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The node-to-set parallel routing problem for a k-connected network Γ is as follows: given 

a node s and k other nodes {t1, t2, ... , tk} in Γ, find k node-disjoint paths connecting s and 

ti, for 1 ≤ i ≤ k. From the viewpoint of applications in synthesizing fast and resilient 
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collective communication operations, it is desirable to make the parallel paths as short as 

possible. Building such paths is a nontrivial problem for a general network. Optical 

transpose interconnection system (OTIS, also known as swapped) networks, a class of 

hierarchical structures built of n identical n-node factor networks, are known to be 

maximally fault-tolerant for any connected factor network, implying that they have 

maximal connectivity. We propose a general algorithm for the node-to-set parallel routing 

problem in OTIS/swapped networks that yields paths of length no greater than D + 4 in 

O(∆2
 + ∆ f

 
(n)) time, where D and ∆ represent the diameter and degree of the OTIS 

network and O(f(n)) is the time complexity of a shortest-path routing algorithm for the 

n-node factor network. Our node-to-set routing algorithm is shown to have optimal time 

complexity for certain OTIS networks of practical interest, including OTIS-Mesh and 

OTIS-Hypercube. 

Keywords: Connectivity; fault tolerance; node-disjoint paths; parallel routing algorithm; OTIS 

network; swapped network. 

 

1. Introduction 

Optical transpose interconnection system (OTIS) networks are useful structures 

for parallel computation and communication.
1, 2

 An OTIS network with n
2
 nodes 

is a two-level swapped architecture built of n copies of an n-node factor network 

that constitute its clusters.
3
 A simple rule for intercluster connectivity (node j in 
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cluster i connected to node i in cluster j, for all i ≠ j) leads to regularity, 

modularity, fault tolerance, and algorithmic efficiency of the resulting networks. 

OTIS networks have received considerable attention in recent years, and they now 

occupy a special place among real-world architectures for parallel and distributed 

systems.
4,5

 A number of algorithms have been developed for routing, selection, 

sorting,
6,7

 numerical computation,
8,9

 and image processing
10

 on OTIS networks.  

Multiple paths in a network Γ are node-disjoint if all the nodes contained in 

them are distinct, except possibly for their starting and ending nodes. Finding 

node-disjoint paths (or parallel routing) in networks is one of the fundamental 

problems in design and implementation of parallel and distributed computing 

systems.
11,12

 Because communication time can dominate processor execution time 

in many situations, it is important for a network to be capable of efficient routing 

of data among nodes. Use of node-disjoint paths for this purpose not only 

guarantees freedom from conflicts, and thus high performance, but also allows for 

successful routing in the event of node and/or link failures.
13,14

 A measure of 

network fault tolerance is the existence of alternate paths between nodes: the more 

node-disjoint paths, the better. A network Γ is maximally fault-tolerant if and only 

if there exist at least δ(Γ) node-disjoint paths between two distinct nodes in Γ, 

where δ(Γ) is the minimum node degree of Γ.15,16
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One might seek k node-disjoint or parallel paths in four distinct situations: (1) 

Node-to-node, where the parallel paths must lead from source node s to 

destination node t; (2) Node-to-set, where the parallel paths must lead from source 

node s to k destination nodes ti; (3) Set-to-set, where the parallel paths must 

connect each one of k source nodes si to one (distinct, but arbitrarily chosen) 

destination node tji from among k given nodes ti; (4) k-pairs, where the parallel 

paths must connect node pairs si and ti, 1 ≤ i ≤ k. The set-to-set and the k-pairs 

parallel routing problems are NP-hard for a general network.
17−19

 For the 

node-to-node parallel routing problem, Menger’s theorem
15

 guarantees the 

existence of at least k parallel paths between any two nodes in a k-connected 

network. The same guarantee of existence is provided by Menger’s theorem for 

the node-to-set problem in a k-connected network. In both cases, however, the 

existence of the paths does not imply that they are easy to find, especially if one 

aims to minimize the longest or average path length. 

A general approach for node-to-node and node-to-set parallel routing problems 

is the flow technique, that takes O(N 2.5
) time, where N is the number of nodes.

20
 

The nearly cubic time complexity can render this approach impractical for general 

networks of very large orders. Node-to-node and node-to-set disjoint paths have 

been efficiently constructed for a variety of popular networks by making use of 
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specific structural properties.
12,13,21−25

 Node-to-set disjoint paths were first studied 

by Rabin,
26

 who noted their usefulness in devising efficient and fault-tolerant 

randomized routing algorithms. 

Previous research on node-disjoint paths in OTIS networks has been limited to 

constructing node-to-node disjoint paths when the OTIS network is built of a 

maximally fault-tolerant factor network. The methods used take advantage of the 

corresponding constructions of node-disjoint or parallel paths in the associated 

factor networks.
27−29

 Recently, a general construction of a maximal number of 

node-to-node disjoint paths has led to the proof that any OTIS network built of a 

connected factor network is maximally fault-tolerant.
30

 This discovery, which 

implies that OTIS networks have maximal connectivity
15

 regardless of the factor 

network on which they are based, has rendered obsolete a number of earlier 

network-specific results. 

The node-to-set parallel routing problem for OTIS networks has not been 

solved previously. The node-to-set problem is more difficult than the 

node-to-node case, because the latter can be readily reduced to the former. While 

it is not difficult to obtain efficient construction strategies for node-to-set disjoint 

paths in particular instances of OTIS networks, such as OTIS-Hypercube, by 

taking advantage of the specific structure of their factor networks, it would be 
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much more productive to study general methods that are applicable to OTIS 

networks built of any factor network. Such a general construction of node-to-set 

disjoint paths in OTIS networks, based only on the interconnection rule of this 

class networks and with no reference to specific properties of a particular factor 

network, is what is being proposed here. 

Let D, ∆, and N be the diameter, maximal node degree, and order (total number 

of nodes) of an OTIS network, built of an arbitrary connected factor network. The 

algorithm proposed in this paper yields the required number of node-disjoint paths 

of length no greater than D + 4 within this arbitrary OTIS network in 

O(∆2
+∆f( N )) time, if the factor network of order n has a shortest-path routing 

algorithm of time complexity O(f(n)). This parallel-path construction algorithm is 

optimal in terms of time complexity for a number of OTIS networks of practical 

interest, such as OTIS-Mesh and OTIS-Hypercube. 

The rest of this paper is organized as follows. In Sec. 2, OTIS networks are 

defined and related notions that are needed in our constructions and proofs are 

introduced. The algorithm for the node-to-set parallel routing problem in OTIS 

networks is presented in Sec. 3, with its performance analyzed in Sec. 4. Section 5 

contains two example applications of the node-to-set parallel routing algorithm. 

Section 6 concludes the paper. 
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2 Preliminaries 

Because networks are often modeled as graphs, we use the terms “graph” and 

“network” interchangeably. Let Γ be a simple undirected graph (graph, for short) 

with vertex (node) set V(Γ) and edge (link) set E(Γ). The number of nodes of 

Γ, |V(Γ)|, is called its order. For v ∈ V(Γ), we denote by degΓ(v) the degree of v in 

Γ, by NΓ(v) = {u ∈ V | (v, u) ∈ E(Γ)} the open neighborhood of v, and by NΓ[v] = 

NΓ(v) ∪ {v} its closed neighborhood. The maximum degree among the vertices of 

Γ is denoted by ∆(Γ) and the minimum degree by δ(Γ). The distance between 

nodes u and v, denoted by dΓ(u, v), is the length of a shortest path between u and 

v. The diameter D(Γ) of Γ is the maximal distance between any two nodes of Γ. 

Two paths from u to v are node-disjoint (also called parallel paths) if they share 

no internal node. The connectivity of Γ is the minimal number of nodes whose 

removal can cause Γ to become disconnected or trivial (degenerating to a single 

node). A graph is said to be k-connected if its connectivity is at least k. A graph Γ 

of connectivity δ(Γ) is maximally fault-tolerant. Other notation and terminology 

used in this paper follow those in Ref. 15. 

Definition A. OTIS (Swapped) network
1,3

: The OTIS (swapped) network OTIS-Ω, 

derived from the graph Ω, is a graph with the vertex set V(OTIS-Ω) ={〈g, p〉 | g, p 

∈ V(Ω)} and the edge set E(OTIS-Ω), which is the union of two sets: intracluster 



 

 

1250002-8 

 

W. Chen, W. Xiao & B. Parhami 

 

 

edges {(〈g, p1〉, 〈g, p2〉) | g ∈ V(Ω), (p1, p2) ∈ E(Ω)} and intercluster edges {(〈g, p〉, 

〈p, g〉) | g, p ∈ V(Ω), g ≠ p}. 

