transformation is just
an easier interpretation of the conventional modified Booth
recoding, which is of pedagogical value. Otherwise, (2) for
generating the Booth selection signals Si (sign), Ti (twice or
shifted) and Oi (One) remains the same

Si = y−2i+1, Ti = y−2i+1y2iy2i−1 _y−2i+1y2iy2i−1,

Oi = y2i ⊕ y2i−1 (2)

3 Inverted encoding of negabits

The conventional representation of negative numbers or
negative component of redundant numbers is based on
assigning negative weights to whole numbers or digits. For
example, sign-magnitude representation uses a separate sign
bit that can be interpreted as the sign of the whole number.
In the n-bit 2’s-complement representation of binary
numbers, the most-significant bit is considered to have the
negative weight 22n21. The kn, pl encoding of a
binary signed digit in radix-2 position i uses a pair of +2i-
weighted bits [9]. Finally, the digit set [29, 9] is
represented as two 4-bit numbers with oppositely signed
weights [17].

We have previously introduced the concept of negative bit
(negabit for short) instead of negatively weighted bit [18],
which simplifies some number representations, as was used
in Figs. 1–3 (Section 1) and Examples 1–3 (Section 2).
However, recalling Example 2, in reducing the partial
products of Fig. 6, one cannot directly use the standard
reduction cells such as HAs, FAs and other compressors
and counters. A simple solution for this kind of problem
was offered in [10] via the introduction of IEN, that is,
assigning the logical state 0 (1) to arithmetic value 21 (0).
This is the opposite of conventional encoding in 2’s-
complement numbers, where the most-significant bit equals
0 (1) for positive (negative) values. This reverse convention
turns out to be quite rewarding. It has been shown
elsewhere [10] that with IEN any equally weighted triple
mix of posibits and negabits can be summed up correctly
with a standard full adder. Half adders and other counters
and compressors can similarly accept any mix of posibits
and negabits, generating correct results as if they were
functioning on posibits only (see Figs. 8 and 9, with further
relevant explanations to follow).

This use of standard cells is very important, for it offers the
advantage of being able to choose from a variety of readily
available designs that are optimised based on different
criteria (e.g. latency, area and power) for a multitude of
implementation technologies [19]. To process conventional
negabits in the same way, inverters are typically inserted on
some inputs/outputs of standard cells [20], adding some
262

& The Institution of Engineering and Technology 2012
latency, compromising circuit regularity and introducing the
need for area/power re-optimisation. Note that even though
the latency of an inverter is fairly small, removing one or
more inversion layers in a carry-free adder that typically
needs only 4–8 logic levels lead to non-trivial speed
improvement.

The key to improvements resulting from IEN is the
property that their logical and arithmetic values vary in the
same direction. Representing the value 21’s logical 0 and
the value 0 as logical 1 is in effect a biased representation
with a bias of 1. A posibit is unbiased (has a bias of 0),
given that its logical and arithmetic values are identical.
Note that as long as the sum of biases for the inputs
matches those of the outputs, no adjustment will be needed
when posibits and negabits are combined as if they were
all posibits. For example, Fig. 8 shows the schematic
representation of a full (half) adder used to combine a set
of 3 (2) bits, which includes from 0 to 3 (2) negabits [10].
Note that when a negabit is sent to the next higher position,
its bias is effectively doubled. Thus, the sums of input and
output biases are balanced in all seven cases depicted in
Fig. 8. Recall that a standard full (half) adder operates
on posibits in a way that enforces the identity
x + y + cin ¼ 2cout + s (x + y ¼ 2cout + s), with numerical
details shown in (3). For clarity in studying Fig. 8,
the reader is reminded that a ‘–’ superscript identifies a
negabit.

