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Abstract 

 
Ternary number representation and arithmetic, based on 
the radix-3 digit set {–1, 0, +1}, has been studied at 
various times in the history of digital computing. Some 
such studies concluded that we should abandon ternary in 
favor of binary computation. Others, demonstrated 
promise and potential advantages, but, for various 
reasons, including inertia, did not lead to widespread use. 
By proposing an efficient binary encoding for balanced 
ternary numbers, along with the corresponding arithmetic 
circuits, we argue that a reexamination of the decision 
against using ternary arithmetic might be in order. 
 
Keywords––Arithmetic/logic unit, Computer arithmetic, 
Nonbinary systems, Radix-3 number representation. 

 
Background and Motivation 
 

Binary arithmetic is predominant in digital systems, so 
much so that few question its superiority or optimality. 
Decimal arithmetic, which until recently was mostly 
implemented by means of software where needed, has 
emerged as a candidate for hardware implementation, 
with a variety of representations, algorithms, and design 
methods proposed [Wang10]. Early in the history of 
electronic computers, the choice of number representation 
radix, the binary-versus-decimal question in particular, 
was given quite a bit of attention, with the binary system 
prevailing at the end [vonN45], [Burk47]. Radices other 
than 2h and 10 have been mostly ignored. 

In reality, ternary (radix-3) representation came quite 
close to being chosen over binary as the preferred 
method, eventually losing by a narrow margin. It was 
argued that under some fairly realistic assumptions about 
circuit cost and latency, radix 3 is closer to the 

theoretically optimal radix e (the base of the natural 
logarithm) than any other integer radix. However, 
practical engineering considerations, having to do with 
the ease of dealing with 2-state devices and binary logic, 
favored radix 2 over radix 3 [Haye01].  

Despite the negative assessment above, the Setun 
computer, working with balanced ternary arithmetic, was 
actually built in 1958 at Moscow State University and 
found to be quite usable and competitive [Klim99]. Until 
1965, some 50 units of this machine had been built. 
Advantages cited for this ternary machine included lower 
production cost and greater energy economy. 

The TERNAC computer [Frie72], implemented at State 
University of New York, Buffalo, in 1973, did not use 
hardware specifically designed for dealing with ternary 
numbers, but emulated ternary arithmetic operations by 
representing each balanced ternary number as two binary 
numbers, one positive and the other negative. Arithmetic 
operations were then microprogrammed, using the 
hardware’s binary arithmetic capabilities. TERNAC was a 
load/store machine, with 24-trit integers and a 48-trit 
floating-point (42 for mantissa, 6 for exponent) format.  

The history of balanced ternary number system and 
arithmetic goes much further back than the Setun and 
TERNAC computers, however. In 1820, John Leslie 
presented methods for computing in any radix, with an 
arbitrary digit set [Lesl20]. Two decades later, Augustin 
Cauchy discussed signed-digit numbers in various bases 
and Leon Lalanne followed by enumerating the virtues of 
balanced ternary number representation. In 1840, Thomas 
Fowler (1777-1843), a contemporary of Charles Babbage, 
chose balanced ternary to build his calculating machine in 
England. A description of this machine by the 
mathematician Augustus DeMorgan led Pamela Vass, 
David Hogan, and Mark Glusker to design and build a 
replica in the year 2000 [Fowl13]. 



 

Arithmetic with Binary-Encoded Balanced Ternary Numbers  Proc. 47th Asilomar Conf. Signals, Systems, and Computers  
B. Parhami & M. McKeown, July 17, 2013       - 2 - Pacific Grove, CA, November 3-6, 2013 
 

Finally, work on ternary number representation and 
arithmetic has not been limited to the Setun and TERNAC 
experiments [Halp68], [Eich86], [Gund06], [Gund06a], 
[Tern13]. Most proposals for ternary arithmetic envisage 
multivalued signals to encode the three digit values in 
balanced or standard ternary. Multivalued signaling and 
logic, extensively studied within a research community 
with conferences and a specialized journal [Mult13], and 
practically available for several decades, has proven 
uncompetitive in most instances. 

The last observation above motivates us to investigate 
potential advantages of balanced ternary arithmetic, using 
binary encoding. Unlike TERNAC, however, we aim to 
design actual arithmetic function units that deal with 
ternary numbers directly, rather than via emulation with 
binary arithmetic instructions. 

 
Notational Conventions 
 

A balanced ternary integer x = (xk–1xk–2 ... x1x0)three, with 
each xi being from the digit set {–1, 0, +1}, denotes the 
value 0≤i≤k–1 xi3

i. Balanced ternary integers with k digits 
have values from –(3k – 1)/2 to (3k – 1)/2, a fully 
symmetric range. Negation, or change of sign, is done by 
digitwise complementation.  