  

Fig. 1.  OTIS-C4, where C4 is a cycle of order 4 and V(C4) = {0, 1, 2, 3}.  

In OTIS-Ω, the graph Ω is called the basis network or factor network. If Ω has 

n nodes, then OTIS-Ω is composed of n node-disjoint subnetworks called clusters, 

each of which is isomorphic to the factor network Ω. A node of OTIS-Ω that is 

labeled 〈g, p〉 constitutes node p of cluster g. An intercluster (or optical) link 

connects node p of cluster g to node g of cluster p, for all p ≠ g. No intercluster 

link is incident to node p of cluster p. An example OTIS network appears in Fig. 1. 

Intuitively, if every cluster in OTIS-C4 is viewed as a supernode, then the resulting 

graph of all the supernodes along with all the optical links will form the complete 

graph K4. 

Based on Definition A, the following basic topological parameters of OTIS-Ω 

are easily derived as functions of the corresponding parameters of Ω27,29
: 

0 1 

2 3 

0 1 

2 3 

0 1 

2 3 

0 1 

2 3 

Cluster 0 Cluster 1 

Cluster 2 Cluster 3 

Node 〈1,1〉 

Node 〈2,3〉 

Node 〈3,0〉 

Node 〈0,1〉 

Fig. 1
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• N = n
2
, where N = |V(OTIS-Ω)|, n = |V(Ω)| 

• degOTIS-Ω(〈g, g〉) = degΩ(g), and for g ≠ p: degOTIS-Ω(〈g, p〉) = degΩ(p) + 1   

• dOTIS-Ω(〈g, p1〉, 〈g, p2〉) = dΩ(p1, p2), and for g1 ≠ g2: 

dOTIS-Ω(〈g1, p1〉, 〈g2, p2〉) = min{dΩ(p1, g2) + dΩ(g1, p2) + 1, dΩ(p1, p2) + dΩ(g1, 

g2) + 2} 

• ∆(OTIS-Ω) = ∆(Ω) + 1, and δ(OTIS-Ω) = δ(Ω) 

• D(OTIS-Ω) = 2D(Ω) + 1  

By Definition A, one also easily knows that OTIS-Ω is connected if and only if 

Ω is connected. Furthermore, we have the following result.  

Theorem A. Maximal fault tolerance
30

: OTIS-Ω is maximally fault-tolerant if the 

factor network Ω is a connected graph.  

In what follows, we assume that the factor graph Ω is connected and that a 

shortest-path routing algorithm in Ω is known. This shortest-path routing 

algorithm in Ω can be used to perform shortest-path routing in OTIS-Ω. For 

convenience, in any cluster g, the edge from u to v is denoted by 〈g, u → v〉, and a 

shortest path from x to y that is completely contained in cluster g, by 〈g, x ⇒ y〉. 

For any g ≠ p, 〈g, p〉 → 〈p, g〉 denotes the intercluster link from 〈g, p〉 to 〈p, g〉. 

Additionally, for consistency and brevity, null links and null paths such as u → u 

and x ⇒ x are allowed as segments (subpaths or components) of routing paths. In 
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this way, when x ⇒ y is a segment of a routing path, say, we do not have to treat 

the case x = y separately, given that the null path segment would not contribute 

any distance or latency. This leads to far fewer cases in our analyses and proofs. 

On the null path x ⇒ x, node x is both the immediate predecessor of, and the 

immediate successor to, itself. 

From Theorem A, the connectivity of OTIS-Ω is δ(Ω), given that δ(OTIS-Ω) = 

δ(Ω). The node-to-set parallel routing problem in OTIS-Ω is to construct k 

node-disjoint paths from a given source node to k given destination nodes, where 

k ≤ δ(Ω). 

 

3 The Parallel Routing Algorithm 

In this section, we present an algorithm for a more general node-to-set parallel 

routing problem in OTIS-Ω: Given a source node 〈g0, s = t0〉 and a set T = {〈g1, t1〉, 

〈g2, t2〉, . . . ,〈gk, tk〉} of k destination nodes in OTIS-Ω, where k ≤ min{degΩ(ti) | 0 

≤ i ≤ k} and 〈g0, s〉 ∉ T, construct k node-disjoint paths from the source node 〈g0, 

s〉 to every destination node 〈g, t〉 ∈ T; furthermore, strive to make the constructed 

paths as short as possible, in the sense of the longest of these paths not being 

much longer than the network diameter. Note that δ(Ω) ≤ min{degΩ (ti) | 0 ≤ i ≤ k}. 

Notationally, cluster g0 is the source cluster, cluster gi (for 1 ≤ i ≤ k) is a 
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destination cluster, and any other cluster that is traversed by these paths 

constitutes an intermediate cluster. 

3.1 Basic Idea 

We first provide an intuitive description of our algorithm. Because the connected 

factor network Ω is not necessarily maximally fault-tolerant, there is no guarantee 

that there exist two node-disjoint paths between a pair of distinct nodes in Ω, even 

if δ(Ω) ≥ 2 (see Fig. 2). On the other hand, from the rule for intercluster 

connectivity in OTIS-Ω, we know that for an arbitrary node v in a cluster g, every 

node of NΩ[v] (other than node g, when g ∈ NΩ[v]) is connected outwards to a 

different cluster by an intercluster link. Thus, there are at least |NΩ[v]| − 1 

node-disjoint ways for a path beginning at v to leave cluster g immediately. Based 

on these facts, we will aim to force the paths beginning at the source node and 

each destination node to leave their current clusters as quickly as possible to 

ensure the node-disjoint property (Note that |NΩ[ti]| = degΩ(ti) + 1 ≥ k + 1, for 0 ≤ 

i ≤ k). We will also aim to have each intermediate cluster visited by exactly one 

path, as a way of ensuring nonintersecting paths. Moreover, in order to keep these 

paths short, we will allow no more than two intermediate clusters on a path, and 

construct every subpath contained in a cluster by using the given shortest routing 

Fig. 2
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algorithm of Ω. Note that using two intermediate clusters is necessary in some 

circumstances to ensure node-disjoint paths. It is readily seen, for example, that 

given the factor network of Fig. 2, a path parallel to (node-disjoint from) the 

single-step path 〈g, u → v〉, from node u to node v of the same cluster g, must 

leave cluster g for an intermediate cluster g′, and then reenter cluster g from 

another intermediate cluster g″.  

 

 

 

 

Fig. 2.  An example 1-connected factor graph Ω with δ(Ω) = 2.  

 

According to the strategy described above, for a typical destination node 〈g, t〉 

∈ T, the path from 〈g0, s〉 to 〈g, t〉 will begin at node s in cluster g0, leave cluster g0 

immediately by way of a cluster-g0 neighbor of s, and then pass through at most 

two intermediate clusters (called the first intermediate cluster and the second 

intermediate cluster, if any, respectively), until it eventually enters the destination 

cluster g along an intercluster link, typically incident to a neighbor of t in cluster g, 

prior to arriving at t. Figure 3 provides an overall view of our strategy for 

constructing node-to-set disjoint paths.  

u v 
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            Fig. 3.  Illustrating the construction of node-to-set disjoint paths in an OTIS network. 

Construction of subpaths and selection of intermediate clusters so as to satisfy 

the following three criteria yields the required k node-disjoint paths: 

(C1) Subpaths contained in the source cluster are node-disjoint. 

(C2) Possible multiple subpaths contained in any destination cluster are 

node-disjoint. 

(C3) The intermediate clusters of one path, if any, are different from those of 

any other path, and also from the source cluster and any of the destination 

clusters. 

 

Cluster g2 (g3) Cluster g4 (g5,g6) 

Cluster g0 (g1) 

First intermediate clusters 

Second intermediate clusters 
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t2 t3 t5 t6 
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g4 
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3.2 Routing Functions 

The construction of subpaths contained in the source cluster and the destination 

clusters is related to the selection of intermediate clusters. In fact, we have the 

following results. 

• A path from 〈g0, s〉 to 〈g0, t〉 has no intermediate cluster if and only if the path is 

〈g0, s ⇒ t〉. 

• A path from 〈g0, s〉 to 〈g, t〉, g ≠ g0, has no intermediate cluster if and only if the 

path is of the form 〈g0, s ⇒ g〉 → 〈g, g0 ⇒ t〉. 

• A path from 〈g0, s〉 to 〈g, t〉, g ≠ g0, has only one intermediate cluster s
* ∈ NΩ[s] 

if and only if the path is of the form 〈g0, s → s
*〉 → 〈s*

, g0 ⇒ g〉 → 〈g, s
* ⇒ t〉. 

