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ABSTRACT 

We propose a symmetrical scheme, by drawing results from group theory, and use it to build a new 

class of data center network models. The results are superior to current network models with respect 

to a number of performance criteria. Greater symmetry in networks is important, as it leads to 

simpler structure and more efficient communication algorithms. It also tends to produce better 

scalability and greater fault tolerance. Our models are general and are expected to find many 

applications, but they are particularly suitable for large-scale data-center networks. 

Keywords: data-center network model, network performance, network cost, routing algorithm, 

structural symmetry. 

1.   Introduction and Related Work 

Energy costs are increasing rapidly with the widespread deployment of large-scale data 

centers and their requisite networks. Research for large-scale and energy-efficient data-

center networking is in high demand [1]–[4]. Data-center networking entails the design of 
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the network structure and associated protocols to interconnect thousands or even 

hundreds-of-thousands of servers [1]–[3] at a data center, with low equipment cost, high 

and balanced network capacity, easy expandability, scalable performance, and extreme 

reliability, including robustness with respect to link and sever faults.  

Proper operation of such data centers is essential to offering numerous online 

applications, such as search, gaming, and Web mail, as well as infrastructure services, 

such as GFS [5], Map-reduce [6], and Dryad [7]. It is well understood that the tree-based 

solution in current practice cannot meet all the requirements [8], [9]. It is thus imperative 

to look for systematic ways of building network structures for data centers and other 

applications that overcome the limitations of existing networks. 

In this paper, we propose a symmetrical scheme, by drawing results from group 

theory, and use it to build a new class of data center network models. The results are 

superior to current network models with respect to a number of performance criteria. For 

example, the number of ports per switch can be a small constant, the servers need only 

two ports, the total number of switches can be sublinear in network size (e.g., N / log N), 

and the diameter can be logarithmic in the number N of servers. Greater symmetry in 

networks is important, as it leads to simpler structure and more efficient communication 

algorithms. It also tends to produce better scalability and greater fault tolerance. Our 

models are general and are expected to find many applications, but they are particularly 

suitable for large-scale data-center networks. 

Following an overview of motivations and related work in Section 1, we propose a 

group-theory-based symmetrical method in Section 2, where we also discuss the 

construction and pertinent topological properties of the resulting model. Section 3 is 

devoted to a routing algorithm for our proposed model. Comparison of the model to other 

network models appears in Section 4. Section 5 concludes the paper.       

The rest of this section is devoted to a brief review of some key interconnection 

structures that have been proposed for data-center networks, namely the Fat-Tree [8], 

DCell [9], BCube [10], and FiConn [11]. 

Fat-Tree has three levels of switches. There are n pods, each containing two levels of 

n/2 switches, i.e., the edge level and the aggregation level. Each n-port switch at the edge 

level uses n/2 ports to connect to n/2 servers while using the remaining n/2 ports to 

connect the n/2 aggregation level switches in the pod. At the core level, there exist (n/2)
2
 

n-port switches, and each switch has one port connecting to one pod. Therefore, the total 

number of servers supported by the Fat-Tree network structure is n
3
/4. Given a typical 

switch with n = 48, a total of 27 648 servers are supported. 

DCell is a new, level-based structure. In DCell0, n servers are connected to an n-port 

commodity switch. Given t servers in a DCellk, (t + 1) DCellk units are used to build a 

DCellk+1. Each of the t servers in a DCellk connects to one of the other DCellk units. In 

this way, DCell achieves high scalability and wide bisection. 

BCube is also a server-centric interconnection topology, but is targeted for large, 

shipping-container-sized data centers, typically composed of 1K-2K servers. It is also a 
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level-based structure. A BCube0 simply consists of n servers connected to an n-port 

switch. A BCube1 is built from n BCube0 units and n-port switches. More generally, a 

BCubek is constructed from n BCubek–1 units and n
k
  n-port switches. Each server in a 

BCubek has k + 1 ports.  

FiConn network proposed in [11] uses a recursive construction scheme similar to 

DCell. However, each server in FiConn can have only two interfaces. FiConn suffers 

from the problem of unevenly loaded links. 

2.   A New Class of Data-Center Network Models 

2.1.   Introducing the Cayley Network Model 

We use the terminology and notational conventions of algebraic graph theory [12], [13]. 

Let N be the number of servers and M the number of switches. Let T = N + M. Assume 

that the network contains a cycle of T nodes. Combine the M switch nodes into a regular 

graph. The other nodes are 2-port server nodes. 

We begin by assuming that N and M are integers of the following special forms (these 

restrictions can be readily relaxed): N = k
h
n

l
, M = k

a
n

b
, where a ≤ h and b ≤ l. Then: 

 

T = k
h
n

l
 + k

a
n

b
 = k

a
n

b
(k

h–a
n

l–b
 + 1) 

 

We demonstrate the construction of the network model by means of some examples. 