(a) 0 + 0 + 0 = 0 + 0 (b) 0 + 0 + 1 = 0 + 1

(c) 0 + 1 + 1 = 2 + 0 (d) 1 + 1 + 1 = 2 + 1

(e) 0 + 0 = 0 + 0 (f) 0 + 1 = 0 + 1

(g) 1 + 1 = 2 + 0 (3)

Fig. 9 depicts an instance of the standard (4; 2)-compressor of
Fig. 4c acting as a redundant binary adder (RBA), or adder
with binary signed-digit (BSD) inputs. The best RBA cell
that we have encountered is based on a custom design [21]
and has a latency of three XOR gates, the same as a
conventional (4; 2) compressor, with gate counts also being
comparable. It is worth noting that the design just

Fig. 9 Using (4; 2)-compressors as redundant binary adders
Fig. 8 Full-adders and half-adders as universal combiners of posibits and negabits
IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 259–268
doi: 10.1049/iet-cdt.2011.0059

www.ietdl.org
mentioned uses a 2-bit encoding that is the same as the kn, pl
encoding with inversely encoded negabits (IE-negabits).
However, because of the ad hoc approach, the design effort
is much greater and the resulting circuits cannot benefit
from regular performance improvements on standard cells.
The universal (4; 2)-compressors of Fig. 9, on the other
hand, can be replaced by any available (4; 2)-compressor
circuit.

There are also other highly optimised compressors,
exemplified by (5; 2) compressors [Chan04], that may
prove beneficial in reducing arrays of mixed posibits and
negabits, where the depth is not a multiple of 4 (see
Example 8). This is yet another confirmation that the use
of highly optimised standard cells is preferable to ad hoc
designs, whenever possible.

4 Implementation and application

Use of IEN and WBS encoding has been shown to enhance
creativity in designing arithmetic circuits that often leads to
better performance as well. For example, hybrid-redundant
adders [22] have been redesigned in a universal manner in
[23], from which the design of a minimally redundant
adder is reproduced in Example 4. A highly efficient
maximally redundant signed-digit adder [12], and a less
redundant version based on IEN [13], has been recently
proposed, where the use of IEN leads to power and area
savings via the elimination of the need for sign extension.
Another interesting property of WBS encoding and IEN is
the value-preserving transformation of a collection of bits
that represent a symmetric range of negative and positive
values. As it turns out, in such cases, interchanging the
posibits with negabits and vice versa without changing the
logical states preserves the actual value of the bit
collection [12]. This property is further explained in
Example 5 and used in Example 6 to lead to yet another
interpretation of Baugh–Wooly 2’s complement
multiplication scheme.

Use of off-the-shelf HAs, FAs, counters and compressors,
exemplified by (4; 2)-compressors, to reduce the depth of a
WBS encoding (e.g. partial product reduction) often leads
to a canonical two-deep WBS representation with an
arbitrary mix of posibits and negabits. This mix can be
added via any conventional carry-propagate adder (CPA).
However, the one-deep result can hold posibits and negabits
in arbitrarily weighted positions. This undesired
phenomenon can be avoided via a small preprocessing step
IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 259–268
doi: 10.1049/iet-cdt.2011.0059
prior to CPA, as described in Example 7 for the first time
in this paper. Finally, we take up Example 2 and show how
the partial products of a modulo-(2n + 1) multiplier can be
summed up with standard reduction cells via IEN (see
Example 8).
(Simplified minimally redundant radix-2h SD addition):
A straightforward implementation of the digit-level addition
algorithm for radix-2h signed digit (SD) number systems [9]
implies three O(log h)-latency carry-propagating operations
in sequence. A radix-2h signed digit set is often denoted by
the integer interval [–a, a], with the redundancy index
r ¼ 2a+ 1 2 2h. For r ≥ 2, the sum digit in position i
depends on the operand digits in the same position and
those of position i 2 1, vis-à-vis carry-free addition [9]. For
r ¼ 1 (e.g. with a ¼ 2h21), however, it depends also on the
operands digits in position i 2 2. Here, we provide a
particular bit-level implementation, for r ¼ 1, where there
is only one h-bit carry-propagating operation and each bit
within the sum digit in position i depends only on the bits
of two operand digits; either on the bits of digits in
positions i and i 2 1 or those of positions i 2 1 and i 2 2.