• A path from 〈g0, s〉 to 〈g, t〉 has a first (second) intermediate cluster s
* ∈ NΩ[s] 

(t
* ∈ NΩ[t])

 
if and only if the path is of the form 〈g0, s → s

*〉 → 〈s*
, g0 ⇒ t

*〉 → 

〈t*
, s

* ⇒ g〉 → 〈g, t
* 
→ t〉. 

For convenience, we take 〈g0, s〉 to be the implied source node in all cases, and 

use F1(〈g, t〉) and F2(〈g, t〉) to denote the first and the second intermediate cluster 

indices, respectively, selected for the path from 〈g0, s〉 to 〈g, t〉. Clearly, F1 can be 

viewed as a function from T to NΩ[s] ∪ {Λ}, and F2 as a function from T to V(Ω) 

∪ {Λ}, such that F2(〈g, t〉) ∈ NΩ[t] ∪ {Λ} for any 〈g, t〉 ∈ T, where Λ represents 



                 Nearly Optimal Node-to-Set Parallel Routing in OTIS Networks    

                     

1250002-15 

 
 

 

 

null. In particular, by F1(〈g, t〉) = F2(〈g, t〉) = Λ, we mean the path from 〈g0, s〉 to 

〈g, t〉 has no intermediate cluster, and by F2(〈g, t〉) = Λ and F1(〈g, t〉) ≠ Λ, we mean 

the path has only one intermediate cluster. Given F1(〈g, t〉) and F2(〈g, t〉), it is 

trivial to obtain the path from 〈g0, s〉 to 〈g, t〉. Thus, our focus should be on 

computing the two functions F1 and F2, from which we can obtain the desired k 

node-disjoint paths.  

Definition 1. Let F1 be a function from T to NΩ[s] ∪ {Λ}, and F2 a function from 

T to V(Ω) ∪ {Λ}, such that F2(〈g, t〉) ∈ NΩ[t] ∪ {Λ} for every 〈g, t〉 ∈ T. We call 

F1 and F2 a pair of routing functions if the k paths obtained from F1 and F2 are 

node-disjoint. 

To compute a pair of routing functions satisfying Definition 1, we must 

construct appropriate subpaths contained in the source cluster and in the 

destination cluster for every destination node. In computing F2(〈g, t〉) or F1(〈g, t〉) 

for a new destination node 〈g, t〉 ∈ T, we must ensure that all subpaths constructed 

thus far in the source cluster and in every destination cluster satisfy Criteria (C1) 

and (C2), and that all the intermediate clusters utilized thus far satisfy Criterion 

(C3). If so, we say that F2(〈g, t〉) and F1(〈g, t〉) are valid. Obviously, if F2(〈g, t〉) 

and F1(〈g, t〉) are valid for every node 〈g, t〉 ∈ T, then F1 and F2 are the desired 

pair of routing functions.  
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To minimize the number of intermediate clusters used in routing paths, we try 

to pick, for each destination cluster g, a destination node in cluster g so that the 

path to it does not need a second intermediate cluster. Accordingly, we will first 

compute F2(〈g, t〉) for all 〈g, t〉 ∈ T, and then derive F1(〈g, t〉). We describe the 

computation of F2 and F1, beginning with a few needed additional notations. Note 

that if cluster g0 is also a destination cluster, then the path construction process is 

very similar to the case where the destination cluster g is different from g0, but it 

contains more than one destination node. Thus, we proceed with the assumption g 

≠ g0. 

Definition 2. For any x ∈ NΩ[s], x is fixed node if it belongs to an already 

constructed subpath contained in the source cluster; otherwise x is a free node. 

Definition 3. Let cluster g contain more than one destination node. A destination 

node 〈g,t〉 is a head destination node of cluster g ift satisfies the following 

conditions: 

                  (1) 

                   

where argmin, when applied to a function, yields the argument that minimizes the 

function. The subpath of the head destination node 〈g,t〉 contained in cluster g is 

 

argmin{dΩ(g0, t′) | 〈g, t′〉 ∈ T },  if  g ∈ NΩ[s] and g is free 

argmin{ dΩ(s, t′) | 〈g, t′〉 ∈ T },  otherwise 

       t  
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g0 ⇒t if g ∈ NΩ[s] and g is free; it is s ⇒t, otherwise. 

Definition 4. Let cluster g contain more than one destination node, 〈g,t〉 be a 

head destination node of cluster g, and p be the immediate predecessor oft on the 

subpath leading to 〈g,t〉 within cluster g. For any 〈g, t〉 ∈ T such that t ≠t, let G 

= {g0, g1, … , gk} ∪ {t′ | cluster t′ has been selected as a second intermediate 

cluster}, Dt = {t′ | 〈g, t′〉 ∈ T} − {t}. We call G the global forbidden set of 〈g, t〉, 

and G ∪ Dt ∪ {p} the forbidden set of 〈g, t〉.  

(A) Computing F2 

We compute F2 for all destination nodes in one cluster, then proceed to another 

cluster, and so on; if cluster g0 is also a destination cluster, we begin with cluster 

g0. For a cluster g containing only one destination node 〈g, t〉, the path from 〈g0, s〉 

to 〈g, t〉 will not need a second intermediate cluster, and F2(〈g, t〉) = Λ. For every 

cluster g containing more than one destination node, we first pick out a head 

destination node 〈g,t〉 in cluster g that will not need a second immediate cluster. 

We then compute F2(〈g,t〉) first, and proceed with computing F2 for every other 

destination node 〈g, t〉 in cluster g. 

Computing F2 for the head destination node 〈g,t〉 in cluster g: If g ∈ NΩ[s] and 

g is free, the path from 〈g0, s〉 to 〈g,t〉 will be 〈g0, s → g〉 → 〈g, g0 ⇒t〉. This path 
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requires no intermediate cluster, leading to F1(〈g,t〉) = F2(〈g,t〉) = Λ. Otherwise, 

that is, if g ∉ NΩ[s] or g is a fixed node in NΩ[s], the path from 〈g0, s〉 to 〈g,t〉 

does not need a second intermediate cluster, and F2(〈g,t〉) = Λ. 

Computing F2 for every other destination node 〈g, t〉 in cluster g: The path from 

〈g0, s〉 to 〈g, t〉 leaves cluster g immediately, at node t itself or at a neighbor node 

of t in cluster g, implying that F2(〈g, t〉) ∈ NΩ[t] ∪ {Λ}. Specifically, if NΩ[t] − (G 

∪ Dt ∪ {p}) ≠ ∅, we compute F2(〈g, t〉) as: 

                     (2) 

 

By the definition of G, once F2(〈g, t〉) has been computed, we will have t ∈ G and 

F2(〈g, t〉) ∈ G; hence, all the nodes on the subpath of 〈g, t〉 contained in cluster g 

will belong to G. Hence, the subpath of 〈g, t〉 in cluster g is node-disjoint from all 

the other subpaths constructed thus far in cluster g; it is node-disjoint from the 

subpath of 〈g,t〉 in cluster g, because neither nodet nor node p is on it. Thus, the 

obtained F2(〈g, t〉) is valid. On the other hand, if NΩ[t] − (G ∪ Dt ∪ {p}) = ∅, we 

use the three rules (R1), (R2), and (R3), to be introduced later, to compute F2(〈g, 

t〉); the validity of such a choice will also be proven later. 

 

t,   if t ∉ G; 

an arbitrary node ∈ NΩ[t] − (G ∪ Dt ∪ {p}), otherwise 

 F2(〈g, t〉) =  
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Procedure Routing-Function {Compute F2(〈g, t〉) and F1(〈g, t〉) for all 〈g, t〉 ∈ T} 

1. Initialize: 

   Let PathSet = ∅, G = {g0, g1, … , gk}, and mark every x ∈ NΩ[s] as free. 

2. Compute F2 for all 〈g, t〉 ∈ T: 

2.1. If cluster g0 is a destination cluster Then 

Lett = argmin{dΩ(s, t′) | 〈g0, t′〉 ∈ T}, x and p be the immediate successor to s and 

the immediate predecessor oft, respectively, on the path s ⇒t. 

Case 1 {dΩ(s,t) ≥ 2}: Add 〈g0, s ⇒t〉 to PathSet, mark x as fixed, and set 

F1(〈g0,t〉) = F2 (〈g0,t〉) = Λ. 

Case 2 {dΩ(s,t) ≤ 1}: For every 〈g0, t〉 ∈ T such that t ∈ NΩ[s], add 〈g0, s → t〉 to 

PathSet, mark t as fixed, and set F1(〈g0, t〉) = F2(〈g0, t〉) = Λ.  