Before doing so, however, we need to introduce the definitions of Cayley graph and coset 

graph from algebraic graph theory [12], [13]. 
 

Definition 1.  Let G be a finite group with the identity element e and the generating set S 

(e ∉ S). Then, Г = Cay(G, S) is the Cayley digraph on G with connection set S if V(Г) = 

G and E(Г) = {(g, gs) | g ∈ G, s ∈ S}. 
 

Definition 2.  Let G be a finite group with the identity element e and the generating set S. 

Assume that e ∉ S and g
–1

 ∈ S iff g ∈ S. Then, Г = Cay(G, S) is the Cayley graph on G 

with connection set S if V(Г) = G and E(Г) = {(g, gs) | g ∈ G, s ∈ S}. 
 

Definition 3.  Let K be a subgroup of G (denoted as K ≤ G). The coset graph of S and K 

is ∆ = Cos(G, K, S), whose node set is the right coset G/K. For g, g′ ∈ G, Kg and Kg′ 

have an edge iff for some k, k′ ∈ K, there is s ∈ S, such that kgs = k′g′. 
 

Hypercube, cube-connected cycles, and butterfly networks are well-known examples 

of Cayley graphs, while de Bruijn and shuffle-exchange networks are instances of coset 

graphs [14]. The survey paper [15] contains an extensive list of references on Cayley 

graphs and their varied applications. 

Let us consider an example. The de Bruijn graph is the following directed coset graph, 

with the undirected version being similar: 
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G = Zn
k
Zk, K = Zk, S = {(0, 0, … , 0, 0; 1), (0, 0, … , 0, 1; 1)}, ∆ = Cos(G, K, S) 

 

The cube-connected-cycles network is the following Cayley digraph, with its 

undirected version also being similar: 
 

G = Zn
k
Zk, S = {(0, 0, … , 0, 0; 1), (0, 0, … , 0, 1; 0)}, Γ = Cay(G, S) 

 

Biswapped networks form a new class of interconnection structures that have been 

shown to have important advantages over the popular swapped or OTIS networks [16]. 

Accordingly, we place some emphasis on the following example. Let Ω be any digraph 

with the vertex set V(Ω) = {g1, g2, … , gn} and the arc set E(Ω). The biswapped 

interconnection network Bsw(Ω) = Σ = (V(Σ), E(Σ)) is a digraph with its vertex and edge 

sets specified as: 
 

V(Σ) = {〈0, p, g〉 , 〈1, p, g〉 | p, g ∈ V(Ω)} 
 

E(Σ) = {(〈0, p, g1〉 , 〈0, p, g2〉), (〈1, p, g1〉 , 〈1, p, g2〉) | p ∈ V(Ω), (g1, g2) ∈ E(Ω)} 

∪ {(〈0, p, g〉 , 〈1, g, p〉), (〈1, p, g〉 , 〈0, g, p〉) | p, g ∈ V(Ω)} 
 

The definition postulates 2n clusters, each being an Ω digraph: n clusters, with nodes 

indexed 〈0, cluster#, node#〉, form part 0 of the bipartite graph, and n clusters constitute 

part 1, with associated node indices 〈1, cluster#, node#〉. Each cluster p in either part of Σ 

has the same internal connectivity as Ω (intracluster edges, forming the first set in the 

definition of E(Σ)). In addition, node g of cluster p in part 0/1 is connected to node p in 

cluster g of part 1/0 (intercluster or swap edges of the second set in the definition. The 

name “biswapped network” (BSN) arises from two defining properties of the network 

just introduced: when clusters are viewed as supernodes, the resulting graph of 

supernodes is the complete 2n-node bipartite graph Kn,n, and the intercluster links connect 

nodes in which the cluster number and the node number within the cluster are 

interchanged or swapped. 

We could continue our presentation with directed networks, deriving results for 

undirected networks as special cases. However, because data-center networks are usually 

undirected, we focus on undirected graphs in the rest of this paper. Note that the 

definition of E(Σ), provided at the beginning of this section, ensures a symmetric directed 

network (that is, an undirected graph) Σ, when the basis network Ω is symmetric. Hence, 

combining the directed edges (〈0, p, g〉, 〈1, g, p〉) and (〈1, g, p〉, 〈0, p, g〉) leads to 

undirected versions of our biswapped networks. 

According to [16], we have the following. 
 

Theorem 1.  (1) If Ω is a Cayley graph, then so is Σ; 

(2) |Σ| = 2|Ω|
2
, where |Θ| denotes the order or size of any graph Θ; 

(3) D(Σ) = 2D(Ω) + 2, where D(Θ) denotes the diameter of any graph Θ; 

(4) deg(Σ) = deg(Ω) + 1, where deg(Θ) denotes the degree of any graph Θ. 
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According to [16], we also have the following result. Let H be a finite group and S a 

generator set of H, with Ω = Cay(H, S) and H × H the direct product of the group H and 

itself. Let G = (H × H)〈t〉 = 〈t〉(H × H) be a semidirect product of the group H × H by the 

cyclic group 〈t〉, where t is an element of order 2, and t(p, g)t = (g, p) for any p, g ∈ H. 