Fig. 10 depicts a conceptual representation of stored-
posibit addition as a case of symmetric extended hybrid-
redundant number system, where ‘extended’ refers to our
allowing negabits as well as posibits in non-redundant
positions [14]. Recall that ordinary hybrid redundancy uses
only posibits in such positions [22]. The particular number
system shown is periodic, with a period of four positions,
and thus corresponds to a radix-16 (i.e. h ¼ 4) generalised
signed-digit representation with the minimally redundant
digit set [28, 8]. The first stage of the addition process,
depicted in Fig. 10, converts pairs of negabits in the input
operands, with the exception of those in the leftmost
position, to 5-bit 2’s-complement numbers (see the dashed
boxes). The rest of the process consists of standard bit
compression and a final set of 4-bit additions. Note that the
stored posibit of the sum digit in position i does not depend
on the operand digits in the same position and the bits of
the 2’s-complement main part do not depend on the
operand digits in position i 2 2. This conforms to the
general result in [9] under limited-carry addition with
r ¼ 1. That is, as a whole, each sum-digit is a function of
digits in three consecutive positions of the operands.
However, the main part (the stored posibit) of position i
depends only on the digits in positions i and i 2 1 (i 2 1
and i 2 2). Therefore the digit dependency is the same as
that existing for carry-free cases of r ≥ 2.
Fig. 10 Dot-notation representation of symmetric hybrid-redundant addition
263

& The Institution of Engineering and Technology 2012

www.ietdl.org
(Value-preserving polarity inversion in faithfully represented
balanced signed digits): Consider an kn, pl encoded binary
signed digit and also the rightmost representation of the
digit set [–6, 6] in Fig. 3. Such faithfully represented
signed digit sets are invertible by exchanging posibits and
negabits, as shown in Fig. 11a. We know that identical bit
assignments to both representations of Fig. 11a yield equal
arithmetic values [12]. This provides the opportunity of
regarding posibits (negabits) as if they were negabits
(posibits), where such an interpretation would facilitate the
design process. For example, Fig. 11b represents the
essence of the transfer extraction scheme of a radix-16
maximally redundant signed-digit (MRSD) adder, with each
redundant signed digit in [–15, 15] and encoded as a 5-bit
two’s-complement number. The carry-free addition process
requires the extraction of a weight-16 transfer digit
ti+1 [[–1, 1] from operand digits in position i, whose sum
ranges from –30 to 30, leaving a residual in [–14, 14].
Inverting the polarity of all bits in the top operand and the
least-significant bit in the lower operand preserves the
arithmetical value of the transformed bits, given that the
transformation in position j increases (decreases) the
arithmetical value by 2j. This cost-free transformation
(inversion occurs in the way the bits are viewed, rather than
via an inversion gate) provides a weight-16 negabit/posibit
pair in the most-significant position that can serve as the
desired ti+1, except in a few input cases that are detectable
via simple exception handling logic [12].

A similar value-preserving polarity inversion can be used
for yet another simple justification of the Baugh–Wooly
method. This is illustrated in Fig. 12, in which the partial
products of Part I are generated with NAND gates, where
exactly one of the two bits is a negabit. Part II is exactly
the same as Part I, except for a negabit/posibit position
swap for better illustration of the dashed-border bit
collection whose polarities are inverted in Part III. The

Fig. 11 Cost-free value-preserving transformations

a Digit set [26, 6]
b Deriving a transfer in [21, 1 and a residual in [214, 14] from two digits in
[215, 15]
264

& The Institution of Engineering and Technology 2012
posibit constant 0 and the IE-negabit constant 1 (with
arithmetic worth of 0) are inserted (see Part IV) to allow for
the second transformation, again illustrated by dashed-
border bit collections. Note that after polarity inversion, the
constant 0 (1) is represented by a negabit 21 (posibit 1) in
V, where the bit collection is exactly the same as the
bottom part of Fig. 5b. The reader is reminded that, as in
Fig. 5b, the bits of Part V are directly generated via a
NAND/AND matrix from the bits of the 2’s-complement
operands.

(Identical partial product reduction tree for unsigned
and 2’s-complement multiplication): Fig. 13 represents an
implementation of 4-bit 2’s-complement multiplication
using energy efficient NAND gates [24], wherever the
inputs of a partial product generation cell are of opposite
polarities, leading to a tree reduction part assuming the use
of IE-negabits for the partial products. The final adder uses
a half adder in position 3 and full adders in the next three
positions [see cell (c) in Fig. 8 for an explanation on how
the full adders work]. Therefore the required circuitry is
exactly the same as the one needed for Fig. 5b. However,
the main advantage here is again pedagogical, given the
simple concept behind the scheme of Fig. 13b in
comparison to that of Baugh–Wooley (Fig. 5b).