To compute F2(〈g0, t〉) for every other node 〈g0, t〉 in cluster g0, if any, use Eq. (2) 

and add F2(〈g0, t〉) to G if NΩ[t] − (G ∪ Dt ∪ {p}) ≠ ∅; otherwise, use Rule (R1). 

2.2. For every destination cluster g such that g ≠ g0 Do 

      If (cluster g contains more than one destination node) Then  

Case 1 {g is a free node in NΩ[s]}: Lett = argmin{dΩ(g0, t′) | 〈g, t′〉 ∈ T }, and p be 

the immediate predecessor oft on the path g0 ⇒t. Add 〈g0, s → g〉 → 〈g, g0 

⇒t〉 to PathSet, mark g as fixed, and set F1(〈g,t〉) = F2(〈g,t〉) = Λ. 

Case 2 {g ∉ NΩ[s] or g is a fixed node in NΩ[s]}: Lett = argmin{dΩ(s, t′) | 〈g, t′〉 ∈ 

T }, and p be the immediate predecessor oft on the path s ⇒t. Set F2 (〈g,t〉) = 

Λ.  

To compute F2(〈g, t〉) for every other node 〈g, t〉 in cluster g, use Eq. (2) and add 

F2(〈g, t〉) to G if NΩ[t] − (G ∪ Dt ∪ {p}) ≠ ∅; otherwise use Rule (R1), (R2), or (R3). 

      Else Set F2 (〈g, t〉) = Λ {cluster g contains only one destination node} 

3. Compute F1 for all 〈g, t〉 ∈ T: 

3.1. For every free node x in NΩ[s] Do 

Case 1 {x = gi for some i in the range 1 ≤ i ≤ k}: Add 〈g0, s → x = gi〉 → 〈gi, g0 ⇒ ti〉 

to PathSet, mark x as fixed , and set F1(〈gi, ti〉) = F2(〈gi, ti〉) = Λ. 

Case 2 {x = F2(〈g0, t〉) for some 〈g0, t〉 ∈ T }: Add 〈g0, s → x → t〉 to PathSet, mark x 

as fixed, and set F1(〈g0, t〉) = F2(〈g0, t〉) = Λ.  

Case 3 {x = F2(〈g, t〉) for some 〈g, t〉 ∈ T and g ≠ g0}: Mark x as fixed, set F1(〈g, t〉) = 

x and F2(〈g, t〉) = Λ.  

3.2. For every destination node 〈g, t〉 such that F1(〈g, t〉) has not yet been computed Do 

       Pick an arbitrary free node s* in NΩ[s], set F1(〈g, t〉) = s*, and mark s* as fixed. 

Fig. 4.  The procedure Routing-Function, which returns the intermediate clusters F1(〈g, t〉) and F2(〈g, t〉),  

if any, used in constructing the parallel path from node 〈g0, s〉 to node 〈g, t〉 for all 〈g, t〉 ∈ T. 
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(B) Computing F1 

Once the function F2 has been computed, it is an easy matter to compute F1, a 

function from T to NΩ[s] ∪ {Λ}. Note that there may exist free nodes in NΩ[s] that 

belong to G. Thus, to satisfy Criterion (C3), we first need to fix these free nodes 

in NΩ[s] by constructing paths needing no intermediate cluster or merging two 

identical intermediate clusters into one. Then, we can randomly assign a free node 

x in NΩ[s] to F1(〈g, t〉) for every destination node 〈g, t〉 whose F1 value has not yet 

been computed because x ∉ G. It is easy to see that if F2(〈g, t〉) is valid for every 

node 〈g, t〉 ∈ T, then F1(〈g, t〉) will be valid for every node 〈g, t〉 ∈ T. 

The procedure Routing-Function for computing F1 and F2 is shown in Fig. 4. In 

these computations, if a path needs no intermediate cluster, then it will be 

constructed completely and directly recorded in PathSet. Next, we assume NΩ[t] − 

(G ∪ Dt ∪ {p}) = ∅ when computing F2(〈g, t〉) for some 〈g, t〉 such that t ≠t, 

where cluster g contains more than one destination node, and p is the immediate 

predecessor tot on the subpath of the head destination node 〈g,t〉 within cluster g; 

a situation we refer to as “an obstacle.” Let g
*
 be the immediate successor to s on 

the path s ⇒ g. Thus, we have g
* ∈ NΩ[s]. In this case, we apply Rules (R1)–(R3) 

below to compute a valid F2(〈g, t〉), where α = (p ≠t ∧ p ∈ NΩ[t] ∧t ∉ G). 

Fig. 4

here
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Fig. 5.  Examples of applying Rules (R1), (R2), and (R3) to compute a valid F2(〈g, t〉), when NΩ[t] − (G ∪ 

Dt ∪ {p}) = ∅. Nodes shown as ⊗ belong to the forbidden set of 〈g, t〉, exceptingt and p.  

Fig. 5

here
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(R1) {α is true}: We exchange the roles oft and t in cluster g, that is, we make 

〈g, t〉 the head destination node in cluster g. Thus, for 〈g, t〉, the subpath 

contained in cluster g will be s ⇒ p → t (g0 ⇒ p → t, if g is a free node in 

NΩ[s]) and F2(〈g, t〉) = Λ. For 〈g,t〉, the subpath contained in cluster g will 

be the single nodet and F2(〈g,t 〉) =t (see Fig. 5(a)). 

(R2) {α is false and g
*
 is a free node in NΩ[s]}: Assume that g ∉ NΩ[s] and g0 ∈ 

NΩ[t]. 

Case 1 {g0 ∉ Dt}: For 〈g, t〉, we construct the path 〈g0, s ⇒ g〉 → 〈g, g0 → 

t〉, which needs no intermediate cluster, and set F2(〈g, t〉) = F1(〈g, t〉) = 

Λ (see Fig. 5(b)).  

Case 2 {g0 = t′ ∈ Dt, such that t′ ≠t and F2(〈g, t′〉) ∈ NΩ[t]}: For 〈g, t〉, we 

set F2(〈g, t〉) = F2(〈g, t′〉). Then, for 〈g, t′〉, we construct the new path 

〈g0, s ⇒ g〉 → 〈g, g0 = t′〉, needing no intermediate cluster, and set 

F2(〈g, t′〉) = F1(〈g, t′〉) = Λ. 

Case 3 {g0 =t, p ∈ NΩ[t] and p ≠t}: Node 〈g, t〉 is made the head 

destination node of cluster g, in lieu of 〈g,t〉. That is, for 〈g, t〉, we use 

the cluster-g subpath s ⇒ p → t, and set F2(〈g, t〉) = Λ. Then, for 〈g,t〉, 

we construct the path 〈g0, s ⇒ g〉 → 〈g, g0 =t〉, needing no 

intermediate cluster, and set F2(〈g,t〉) = F1(〈g,t〉) = Λ. 
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(R3) {α is false and g
*
 is a fixed node in NΩ[s]}: Assume that g ∉ NΩ[s], and let 

〈g*
, t

*〉 be one destination node in cluster g
*
 such that F2(〈g

*
, t

*〉) ∈ NΩ[t]. 

Case 1 {F2(〈g
*
, t

*〉) ∉ Dt}: For 〈g, t〉, we set F2(〈g, t〉) = F2(〈g
*
, t

*〉), and 

then recompute F2(〈g
*
, t

*〉) in cluster g
*
 (see Fig. 5(c)).  

Case 2 {F2(〈g
*
, t

*〉) = t′ ∈ Dt such that t′ ≠t and F2(〈g, t′〉) ∈ NΩ[t]}: For 

〈g, t〉 and 〈g, t′〉, we set F2(〈g, t〉) = F2(〈g, t′〉) and F2(〈g, t′〉) = t′, 

respectively, and then recompute F2(〈g
*
, t

*〉) in cluster g
*
. 

Case 3 {F2(〈g
*
, t

*〉) =t, p ∈ NΩ[t] and p ≠t}: Node 〈g, t〉 is made the head 

destination node in cluster g, in lieu of 〈g,t〉. For 〈g, t〉, we use the 

cluster-g subpath s ⇒ p → t, and set F2(〈g, t〉)=Λ. Then, we set 

F2(〈g,t〉)=t and recompute F2(〈g
*
,t

*〉) in cluster g
*
. 