Let S ′ = {(e, s) | s ∈ S} ⊆ H × H and T = S ′ ∪ {t}. Then, Cay(G, T) = Σ.  

Now let Γ0 = Ω and Γ1 = Σ. Proceeding recursively for k steps, we can construct the 

graph Γk. It is easy to see that, by Theorem 1, we have the following. 
 

Proposition 1.  (1) |Γk| = 2
2k–1

|Ω|
2k

; 

(2) D(Γk) = 2
k
D(Ω) + 2

k
; 

(3) deg(Γk) = deg(Ω) + k.  
 

Also according to [16], we have the following desirable properties for Γk when Ω is 

connected. 
 

Proposition 2.  (1) If Ω has a Hamiltonian cycle, then so does Γk; 

(2) If Ω has a shortest-path routing algorithm, then a shortest-path routing algorithm can 

be devised for Γk; 

(3) Γk is maximally fault-tolerant (this strong result is surprising, given that Ω is only 

required to be connected); 

(4) If D(Ω) is “small,” then so is D(Γk); 

(5) If deg(Ω) is “small,” then so is deg(Γk). 
 

Next, we propose some examples of Cayley networks. Intuitively, we first construct a 

regular graph of M nodes, and identify a Hamiltonian cycle H in it. This is possible for 

nearly all regular graphs. Form a cycle of length T on H by inserting the same number of 

nodes along each edge of H. The graph Cayley, formed in this way, is highly symmetric. 

We proceed with our first example.  

Let N = n
k+1

 and M = n
k
. Then, T = n

k
(n + 1) and M = N/n. The M nodes constitute the 

de Bruijn graph of dimension k. The network diameter is of order log N when n is small, 

and the number of ports per switch may be a small constant. Our construction for n = 2 

and k = 3 is depicted in Fig. 1. 

Let N = k
2
n

k
 and M = kn

k
. Then, T = kn

k
(k + 1) and M = N/k. The network contains a 

cycle of T nodes, and M nodes become the cube-connected-cycles graph of dimension k. 

The network diameter is of order log N when n is small, and the number of ports per 

switch may be a small constant. The latter construction for n = 2 and k = 3 is depicted in 

Fig. 2. The server nodes are partially drawn in order to avoid clutter. 

Let N = 2
2k–1

n
2k+1

 and M = 2
2k–1

n
2k

. Then, T = 2
2k–1

n
2k

(n + 1) and M = N/n. The 

network contains a cycle of T nodes, and M nodes become the graph Γk formed with k 

recursive steps. The network diameter is of order log N when n is small, and the number 

of ports per switch may be a small constant. In Fig. 3, the server nodes are not drawn in 

order to avoid clutter. 
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Fig. 1.   Cayley model based on the de Bruijn graph, with n = 2 and k = 3. 

 

 

Fig. 2.   Cayley model based on cube-connected cycles network, with n = 2 and k = 3. 

 

 

Fig. 3.   An example 32-node biswapped network Σ formed from the basis graph Ω = C4. Each line 

represents two directed edges in opposite directions. To avoid clutter, the switch node index 〈i, p, g〉 is 

shown as ipg (i, p, g are part, cluster, and node indices, respectively) and server nodes are not drawn. 
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As is evident from the examples above, our data center network model, which uses 

symmetrical construction, is superior to current network models in many aspects of 

performance. For example, the number of ports per switch may be a small constant, the 

servers need only 2 ports, the number of switches may be of order N / log N, and the 

diameter of network may be of order log N, where N is the number of servers. Greater 

symmetry leads to simpler structure and communication algorithms. It also leads to 

greater scalability and fault-tolerance [12]. In the next subsection, we present some 

results on topological properties for our model. 

2.2.   Topological Properties of Cayley 

It is well known that a Cayley graph is node-transitive, thus forming an apt model for the 

study of symmetric networks. The coset graph is regular and also possesses a number of 

symmetries. Data center networks have nodes of two kinds: servers and switches. Servers 

must be connected into cycles, if we want them to have only two ports. For symmetry, we 

may want that switches have similar structures. Hence they can be denoted as coset 

graphs (Cayley graphs, in particular). They can be chosen to be large graphs of small 

degree and diameter, leading to large data-center network models, because coset graphs 

form a very general class of graphs. The regular graph of switch nodes is of small 

diameter when n is small. Under these conditions, we have the following properties. 
 

Property 1.  The diameter of Cayley network may be of order log N for suitably small n. 
 