(Conversion from 2-deep WBS to 2’s complement): The
operation of the final adder in Fig. 13b is a special case of

Fig. 13 Unsigned or signed multiplication with identical tree
reduction circuits

a Unsigned
b Two’s complement
Fig. 12 Alternative justification of the Baugh–Wooley multiplication method
IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 259–268
doi: 10.1049/iet-cdt.2011.0059

www.ietdl.org
the general problem of converting a two-deep WBS number
to its 2’s complement equivalent. It is easy to see that
the simple adder solution used for Fig. 13b works for
converting an kn, pl-encoded BSD number, with
IE-negabits, to 2’s complement, provided a forced carry-in
is used in the form of an IE-negabit 12 with arithmetic
value 0. For example, the situation for a conversion from
4-bit BSD to 5-bit 2’s-complement representation is
depicted in Fig. 14, where each of the four full adders
receiving two negabits and one posibit produces a posibit
sum and a negabit carry, as in cell (c) in Fig. 8. However,
this simple method for the special case of BSD numbers
does not always work for the aforementioned general case.

Fig. 14 BSD-to-2CL conversion via binary addition with cin ¼ 1
IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 259–268
doi: 10.1049/iet-cdt.2011.0059
One solution is to first convert the source two-deep WBS
number to its BSD equivalent, and then follow this by
simple addition. The conversion to BSD, as summarised in
Table 1, is possible by means of an inverter (I), a half-
adder (HA), or an excess-1 half-adder (HA+1) in each
binary position i ≥ 0. The cell choice depends on the bit
combination in position i and the incoming bit from the
possible HA or HA+1 in position i 2 1, during the
conversion process. Recall that a variable or parenthesised
expression with a ‘–’ superscript denotes a negabit. The bit
that comes into position 0 can be assumed to be either a
posibit or a negabit.

Deciding on the actual cell for each binary position at
design time is a sequential process that is further explained
in Example 8. However, as is evident from the left target
column in Table 1 (i.e. position i + 1), the incoming bit to
position i + 1 does not depend on the one for position i.
Therefore the actual run time delay is at most equal to that
of a single XOR gate.

(Modulo-(2n + 1) multiplication): The partial product
generation (PPG) scheme of Fig. 6 allows energy-efficient
Table 1 Conversion from 2-deep WBS to BSD

Case Dot Symbol Target (in 2 columns) Cell type

Dot Symbol Dot Symbol

1
*s x

* x
W �x()− I

* y * y

2
*s x * x -

W y 2 W y2

3
Ws x2 W x2 -

* y * y

4
Ws x2

W x2 * �x I

W y2 W y 2

5

*s x

* x _ x′
W x ⊙ x ′()−

HA+1
*s x′

* y * y

6

*s x

* xx′
* x ⊕ x ′

HA*s x′

W y2 W y2

7

Ws x2

W (x2 _ x′2)2

W x− ⊙ x ′−()−

HA+1Ws x′2

* y * y

8

Ws x2

W (x2x′2)2

* x− ⊕ x ′−

HAWs x′2

W y2 W y2

9

*s x

*

x W x ⊕ x ′−()−

HAWs x′2 x′2

* y * y

10

*s x

W (x _ x′2)2

* x ⊙ x ′−

HA+1Ws x′2

W y2 W y2

Position i i + 1 i i

⊕ is XOR; ⊙ represents XNOR; I stands for inverter s-indexed bits are source bits and others in the same column are incoming bits
265

& The Institution of Engineering and Technology 2012

www.ietdl.org
NAND gates to replace the original AND gates for generating
end-around partial product IE-negabits. Fig. 15a depicts a
carry-save adder (CSA) scheme for partial product
reduction (PPR), where each dashed box in Stages I–III
represents an n-bit CSA (n ¼ 4) and stage IV simply
converts the result to a representation that can lead to the
desired product via any n-bit adder. This stage uses FA,
HA, HA+1, HA, from right to left, respectively. The
performance is enhanced in Figs. 15b and c by also
allowing the use of (4; 2) and (5; 2) compressors. Note that
the cells used in each of the three designs belong to the set
of standard arithmetic building blocks, often available in
multiple optimised forms for mapping onto FPGAs, custom
VLSI implementation and other digital design styles [25].