Note that once an obstacle occurs, there will be exactly one rule among Rules 

(R1)–(R3) whose conditions are met; the corresponding assumptions of the rule, 

if any, will be proved to be true in Sec. 4. It is readily observed that in Rules 

(R1)–(R3), we obtain F2(〈g, t〉) via changing the head destination node or a 

second intermediate cluster, or by constructing a path that needs no intermediate 

cluster. The validity of such a choice for F2(〈g, t〉) will also be proven in Sec. 4. It 

is worth pointing out that in using these rules, if node 〈g, t〉 becomes the head 

destination node in cluster g, in lieu of 〈g,t〉, then the subpath s ⇒ p → t is not 
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necessarily the same as the subpath s ⇒ t obtained by using shortest-path routing 

in Ω directly, although they both are shortest paths from s to t in Ω. Therefore, in 

order to subsequently construct the complete path based on F2 and F1, we should 

reserve the subpath. For consistency and brevity, we still denote the subpath s ⇒ 

p → t simply by s ⇒ t. Similarly, the subpath g0 ⇒ p → t is denoted by g0 ⇒ t. 

Moreover, when we use these rules to compute F2(〈g, t〉), we must update PathSet 

whenever a path has been completed. 

3.3 Algorithm Description 

Now we can describe formally the PR-OTIS algorithm for constructing k 

node-disjoint paths from the source node 〈g0, s = t0〉 to the destination node set T = 

{〈g1, t1〉, 〈g2, t2〉, . . . ,〈gk, tk〉} in OTIS-Ω (see Fig. 6). The algorithm consists of 

two main steps. First, we compute functions F2 and F1 by calling the procedure 

Routing-Function, where we construct all subpaths in the source cluster and the 

destination clusters, and thus obtain all intermediate clusters (if a path has no 

intermediate cluster, then it is constructed completely). Then, based on F2 and F1, 

we construct desired paths for all 〈g, t〉 ∈ T such that F1(〈g, t〉) ≠ Λ or F2(〈g, t〉) ≠ 

Λ. Recall that, for 〈g, t〉 ∈ T, F1(〈g, t〉) ≠ Λ denotes the first intermediate cluster, 

implying that the subpath contained in cluster g0 is s → F1(〈g, t〉). Similarly, F2(〈g, 

Fig. 6

here
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t〉) ≠ Λ denotes the second intermediate cluster, meaning that the subpath 

contained in cluster g is F2(〈g, t〉) → t. In addition, F1(〈g, t〉) ≠ Λ and F2(〈g, t〉) = Λ 

(in this case we have g≠g0) is indicative of the path not having a second 

intermediate cluster. In this case, according to the methods for computing F1 and 

F2, if cluster g contains only one destination node, the subpath contained in 

cluster g is F1(〈g, t〉) ⇒ t; otherwise node 〈g, t〉 is the head destination node of 

cluster g, and the subpath must be constructed carefully to ensure that all the 

subpaths in cluster g are node-disjoint. 

Now assume that cluster g (g ≠ g0) contains more than one destination node, 

and let the head destination node of cluster g be 〈g,t〉. Because the subpath 

contained in cluster g is s ⇒t (refer to Case 2 of Step 2.2 in Procedure 

Routing-Function), s
* 

= F1(〈g,t〉) ∈ NΩ[s], and F2(〈g,t〉) = Λ, we construct the 

subpath contained in cluster g as follows: s
* ⇒t (a subpath of the path s ⇒t, 

without the link s → s
*
) if s

* 
is on the path s ⇒t (in other words, the path s ⇒t 

is the path s → s
* ⇒t); otherwise, s

* 
→ s ⇒t. The subpath is node-disjoint from 

the other subpaths in cluster g, given that the method of computing F1 ensures s
* 

∉ G, and all the nodes on the other subpaths in cluster g belong to G (due to the 

method for computing F2). 
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Algorithm PR-OTIS {Node-to-set parallel routing in OTIS-Ω}  

Input: A source node 〈g0, s = t0〉 and a set T = {〈gi, ti〉 | 1 ≤ i ≤ k} of k destination 

nodes, where k ≤ min{degΩ(ti) | 0 ≤ i ≤ k}. 

Output: A path set PathSet containing k parallel paths from 〈g0, s〉 to 〈gi, ti〉,1 ≤ i 

≤ k. 

1. Call procedure Routing-Function to compute the functions F2 and F1, and 

construct those paths that pass through no intermediate cluster. 

2. Construct paths that pass through at least one intermediate cluster based on 

F2 and F1. For every node 〈g, t〉 ∈ T such that F1(〈g, t〉) ≠ Λ or F2(〈g, t〉) ≠ Λ, 

add the following path from 〈g0, s〉 to 〈g, t〉 to PathSet. 

Case 1 {F2(〈g, t〉) = Λ, F1(〈g, t〉) = s
*
, and cluster g holds only one 

destination node}:  

   〈g0, s → s*〉 → 〈s*
, g0 ⇒ g〉→〈g, s

* ⇒ t〉 

Case 2 {F2(〈g, t〉) = Λ, F1(〈g, t〉) = s
*
, and s

* 
is on the path s ⇒ t}:  

   〈g0, s → s*〉 → 〈s*
, g0 ⇒ g〉 → 〈g, s

* ⇒ t〉 

Case 3 {F2(〈g, t〉) = Λ, F1(〈g, t〉) = s
*
, and s

* 
is not on the path s ⇒ t}:  

   〈g0, s → s*〉 → 〈s*
, g0 ⇒ g〉 → 〈g, s

* 
→ s ⇒ t〉 

Case 4 {F1(〈g, t〉) = s
*
 and F2(〈g, t〉) = t

*
}:  

   〈g0, s → s*〉 → 〈s*
, g0 ⇒ t

*〉 → 〈t*
, s

* ⇒ g〉 → 〈g, t
* 
→ t〉  

Fig. 6.  The algorithm PR-OTIS for constructing k parallel paths from source node 〈g0, s〉  

to k destination nodes 〈gi, ti〉, 1 ≤ i ≤ k, in OTIS-Ω.  

 

 

According to the discussion above, if Rules (R1), (R2), and (R3) can be used to 

remove every obstacle that possibly occurs, so as to obtain a valid value of F2 for 

the corresponding destination node in Procedure Routing-Function, then F2 and 

F1 are a pair of routing functions we need since F2(〈g, t〉) and F1(〈g, t〉) are valid 

for every node 〈g, t〉 ∈ T. This claim will be proven in Sec. 4. 
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4 Algorithm Analysis 

In this section, we prove the correctness of Algorithm PR-OTIS and analyze its 

performance with regard to running time and the length of the resulting parallel 

paths. For this purpose, we first need to prove that Rules (R1), (R2), and (R3) can 

be used to remove obstacles that possibly occur in Procedure Routing-Function.  

Assume that we are computing F2(〈g, t〉) in the procedure Routing-Function for 

some 〈g, t〉 ∈ T, t ≠t, in a cluster g containing more than one destination node. 

Recall that 〈g,t〉 is the head destination node of cluster g, p is the immediate 

predecessor oft on the subpath of 〈g,t〉 contained in cluster g, G is the global 

forbidden set of 〈g, t〉, and Dt = {t′ | 〈g, t′〉 ∈ D} − {t}. Furthermore, we let Dt
* 
= 

{t′ | t′ ∈ Dt and F2(〈g, t′〉) has not yet been computed}. Then, we have G ∪ Dt ∪ 

{p} = G ∪ Dt
* ∪ {t } ∪ {p} according to the method for computing F2. 

Therefore, if NΩ[t] − (G ∪ Dt
* ∪ {t } ∪ {p}) = ∅, we are encountering an 

obstacle and need to prove that Rules (R1), (R2), and (R3) can be used to remove 

the obstacle. That is, we now need to prove the following crucial lemma. 

Lemma 1. If NΩ[t] − (G ∪ Dt
* ∪ {t } ∪ {p}) = ∅, then we can use Rule (R1), 

(R2), or (R3) to compute a valid F2(〈g, t〉). 

The proof outline is as follows. First we show that when an obstacle occurs, 

there exists exactly one rule among Rules (R1)–(R3), and one operation of the 
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rule, whose conditions and assumptions are met, concluding that the operation is 

feasible. Second, we prove that during the operation, the generated subpaths and 

the computed F2 values thus far satisfy Criteria (C1), (C2) and (C3). These 

assertions are supported by the following two main facts that are obvious by 

construction or will be proved to be true in the full proof of Lemma 1. 

• During the use of any one of the Rules (R1)-(R3), no new intermediate cluster 

is selected, and all the subpaths contained in cluster g are clearly node-disjoint by 

construction, implying Criteria (C2) and (C3) are satisfied. 

• A subpath of length more than one in cluster g0 is potentially constructed only 

if cluster g0 is a destination cluster or Rule (R2) is used. On the other hand, if 

cluster g0 also is a destination cluster, then Rule (R1) can be used to remove any 

possible obstacle, while if cluster g0 is not a destination cluster, then Rule (R2) 

will be used at most once. Therefore, cluster g0 contains at most one subpath of 

length more than one, which implies that Criterion (C1) is satisfied. 