For ease of representation, and to avoid confusion 
between logical signal values 0 and 1 and ternary digit 
values 0 and 1, we represent ternary digits as N (–1), Z 
(0), and P (1), and we omit the subscript “three” when 
there is no ambiguity. Thus, the 7-digit code x6x5x4x3x2x1x0 
= PNZZNNP is the balanced ternary representation of the 
integer 36 – 35 – 32 – 31 + 30 = 475. 

Any binary encoding of a ternary digit value requires at 
least 2 bits. There are 4! = 24 ways of assigning 3 of the 4 
possible 2-bit codes to the three digit values N, Z, and P. 
For example, one can use a 2-bit 2’s-complement code for 
the three digit values: N (11), Z (00), and P (01). Our 
prior experience [Jabe12] with the use of posibits (normal 
bits, assuming values in {0, 1}) and negabits (negatively 
weighted bits, assuming values in {–1, 0}) leads us to use 
the n, p encoding for balanced ternary digits: N (10), Z 
(00 or 11), and P (01). Note that allowing 11 to denote Z, 
rather than using it as a don’t-care state, relieves us from 
the burden of watching out for this combination and 
setting it to 00 whenever encountered. 

The code just discussed has a variant that uses inversely 
encoded negabits (IE-negabits), where N is encoded as 0 
and Z as 1. This variant, which we may call the n–, p 
code, often leads to simplifications, given that the logical 

bit value and the corresponding digit value move in the 
same direction (0 : N < Z : 1), with the logical bit 
essentially being a biased representation of the digit 
value, using a bias of +1. To distinguish this encoding, we 
attach a “–” superscript to the corresponding IE-negabit 
constant: N (0– 0), Z (0– 1 or 1– 0), and P (1– 1). 

From this point on, 0 and 1 denote logical signal values, 
while N, Z, and P denote balanced ternary digit values; 
thus the 0/1 overlap will not lead to any confusion. 

 
Summary of Results 
 

Addition/Subtraction 
 

The truth tables for the sum and carry outputs of a 
balanced ternary half-adder are depicted in Fig. 1. 
Interpreting the table is quite simple. For example, the 
half-addition P + P results in PN, that is, a sum digit N 
and a carry digit P (i.e., 1 + 1 = 3 – 1). Such a balanced 
ternary half-adder has a gate complexity about twice that 
of a binary HA. Similarly, a balanced ternary full-adder 
has a complexity comparable to two binary FAs. If 
negabits and posibits are written as uppercase and 
lowercase letters, respectively, and using d to denote 
carry-out (so as to avoid the use of subscripts “in” and 
“out” for the carry), we have: 

 
X, x + Y, y + C, c = D, d S, s 

 
A ternary ripple-carry adder can be built by cascading a 

number of ternary FAs. The double complexity of a 
ternary FA compared with its binary counterpart does not 
imply a 100% increase in cost relative to binary 
arithmetic. For the same number representation range, a 
balanced ternary system needs a factor of log2 3 = 1.585 
fewer digits compared with the 2’s-complement format. 
The factor of 1.585 improvement in carry propagation 
time leads to a faster ripple-carry adder, thus potentially 
justifying the cost factor of 2/1.585 = 1.262, even if we do 
not consider other advantages of ternary arithmetic. 

 
 

 

Fig. 1. Sum and carry digits in balanced ternary half-adder. 
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Designs of fast (logarithmic-time) adders of various 
kinds are currently under investigation. Using positive 
and negative carry-generate and carry-propagate signals, 
one can employ two copies of any fast carry network to 
find the intermediate carry signals. For a linear-cost 
network, such as the Brent-Kung design [Parh10], the 
same cost increase of 1.262 (discussed for ripple-carry 
adders) will apply, along with some speed improvement. 
For fastest possible networks such as the Kogge-Stone 
design, having O(k log k) or greater complexity, the cost 
factor would be smaller, thus rendering the improvement 
in speed even more cost-effective. 

 
Multioperand Addition 

 
In balanced ternary arithmetic, multioperand addition is 

nearly identical to the binary case. This is because, except 
for the {0, 1} digit set changing to {N, Z, P}, combining 
schemes, and associated block diagrams remain the same. 
For example, (3; 2)-counters, (4; 2)-counters, and various 
other parallel counter/compressor circuits can be used 
here with no modification in the high-level block 
diagrams; only the lowest-level circuit detail will change. 