The number of partial products for the scheme explained
above in Example 8 is n + 3. This can be reduced to n at
the expense of more complex three-gate-delay PPG and
custom wiring of the inputs to CSA tree, so as to keep the
extra PPG delay off the critical path [16]. Unfortunately, to
apply a similar scheme in that work for reduction trees with
more efficient (4; 2) and (5; 2) compressors, as in Figs. 15b
and c, would require redesigning the compressors’ internal

Fig. 15 Three modulo-17 PPR

a 4 FAs
b 2 (4; 2), 1 FA
c 1 (5; 2), 1 (4; 2)

Fig. 16 Partial product reduction with different reduction cells
266

& The Institution of Engineering and Technology 2012
wiring, thus jeopardising all the test, optimisation and
synthesis efforts implicit in their designs. Furthermore,
custom wiring, as used in the case of n ¼ 4 [16], may not
always be beneficial. For example, the left side of Fig. 16
shows the number of CSA (FA) levels, and the
corresponding delay in terms of XOR gates, for p [[4, 13]
partial products (i.e. n [[4, 10]). Only for n ¼ 4, two
levels are saved compared with n + 3 ¼ 7 partial products.
In cases where n [[5, 9], only one level is saved compared
with n + 3 [[8, 12]. There are five CSA levels for both
n ¼ 10 and n + 3 ¼ 13 partial products, implying no
saving. The right side of Fig. 16 shows the number of
reduction stages and the reduction cell types used. For
example, for n + 3 ¼ 7, the critical delay path consists of
two (4; 2) compressors based on Fig. 15b. Note that the
figures presented in Fig. 16consider neither Stage IV of
Fig. 15 nor the half adder stage (because of constant partial
product) of [16].

The arguments regarding the dubious advantage of custom
wiring notwithstanding, the method of [16] can be applied
here to achieve an n-deep WBS partial product matrix for
modulo 2n + 1 multiplication as in Fig. 17, with due
explanations to follow.

The two negabit entries in the same column of Fig. 6, with
one of the indices being 4 (e.g. W14 and W41) and any other
negabit in the same column (e.g. W32), can be replaced by a
new negabit which represents the true sum of the original
negabits (e.g. W1 in Fig. 17). This compression of three
negabits into one is possible because when the most-
significant bit of a modulo-(2n + 1) operand is 1, its other n
bits are 0’s. Thus, †i4 + †4i + †3(i+1) ¼ †i4 _ †4i _ †3(i+1),
implying that Wi can be obtained by NORing †i4,†4i and
†3(i+1), for 0 ≤ i ≤ n 2 1. For the same reason, it holds that
†00 + †44 ¼ †00 _ †44, and thus the sum is represented by
a single posibit †0 in Fig. 17. To avoid the depth of 5 in
the most-significant column of Stage II in Fig. 17, we use
the trick offered in [16], replacing W3 with †3 in the same
column and another one in the rightmost column based on
(4). The reason is that the computation of W3, as described
by (4), can be reformulated as in (5). However, as before,
we have †34 + †43 + †30 ¼ †34 _ †43 _ †30. The result is
shown as the single posibit †3 of Stage III in Fig. 17.
Similarly, we have †0

′ ¼ †0 + †34 + †43 ¼ †00 _ †44 _

Fig. 17 Efficient modulo-17 PPG
IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 259–268
doi: 10.1049/iet-cdt.2011.0059

www.ietdl.org
†34 _ †43

|27(†34 + †43)|17 = |8 × (17 − 1)(†34 + †43)|17

= −8(†34 + †43) = 8W3 (4)

|27(†34 + †43)|17 = |(17 × 7 + 9)(†34 + †43)|17

= (8 + 1)(†34 + †43) (5)

With the four-deep partial product matrix of Stage III in
Fig. 17, we need only two CSA levels to obtain a two-deep
matrix. However, a half-CSA stage is required to convert
the latter to a form suitable for input to any binary adder,
including the inverted end around carry adder of [16]. A
similar half-CSA stage is used in [16] because of an extra
constant partial product (see Example 2). Note that
Stages I–II are used merely for illustration; the actual PPG
circuitry would directly generate the bit matrix of Stage III.