Please refer to the appendix for details of the proof of Lemma 1. 

Based on Lemma 1, we establish the correctness of Algorithm PR-OTIS in the 

following theorem. 

Theorem 2. Given a source node 〈g0, s = t0〉 and a set T = {〈g1, t1〉, 〈g2, t2〉, . . . , 

〈gk, tk〉} of k destination nodes in OTIS-Ω such that 〈g0, s〉 ∉ T, Algorithm 



                 Nearly Optimal Node-to-Set Parallel Routing in OTIS Networks    

                     

1250002-29 

 
 

 

 

PR-OTIS provides k node-disjoint paths from the source node to every destination 

node in T, provided k ≤ min{degΩ(ti) | 0 ≤ i ≤ k}. 

Proof. We first need to show that all the operations in Procedure 

Routing-Function are feasible. For this purpose, we only need to prove that the 

operations in Steps 2.1 and 2.2 are feasible when an obstacle does occur in 

computing F2; the other operations are obvious. The assertion is true by Lemma 1. 

Therefore, the algorithm generates k paths from the source node to every 

destination node in T. Moreover, by Lemma 1, F2 and F1 are a pair of routing 

functions, as needed, since F2(〈g, t〉) and F1(〈g, t〉) are valid for every node 〈g, t〉 ∈ 

T, as discussed previously. Hence, the node-disjoint property of these k paths is 

ensured, completing the proof.                                        ■ 

Next, we analyze the performance of Algorithm PR-OTIS with regard to 

running time and the lengths of constructed paths. In the following, we denote by 

n the order of Ω, by f(n) the time complexity of the given shortest-path routing in 

Ω, by N the order of OTIS-Ω, by D the diameter of OTIS-Ω, and by ∆ the 

maximal node degree of OTIS-Ω. 

Theorem 3. The time complexity of Algorithm PR-OTIS is O(∆2
+∆f( N )) and 

each path constructed by it is of length no greater than D + 4. 

Proof. We first consider the time complexity of this algorithm. Recall that |NΩ[t]| 
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≤ ∆ for all t ∈ V(Ω), and k < ∆. In Procedure Routing-Function, for every 

destination node 〈g, t〉 ∈ D, computing F2(〈g, t〉) or F1(〈g, t〉) needs O(∆) time; 

thus, the total time for computing the routing functions F2 and F1 is O(k∆), since 

there are k destination nodes. Moreover, constructing the paths passing through no 

intermediate cluster in Procedure Routing-Function, and constructing the other 

paths based on F2 and F1 take O(kf(n)) time, since k paths need to be constructed, 

and each one requires O(f(n)) time to construct. Hence, the time complexity of 

Algorithm PR-OTIS is bounded by O(∆2 
+ ∆f( N )) due to k < ∆ and N = n

2
. 

Next, we consider the length of the paths constructed. Note that the length of 

the path u ⇒ v is at most D(Ω) for any pair of nodes u and v in Ω. Since every 

path is explicitly constructed in this algorithm, it is easy to verify immediately 

that the length of a path passing through no intermediate cluster is at most 2D(Ω) 

+ 1, and the length of a path passing through one or two intermediate clusters is at 

most 2D(Ω) + 5. Therefore, the length of paths constructed is at most 2D(Ω) + 5 = 

D + 4, given that D = 2D(Ω) + 1.                                      ■ 

We note that if ∆ = O(f(n)) and the given shortest-path routing algorithm in Ω is 

time-optimal, then the running time of Algorithm PR-OTIS will be bounded by 

O(∆f(n)), which is optimal in the sense that any node-to-set routing algorithm 

takes at least Θ(∆f(n)) time in the worst case to construct k = ∆ − 1 node-disjoint 
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paths in the OTIS network. For a number of OTIS networks of practical interest, 

such as OTIS-Mesh and OTIS-Hypercube, the factor networks do have an optimal 

shortest-path routing algorithm and ∆ = O(f(n)) does hold. Thus, Algorithm 

PR-OTIS is optimal for such OTIS networks. 

On the other hand, a path from 〈g0, s〉 to 〈g, t〉 constructed by Algorithm 

PR-OTIS is clearly optimal if its length is the distance between the source node 

and the destination node. From the distance formula between two nodes in 

OTIS-Ω in Sec. 2, we know that there exists a shortest path passing through at 

most one intermediate cluster between two nodes in OTIS-Ω. We can verify 

directly the following results about near optimality in path length for some of the 

k node-disjoint paths constructed by Algorithm PR-OTIS. 

•••• For 〈g, t〉 ∈ T such that g = g0, if the path constructed from 〈g0, s〉 to 〈g0, t〉 has 

no intermediate cluster, then the length of the path is dOTIS-Ω(〈g0, s〉, 〈g0, t〉) = 

dΩ(s, t). 

•••• For 〈g, t〉 ∈ T such that g0 ≠ g, if there exists one shortest path from 〈g0, s〉 to 

〈g, t〉 that passes through no intermediate cluster, and the constructed path 

from 〈g0, s〉 to 〈g, t〉 has no intermediate cluster, then the length of the path is 

dOTIS-Ω(〈g0, s〉, 〈g, t〉). 

•••• For 〈g, t〉 ∈ T such that g0 ≠ g, if there exists one shortest path from 〈g0, s〉 to 
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〈g, t〉 that passes through one intermediate cluster, and the constructed path 

from 〈g0, s〉 to 〈g, t〉 has only one intermediate cluster, then the length of the 

path is at most dOTIS-Ω(〈g0, s〉, 〈g, t〉) + 2. 

•••• For 〈g, t〉 ∈ T such that g0 ≠ g, if there exists one shortest path from 〈g0, s〉 to 

〈g, t〉 that passes through no intermediate cluster, and the constructed path 

from 〈g0, s〉 to 〈g, t〉 has two intermediate clusters, then the length of the path 

is at most dOTIS-Ω(〈g0, s〉, 〈g, t〉) + 6. 

The Rabin number of a k-connected graph Γ is the minimum l such that for any 

k + 1 distinct nodes s, t1, t2, … , tk of Γ, there exist k node-disjoint paths of length 

at most l from s to t1, t2, … , tk, respectively [26]. It has been shown that finding 

the Rabin number of a general graph is NP-hard. From Theorem 3, we 

immediately have the following corollary. 

Corollary 4. The Rabin number of OTIS-Ω is bounded from above by D + 4. 

 

5 Example Applications 

In this section, we provide two example applications of Algorithm PR-OTIS. As 

the first application, we show that this algorithm can be used to solve efficiently 

the node-to-node parallel routing problem in OTIS networks. 

Corollary 5. Given a shortest-path routing algorithm of time complexity O(f(n)) 
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in an n-node connected factor network Ω, Algorithm PR-OTIS can generate k 

node-disjoint paths of length at most D + 5 between two distinct nodes 〈gs, s〉 and 

〈gt, t〉 in OTIS-Ω in O(∆2
+∆f( N )) time, where D, ∆, and N are the diameter, 

maximal node degree, and order of OTIS-Ω, respectively, and k = min{degΩ(s), 

degΩ(t)}. 

Proof. Without loss of generality, we assume |degΩ(s)| ≥ | deg Ω(t)| = k, which 

implies that |NΩ[s]| ≥ |NΩ[t]| = k + 1. We consider the following instance of the 

node-to-set parallel routing problem in OTIS-Ω: The source node is 〈gs, s〉 and the 

destination node set is {〈gt, t1〉, 〈gt, t2〉, … , 〈gt, tk〉}, where {t1, t2, …, tk} is a 

k-element subset of NΩ[t] that includes t. By Theorems 2 and 3, Algorithm 

PR-OTIS can construct k node-disjoint paths from 〈gs, s〉 to 〈gt, ti〉, 1 ≤ i ≤ k, in 

O(∆2 
+ ∆f( N )) time, and the length of each constructed path is at most D + 4. It 

is readily seen that these k node-disjoint paths can be extended by one step, if 

required, to obtain k node-disjoint paths of length at most D + 5 from 〈gs, s〉 to 〈gt, 

t〉.                                                               ■  

As a second application, we investigate the performance of Algorithm PR-OTIS 

when applied to OTIS networks built of binary hypercubes as factor networks. 