 
Multiplication 

 
Owing to the fact that the product of two ternary digits 

in {N, Z, P} also belongs to the same set, balanced 
ternary multiplication is simpler than multiplication in 
other radices higher than 2. In fact, we can readily prove 
that radices 2 and 3, the latter only with the balanced digit 
set {N, Z, P}, are the only two radices with this property. 
Thus, just as in multioperand addition discussed earlier, 
all binary multiplication schemes remain valid for 
balanced ternary. These include the slow digit-at-a-time 
iterative schemes, fast logarithmic-time tree multipliers, 
and high-throughput array designs [Parh10]. 

The balanced ternary multiplication table is depicted in 
Fig. 2. Denoting the two digits being multiplied by (X, x) 
and (Y, y), the product digit will have the representation 
(Xy  xY, XY  xy). Hardware realization entails the use 
of two 2-to-1 muxes, with select and enable controls. 

 

 
Fig. 2. Truth table for balanced ternary multiplication. 

Division and Square-Rooting 
 

Other than the need for digit selection, division and 
square-rooting algorithms resemble multiplication. Given 
the use of signed-digit values, the distinction between 
restoring and nonrestoring division disappears in balanced 
ternary arithmetic. Here, we consider only digit-at-a-time 
division. Details of other division and square-rooting 
schemes will be reported in future. Our exposition is in 
terms of dividing a 2k-digit balanced ternary dividend by 
a k-digit divisor, producing a quotient and a remainder, 
both having k digits. Overflow and divide-by-zero tests 
are identical to the same tests in binary division. 

Figure 3 depicts an 8-by-4 division example, with the 
dividend ZPNZZPNZ (492 in decimal) and divisor NZPN 
(–25 in decimal). Using a quotient digit selection rule 
identical to that of nonrestoring binary division, based on 
the signs of the partial remainder and the divisor, 
produces the quotient NPNP (–20 in decimal) and the 
remainder ZNZP (–8). Because the standard definition of 
division requires that the remainder have the same sign as 
the dividend, a correction step is needed at the end, 
which, for this example, involves subtracting the divisor 
from the final remainder, producing the true remainder of 
PNZN (17 in decimal), and adding 1 to the quotient, 
yielding the true quotient NPZN (–19). 

Note that quotient digit selection requires that the sign 
of the partial remainder be detected in every iteration; 
divisor sign is determined just once at the outset. Because, 
similar to the case of binary signed-digit numbers, the 
sign of a balanced ternary number matches the sign of its 
most-significant nonzero digit, determining the sign is 
nontrivial. One option is to use fast, logarithmic-time sign 
detection logic based on lookahead principles [Srik04]. 
Another option is to avoid the sign detection latency by 
using a redundant representation of the quotient, along 
with approximate digit selection [Parh10]. These and 
other options are being explored. 
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Fig. 3. Division example: 492 / (–25) = –20, remainder –8. 
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Input/Output Conversions 
 

To interface a balanced ternary arithmetic unit with the 
external world, we must devise procedures for conversion 
of numbers to/from balanced ternary from/to decimal or 
binary format. Conversion from/to binary may be 
unnecessary if an entire system is designed to operate 
with balanced ternary arithmetic, as primary inputs are 
almost always in decimal format. At any rate, since the 
procedures are the same, regardless of decimal/binary I/O, 
we focus only on conversion from/to decimal.  

Conversion from decimal to balanced ternary is no 
more difficult than conversion to binary. Instead of 
repeatedly dividing by 2, we need to implement a 
division-by-3 circuit and use it in k cycles to determine all 
the digits of the converted operand. Going in the other 
direction, we can use Horner’s method [Parh10], which 
requires repeated multiplication by 3 (in decimal format), 
followed by the addition of a balanced ternary digit. 
Again, this process is of the same order of time/circuit 
complexity as binary-to-decimal conversion. Design 
details will be supplied in future. 

 
Floating-Point Arithmetic 

 
A key advantage of balanced ternary arithmetic 

materializes in floating-point arithmetic. A cause of added 
complexity and delay in binary and decimal floating-point 
arithmetic is the requirement for rounding.  Both simple 
rounding and symmetric rounding, with midway values 
rounded up or down with equal probabilities for more 
balanced error (e.g., as in round-to-nearest-even), require 
full carry propagation in the worst case, thus lengthening 
the critical signal path in a synchronous design. Balanced 
ternary numbers, on the other hand, provide the same 
error characteristics with simple chopping. 

 
Conclusion 
 

We have argued that the use of balanced ternary 
number representation and arithmetic, by means of 
binary-encoded digits, can be competitive, and leads to 
higher speeds for certain applications. Advantages of 
balanced ternary include fully symmetric representation, 
ease of negation or sign change (by switching Ps and Ns), 
use of fewer digits for the same range (albeit, with 2 bits 
used to represent each digit), and rounding to nearest 
value via truncation. The benefits result in part from our 
efficient encoding using posibits and negabits.  
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