Advantages of the modular multiplier design of Example 8
in comparison with previous designs (e.g. [16]) include easier
exploration of the design space, simpler conceptual design
and use of a variety of standard optimised cells.

5 Conclusions

By using several examples from our previous works and
introducing two new case studies, we have demonstrated
the advantages of intermixing posibits and negabits as
elements of weighted bit sets for use in representing signed
digit sets or for direct representation of integers in a desired
range. More specifically, the advantages fall into the two
categories of pedagogical (better understanding) and
practical (more efficient hardware realisation). On the
pedagogical front, viewing a number of different
transformations, such as Booth recoding and column
compression, in a unified way engenders a better
understanding of why these methods work and how variants
of such methods can be devised. Practical benefits include
both a reduction in design effort and improvement in design
parameters such as cost, speed and/or power consumption.
These practical benefits are direct consequences of our
unified design strategy, based on the exclusive use of highly
optimised standard building blocks or cells, for realising
arithmetic operations on representations composed of
weighted posibits and negabits.

The design flow for implementing an arithmetic operation
on redundant operands based on the digit set [–a, b] may
consist of the following steps:

1. Start with a negabits and b posibits, all equally weighted
(i.e. in the same column) and use the transformation of Fig. 2
in multiple rounds, until a two-deep WBS encoding of the
digit set is obtained.
2. Design the required arithmetic circuits as if all the bits
were posibits, but consider the polarity of the bits in the
intermediate results as the output bits of the relevant cells
(e.g. those in Fig. 8).
3. Use Table 1 to convert the final WBS encoding to the
desired output format.

Even though we have used this method, and the associated
IEN, in our designs before, we thought that explicating the
underpinnings of our design strategy, outlining its intuitive
basis and listing some of the key applications would be
beneficial to designers of signal processing and other VLSI
IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 259–268
doi: 10.1049/iet-cdt.2011.0059
systems. We have augmented the aforementioned known
design examples with two new applications specifically
developed for this presentation: WBS-to-BSD-to-2CL
format conversion, and modulo-(2n + 1) multiplication. The
examples offered here are by no means exhaustive.
Exploration of new application domains constitutes part of
our plans for future work.

Our discussion in this paper has been qualitative, pointing
to advantages in terms of easier exploration of design space,
simpler conceptual design (thus, design time reduction and
error avoidance) and use of highly optimised standard cells
that are available in the literature and in various design
libraries. The use of standard arithmetic building blocks
allows our designs to benefit from the continuous
innovations that lead to faster, more compact and lower-
power components such as half-adders, full-adders and bit
compressors. A quantitative assessment of the benefits
would be possible only for specific applications, after full
circuit-level implementation. We have not done this in the
current paper, but instead refer the reader to our previous
publications, cited in the references, which do offer
quantitative evaluations and comparisons.

6 References

1 Taylor, F.J.: ‘Digital filter design handbook’ (M. Dekker, 1983)
2 Soderstrand, M.A., Jenkins, W.K., Jullien, G.A., Taylor, F.J. eds.:

‘Residue number system arithmetic’ (IEEE Press, 1986)
3 Omondi, A., Premkumar, B.: ‘Residue number systems: theory and

implementation’ (Imperial College Press, 2007)
4 Avizienis, A.: ‘Signed-digit number representation for fast parallel

arithmetic’, IRE Trans. Electron. Comput., 1961, 10, pp. 389–400
5 Parhami, B.: ‘Computer arithmetic: algorithms and hardware designs’

(Oxford University Press, 2010, 2nd edn.)
6 Meyer-Baese, U.: ‘Digital signal processing with field programmable

gate arrays’ (Springer, 2007, 3rd edn.)
7 Baugh, C.R., Wooley, B.A.: ‘A two’s complement parallel array

multiplication algorithm’, IEEE Trans. Comput., 1973, 22, (6),
pp. 1045–1047

8 Koren, I., Maliniak, Y.: ‘On classes of positive, negative, and imaginary
radix number systems’, IEEE Trans. Comput., 1981, 30, (5),
pp. 312–317