Hypercube networks and their variants, including OTIS-Hypercube, have been 

extensively studied.
28,31

 We use Qk to denote a k-dimensional hypercube network 
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(k-cube, for short) and let n = 2
k
 denote its order. Thus, we have k = δ(Qk) = ∆(Qk) 

= log2 n. It is well-known that Qk has a shortest routing algorithm of time 

complexity O(log n). Theorems 2 and 3 immediately yield the following result.  

Corollary 6. Given a source node 〈g0, s〉 and k destination nodes {〈g1, t1〉, 〈g2, 

t2〉, …, 〈gk, tk〉} in OTIS-Qk, Algorithm PR-OTIS generates k node-disjoint paths of 

length at most D + 4 from the source node to every destination node in O(log
2 
N) 

time (an optimal time), where N = 2
2k

 and D = 2k + 1 are the order and the 

diameter of OTIS-Qk.  

Note that the optimality of Algorithm PR-OTIS stated in Corollary 6 results 

from the fact that the worst case running time of any algorithm for constructing k 

paths in OTIS-Qk is Θ(k log n), which translates to Θ(log
2 

N), given that k = log2 n 

and N = n
2
.  

Figure 7 illustrates the constructions by Algorithm PR-OTIS on two instances 

of the node-to-set parallel routing problem for OTIS-Q3. 
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(a) An instance of k = 3 such that g1 is a free node in NΩ[s], where F1(〈g1, t1〉) = F2(〈g1, t1〉) = ˄. 

 

 

 

 

 

 

 

 

 

(b) An instance of k = 3 such that no destination cluster number is a free node number in NΩ[s]. 

Fig. 7.  The parallel path constructions of Algorithm PR-OTIS (heavy lines) on two instances of OTIS-Q3. 
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To evaluate the practical performance with regard to the length of paths 

constructed by Algorithm PR-OTIS for OTIS-Qk, we conducted a simulation 

experiment, where for each k between 2 and 20, we selected 10,000 random 

combinations of the source node and the destination node set, applying the 

algorithm in each case to determine the mean maximum path length. Figure 8 

depicts the mean maximum path length derived from these experiments, where 

the horizontal axis represents the dimension k of the factor network Qk, and the 

vertical axis represents the average among 10,000 maximum lengths for each k.  

From Fig. 8, we can conclude that for OTIS-Qk, in practice, the maximum 

length of k node-disjoint paths from one source node to k destination nodes 

constructed by Algorithm PR-OTIS is generally far below the upper bound D + 4, 

and slightly above the maximal path length that results directly from the distance 

formula, the latter clearly providing a lower bound for the maximum length. Note 

that, for any specific instance of the node-to-set routing problem, the maximum 

length of the required paths constructed by any algorithm would generally be 

somewhat greater than the maximal distance from the source node to the set of 

destination nodes, in order to ensure the node-disjoint property.  

 

 

Fig. 8

here
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Fig. 8.  Average maximum length of paths constructed by Algorithm PR-OTIS for OTIS-Qk. 

 

6 Conclusion 

In this paper, we have proposed a general and efficient algorithm for the 

node-to-set parallel routing problem in an OTIS network built of an arbitrary 

connected factor network. If D, ∆, and N represent the diameter, node degree, and 

order of the OTIS network, the proposed algorithm constructs the requisite 

number of node-disjoint paths that are of length at most D + 4 in O(∆2 
+ ∆f( N )) 

time, provided the factor network of order n has a shortest-path routing algorithm 

of time complexity O(f(n)). We have shown that the algorithm is optimal in terms 

of time complexity for a number of OTIS networks of practical interest.  

Our general algorithm supersedes prior node-to-set parallel routing schemes for 

specific factor networks, and it can also be used for node-to-node parallel routing 

in OTIS networks. As an example application, the algorithm provides 

Path length bound: D + 4 

Mean max path length 

Mean max distance 
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node-disjoint paths (that are only slightly longer than the distance-based optimal 

paths) in optimal time for OTIS-Hypercube. 

Important open problems include finding general and efficient algorithms for 

the set-to-set and the k-pair parallel routing problems in OTIS networks. 
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Appendix: Proof of Lemma 1 

Please refer to Section 4 of the paper for the proof outline. 

In order to prove Lemma 1, we first prove the following sequence of assertions. 

Assertion 1.  

Furthermore, if the maximum of k + 1 or k + 2 is attained, then the four sets G, Dt
*
, 

{t } and {p} will be pairwise disjoint, and exactly one destination node in every 

destination cluster will not need a second intermediate cluster. 

Proof. According to the method for computing F2, if a destination cluster g′ 

contains c destination nodes (c ≥ 1), we need to make use of a second 

intermediate cluster for no more than c – 1 of the destinations. Thus, the total 

k + 1,  if the source cluster g0 is a destination cluster 

k + 2,  otherwise 

|G ∪ Dt
* ∪ {t } ∪ {p}| ≤ 




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contribution of cluster g′ to |G| will be at most c, given that G initially contains g′. 

In particular, if cluster g0 is also a destination cluster, then the contribution of 

cluster g0 to |G| will be no greater than the number of destinations in cluster g0; 

otherwise, its contribution will be 1, owing to g0 ∈ G. Therefore, after computing 

F2(〈g, t〉) for all 〈g, t〉 ∈ T, |G| will be at most k if cluster g0 is a destination cluster 

and at most k + 1, otherwise. Now, assume that we are computing F2(〈g, t〉) for 〈g, 

t〉 ∈ T, and that there are a destination nodes including 〈g, t〉 in cluster g whose F2 

values have not yet been computed; i.e., |Dt
*
| = a − 1 (a ≥ 1) due to t ∉ Dt

*
. At the 

moment, |G| is at most k − a if cluster g0 is a destination cluster and at most k + 1 

− a, otherwise. Hence, |G ∪ Dt
* ∪ {t } ∪ {p}|, which is at most |G| + |Dt

*
| + 

|{t }| + |{p}|, will be no greater than k + 1 if cluster g0 is a destination cluster and 

no greater than k + 2, otherwise. Clearly, if the maximum of k + 1 or k + 2 is 

attained, then the sets G, Dt
*
, {t }, and {p} must be pairwise disjoint, and exactly 

one destination node in every destination cluster will not need a second 

intermediate cluster.                                                ■     

Assertion 2. Let the source cluster g0 also be a destination cluster. If NΩ[t] − (G ∪ 

Dt
* ∪ {t } ∪ {p}) = ∅, then p ≠t, p ∈ NΩ[t], andt ∉ G. 

Proof. From Assertion 1, we have |G ∪ Dt
* ∪ {t } ∪ {p} | ≤ k + 1, and that if the 

maximum of k + 1 is attained, then the sets G, Dt
*
, {t } and {p} are pairwise 
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disjoint. Since |NΩ[t]| ≥ k + 1, NΩ[t] − (G ∪ Dt
* ∪ {t } ∪ {p}) = ∅ implies NΩ[t] 

= G ∪ Dt
* ∪ {t } ∪ {p}, and the sets G, Dt

*
, {t }, and{p} are pairwise disjoint. 

Hence, we have p ≠t , p ∈ NΩ[t], andt ∉ G.                            ■      

Assertion 3. Let the subpath of 〈g,t〉 contained in cluster g be of form g0 ⇒t. If 

NΩ[t] − (G ∪ Dt
* ∪ {t } ∪ {p}) = ∅, then p ≠t, p ∈ NΩ[t], andt ∉ G. 

Proof. Recall that |NΩ[t]| ≥ k + 1 and |G ∪ Dt
* ∪ {t } ∪ {p} | ≤ k + 2 by Assertion 

1. We consider the two cases of g0 ∈ NΩ[t] and g0 ∉ NΩ[t]. First, if g0 ∉ NΩ[t], then 

NΩ[t] − (G ∪ Dt
* ∪ {t } ∪ {p}) = ∅ implies |G ∪ Dt

* ∪ {t } ∪ {p}| = k + 2, and 

NΩ[t] ∪ {g0} = G ∪ Dt
* ∪ {t } ∪ {p} due to g0 ∈ G. By Assertion 1, the sets G, 

Dt
*
, {t }, and {p} are pairwise disjoint. Thus, we have p ≠t, p ∈ NΩ[t], andt ∉ G. 

Secondly, if g0 ∈ NΩ[t], then dΩ(g0,t) ≤ dΩ(g0, t) ≤ 1 due to dΩ(g0,t) = min{dΩ(g0, 

t′) | 〈g, t′〉 ∈ T }. This leads to p = g0, since p is the immediate predecessor oft on 

the path g0 ⇒t. The proof of Assertion 1, and p =g0 ∈ G, NΩ[t] − (G ∪ Dt
* ∪ {t } 

∪ {p}) = ∅ suggest that NΩ[t] = G ∪ Dt
* ∪ {t }, and the sets G, Dt

*
, and {t } are 

pairwise disjoint. Thus, we have p = g0 ≠t, p = g0 ∈ NΩ[t], andt ∉G, which 

concludes this proof.                                                ■  

Assertion 4. If p ≠t, p ∈ NΩ[t], andt ∉ G, then Rule (R1) can be used to 

compute a valid F2(〈g, t〉). 