Property 2.  The number of ports per server in Cayley is 2. 
 

Property 3.  The number of ports on switches in Cayley may be a small constant. 

3.   Shortest-Path Routing Algorithm for Cayley 

We use the cube-connected-cycles version of our network as an example. Node 

addressing is as follows (refer to Fig. 4). The switch node addressing is the same as in the 

cube-connected-cycles network, but includes an extra dimension that is assigned the 

value 0. For example, (110,1) in the cube-connected cycles becomes (110,1,0) in our 

model. The server addressing is determined within the cycle of nodes. We give each 

cycle a direction, as shown by the heavy black line in Fig. 4:  
 

 (000,0,0) ��(001,1,0) ��... ��(000,1,0) ��(000,0,0) 
 

Then, the server addressing between two switches is determined by the address of the 

switch node P that precedes it in the cycle. The aforementioned two dimensions of 

address for a server are the same as those of P. The final dimension begins from 1 and 

increases by 1 for each additional server.       
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Fig. 4.   Addressing and routing of Cayley based on the cube-connected-cycles network. 

Algorithm 1.  Routing algorithm for Cayley based on the cube-connected-cycles network. 

  Input: source node (x1x2 … xq, y, z) and destination node (r1r2 … rq, s, t) 

Output: identifier of the next node after source on a shortest path to destination  

if (x1x2 … xq = = r1r2 … rq && y = = s ) { 

 if (z > t) 

         return (x1x2 … xq, y, z – 1); 

 else  

         return (x1x2 … xq, y, z + 1); 

} 

if (z != 0) { 

 if (z ≥ q/2) 

                        return (x1x2 … xq, y, z + 1); 

 else  

                        return (x1x2 … xq, y, z – 1); 

} 

if (x1x2 … xq = = r1r2 … rq) 

 return (x1x2 … xq, y + 1, z); 

else { 

 if (xq–y != rq–y)  

         return (x1x2 … xq–y–1rq–yxq–y+1 … xq, y, z); 

 else 

         return (x1x2 … xq–y–1rq–yxq–y+1 … xq, y + 1, z); 

} 
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Intuitively, routing is done as follows: assume that source node is server A and 

destination node is server B in Fig. 4. Source A transmits to the nearby switch node C, the 

message finds its way to node D on the switch subnetwork, and D forwards to the nearby 

destination server B along the cycle. Routing from C to D is simple and of high 

performance because the switch subnetwork has high symmetry. We can add a server on 

each link of the switch subnetwork, when strengthening the routing function is necessary.  

Routing is performed by Algorithm 1. In Fig. 4, routing from (110,1,1) to (101,1,2) is 

denoted by a dashed line, encompassing the steps: (110,1,1) ��(110,1,0) ��(100,1,0) ��

(100,2,0) ��(100,0,0) ��(101,0,0) ��(101,1,0) ��(101,1,1) ��(101,1,2). 

4.   Comparing Cayley with Other Models 

From Table 1, we see that the scalability of Cayley is not limited by the number of server 

ports. The fat-tree and FiConn have the same advantage, but DCell and BCube are 

limited in scalability by server ports. The scalability of Cayley is not limited by the 

number of switch ports either, since the number of switch ports is a small constant c. 

DCell, BCube, and FiConn share the same advantage, but switch ports do limit the 

scalability of fat-tree. Building Cayley requires fewer switches than the other models. To 

summarize, the structure of Cayley is simpler and, thus, its communication performance 

is higher. Scalability and fault tolerance are also better, making it suitable for building 

large-scale data-center networks. 

 

Table 1.  Comparison of Fat-tree, DCell, BCube, FiConn, and Cayley. 

 Fat-tree DCell BCube FiConn Cayley 

Scalability limited by server ports (# ports) No (≤ 2) Yes (k + 1) Yes (k + 1) No (≤ 2) No (≤ 2) 

Scalability limited by switch ports (# ports) Yes (n) No (n) No (n) No (n) No (≤ c) 

Number of switches 5N/n N/n (k + 1)N/n N/n N / log N 

Maximum one-to-one throughput 1 k k + 1 2 2 

5.   Conclusion 

In this paper, we have proposed Cayley as a new data center network model based on 

group theory. Cayley has greater symmetry than other proposed models, thus leading 

to simpler structure and communication algorithms. Scalability and fault tolerance are 

also better. Cayley includes large graphs of small node degree and diameter, because 

coset graphs form a very general class of graph. Hence Cayley is a reasonably general 

model and can be tailored to applications for large-scale date-center networks.      

Because of the generality and flexibility of our constructions, we believe that they will 

have further applications to all interconnection networks, providing an interesting area for 

further research. In particular, simulating the design of Cayley, to experimentally verify 

the desirable properties of fault-tolerant routing, balanced communication traffic, and 

resilience to node and link failures, as predicted by theory, can be postulated. 
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