9 Parhami, B.: ‘Generalized signed-digit number systems: a unifying
framework for redundant number representations’, IEEE Trans.
Comput., 1990, 39, (1), pp. 89–98

10 Jaberipur, G., Parhami, B., Ghodsi, M.: ‘Weighted two-valued digit-set
encodings: unifying efficient hardware representation schemes for
redundant number systems’, IEEE Trans. Circuits Syst. I, 2005, 52,
(7), pp. 1348–1357

11 Jaberipur, G., Parhami, B.: ‘Unified approach to the design of
modulo-(2n + 1) adders based on signed-LSB representation of
residues’. Proc. 19th IEEE Int. Symp. Computer Arithmetic, 2009,
pp. 57–64

12 Jaberipur, G., Gorgin, S.: ‘An improved maximally redundant signed
digit adder’, Comput. Electr. Eng., 2010, 36, (3), pp. 491–502

13 Gorgin, S., Jaberipur, G.: ‘A family of signed digit adders’. Proc. 20th
IEEE Symp. on Computer Arithmetic, Tubingen, Germany, 25–27
July 2011, pp. 112–120

14 Jaberipur, G., Parhami, B.: ‘Constant-time addition with hybrid-
redundant numbers: theory and implementations’, Integr. VLSI J.,
2008, 41, (1), pp. 49–64

15 Jaberipur, G., Parhami, B.: ‘Posibits, negabits, and their mixed use in
efficient realization of arithmetic algorithms’. Proc. 15th CSI Int.
Symp. on Computer Architecture and Digital Systems, 2010, pp. 3–9

16 Vergos, H.T., Efstathiou, C.: ‘Design of efficient modulo 2n + 1
multipliers’, IET Comput. Digit. Tech., 2007, 1, (1), pp. 49–57

17 Nikmehr, H., Philips, B.: ‘Fast decimal floating-point division’, IEEE
Trans. Comput., 2006, 14, (9), pp. 951–961

18 Jaberipur, G., Parhami, B., Ghodsi, M.: ‘Weighted bit-set encodings
for redundant digit sets: theory and applications’. Proc. 36th
Asilomar Conf. on Signals Systems and Computers, November 2002,
pp. 1629–1633

19 Chang, C.-H., Gu, J., Zhang, M.: ‘A review of 0.18-mm full adder
performances for tree structured arithmetic circuits’, IEEE Trans. VLSI
Syst., 2005, 13, (6), pp. 686–695
267

& The Institution of Engineering and Technology 2012

www.ietdl.org
20 Kornerup, P.: ‘Reviewing 4-to-2 adders for multi-operand addition’,
J.VLSI Signal Process., 2005, 40, (1), pp. 143–152

21 Kim, Y., Song, B.S., Grosspietsch, J., Gillig, S.F.: ‘A carry-free
54b × 54b multiplier using equivalent bit conversion algorithm’,
IEEE J. Solid-State Circuits, 2001, 36, (10), pp. 312–317

22 Phatak, D.S., Koren, I.: ‘Constant-time addition and simultaneous
format conversion based on redundant binary representations’, IEEE
Trans. Comput., 2001, 50, (11), pp. 1267–1278
268

& The Institution of Engineering and Technology 2012
23 Jaberipur, G., Parhami, B., Ghodsi, M.: ‘An efficient universal addition
scheme for all hybrid-redundant representations with weighted bit-set
encoding’, J. VLSI Signal Process., 2006, 42, (2), pp. 149–158

24 Abid, Z., El-Razouk, H., El-Dib, D.A.: ‘Low power multipliers based
on new hybrid full adders’, Microelectron. J., 2008, 39, pp. 1509–1515

25 Aguirre-Hernandez, M., Linares-Aranda, M.: ‘CMOS full-adders for
energy-efficient arithmetic applications’, IEEE Trans. VLSI Syst.,
2011, 19, (4), pp. 718–721
IET Comput. Digit. Tech., 2012, Vol. 6, Iss. 5, pp. 259–268
doi: 10.1049/iet-cdt.2011.0059