Proof. Without loss of generality, we assume that the subpath of 〈g,t〉 contained 
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in cluster g is s ⇒t; the proof for the case of the subpath being g0 ⇒t is similar. 

Recall that the role of node p in the forbidden set is to ensure that the subpath s 

⇒t is node-disjoint from the other subpaths contained in cluster g, since dΩ(s,t) 

= min{dΩ(s, t′) | 〈g, t′〉 ∈ T}. Considering that p ≠t and p ∈ NΩ[t], we have dΩ(s, t) 

= dΩ(s,t). Thus, to compute F2 for other destination nodes in cluster g, we can 

replacet with t. In other words, we make 〈g, t〉 the head destination node in 

cluster g, in lieu of 〈g,t〉. Then, for 〈g, t〉, the subpath contained in cluster g is s ⇒ 

p → t and F2(〈g, t〉) = Λ, For 〈g,t〉, the subpath contained in cluster g is the single 

nodet, and F2(〈g,t 〉) =t due tot ∉ G. Hence, we can use Rule (R1) to compute 

a valid F2(〈g, t〉).                                                   ■ 

Based on Assertions 1-4, we now can prove Lemma 1. 

Lemma 1. If NΩ[t] − (G ∪ Dt
* ∪ {t } ∪ {p}) = ∅, then we can use Rule (R1), 

(R2), or (R3) to compute a valid F2(〈g, t〉). 

Proof. Let α = (p ≠t ∧ p ∈ NΩ[t] ∧t ∉ G). If α is true, we can use Rule (R1) to 

compute a valid F2(〈g, t〉) by Assertion 4. Next, we assume that α is false, that is, 

p =t, p ∉ NΩ[t], ort ∈ G. Note that |NΩ[t]| ≥ k + 1 and that NΩ[t] − (G ∪ Dt
* ∪ 

{t } ∪ {p}) = ∅ is given. Thus, if p =t or p ∉ NΩ[t], then NΩ[t] = G ∪ Dt
* ∪ 

{t }, and the sets G, Dt
*
, and {t } will be pairwise disjoint by the proof of 

Assertion 1. Similarly, ift ∈ G, then NΩ[t] = G ∪ Dt
* ∪ {p}, and the sets G, Dt

*
, 
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and {p} will be pairwise disjoint. Hence, in either case,t ∈ NΩ[t], G ∪ Dt
* ⊆ 

NΩ[t], and the sets G and Dt
*
 are disjoint. Note that because α is false, cluster g0 is 

not a destination cluster by Assertion 2 and the subpath of 〈g,t〉 contained in 

cluster g is s ⇒t by Assertion 3; thus, g ∉ NΩ[s] by the method for computing F2. 

Let g
*
 be the immediate successor to s on the path s ⇒ g. Clearly, g

* ∈ NΩ[s], and 

we have the following two cases. 

Case 1. {g
*
 is a free node in NΩ[s]}: Recall that Dt = {t′ | 〈g, t′〉 ∈ T} − {t}, Dt

* 
= 

{t′ | t′ ∈ Dt and F2(〈g, t′〉) has not yet been computed}, and g0 ∈ NΩ[t] due to g0 ∈ 

G ⊆ NΩ[t]. We have the following two subcases. 

Case 1.1. {g0 ∉ Dt}: Clearly, Case 1 of Rule (R2) can be used to compute F2(〈g, 

t〉). 

Case 1.2. {g0 = t′ ∈ Dt}: In this case, F2(〈g, t′〉) has been computed, since we 

know that G and Dt
*
 are disjoint, and g0 ∈ G. Note that at the moment,t is the 

only destination node in cluster g not needing a second intermediate cluster, that 

is, F2(〈g,t〉) = Λ. Therefore, if F2(〈g, t′〉) ≠ Λ, then t′ ≠t, and F2(〈g, t′〉) ∈ G ⊆ 

NΩ[t]; thus Case 2 of Rule (R2) can be used to compute F2(〈g, t〉). Otherwise, that 

is, for F2(〈g, t′〉) = Λ, we have t′ =t = g0 ∈ G, leading to NΩ[t] = G ∪ Dt
* ∪ {p}, 

and the sets G, Dt
*
, and {p} are pairwise disjoint, as discussed above. Hence, we 

have g0 =t, p ∈ NΩ[t], and p ≠t, which suggests that Case 3 of Rule (R2) can be 
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used to compute F2(〈g, t〉). 

Case 2. {g
*
 is a fixed node in NΩ[s]}: According to the method for computing F2, 

we know that cluster g
*
 contains more than one destination node, and F2 has been 

computed for every destination node in cluster g
*
(see Case 1 of Step 2.2 in 

Procedure Routing-Function). In this case, there exists a destination node 〈g*
, t

*〉 

such that F2(〈g
*
, t

*〉) ≠ Λ. Hence, we have F2(〈g
*
, t

*〉) ∈ G, and thus F2(〈g
*
, t

*〉) ∈ 

NΩ[t], since G ∪ Dt
* ⊆ NΩ[t]. We have the following two subcases. 

Case 2.1. {F2(〈g
*
, t

*〉) ∉ Dt}: Clearly, Case 1 of Rule (R3) can be used to compute 

F2(〈g, t〉).  

Case 2.2. {F2(〈g
*
, t

*〉) = t′ ∈ Dt}: In this case, F2(〈g, t′〉) has been computed, since 

we know that G and Dt
*
 are disjoint, and t′ = F2(〈g

*
, t

*〉) ∈ G. Note that at the 

moment,t is the only destination node in cluster g not needing a second 

intermediate cluster, that is, F2(〈g,t〉) = Λ. Therefore, if F2(〈g, t′〉) ≠ Λ, then t′ ≠t 

and F2(〈g, t′〉) ∈ G ⊆ NΩ[t]; thus Case 2 of Rule (R3) can be used to compute 

F2(〈g, t〉). Otherwise, that is, for F2(〈g, t′〉) = Λ, we have t′ =t = F2(〈g
*
, t

*〉) ∈ G, 

and thus NΩ[t] = G ∪ Dt
* ∪ {p}, and the sets G, Dt

*
, and {p} are pairwise disjoint, 

as discussed above. Hence, we have F2(〈g
*
, t

*〉) =t, p ∈ NΩ[t], and p ≠t, which 

suggests that Case 3 of Rule (R3) can be used to compute F2(〈g, t〉). 
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Note that the subpath of the head destination node in cluster g
*
 is of form g0 

⇒t
*
, wheret

* 
= argmin{dΩ(g0, t′) | 〈g*

, t′〉 ∈ T}, implying that it is feasible to 

recompute a valid F2(〈g
*
, t

*〉) via Rule (R1) by Assertions 3 and 4.  

We next prove the validity of F2(〈g, t〉) obtained via Rule (R2) or (R3). Since no 

new intermediate cluster is selected, and all the subpaths contained in cluster g are 

clearly node-disjoint by construction, Criteria (C2) and (C3) are satisfied. In order 

to prove that Criterion (C1) is also satisfied, considering that g
*
 is a free node in 

NΩ[s], we only need to prove that before we use Rule (R2) to compute F2(〈g, t〉), 

all constructed subpaths in cluster g0 are of length at most one, which suggests all 

the nodes on these subpaths are within NΩ[s] of cluster g0. Note that, according to 

the method for computing F2, a subpath of length more than one in cluster g0 is 

potentially constructed only if cluster g0 is a destination cluster or Rule (R2) is 

used. Now that we have proven that cluster g0 is not a destination cluster, we only 

need to prove that Rule (R2) can be used at most once. Note that once Rule (R2) 

has been used in some cluster, at least two destination nodes in that cluster will 

not need a second intermediate cluster, which implies, by the proof of Assertion 1, 

that |G ∪ Dt
* ∪ {t } ∪ {p}| ≤ k + 1 will hold and that if the maximum of k + 1 is 

attained, then the sets G, Dt
*
, {t }, and {p} will be pairwise disjoint. In this case, 

similar to Assertion 2, we can easily prove that α is true if NΩ[t] − (G ∪ Dt
* ∪ {t} 
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∪ {p}) = ∅; thus Rule (R1) can remove any obstacle that might possibly occur 

later, which implies that Rule (R2) can be used at most once, as claimed.      ■ 
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