

Arithmetic with Binary-Encoded Balanced Ternary Numbers Proc. 47th Asilomar Conf. Signals, Systems, and Computers
B. Parhami & M. McKeown, July 17, 2013 - 1 - Pacific Grove, CA, November 3-6, 2013

Arithmetic with Binary-Encoded Balanced Ternary Numbers

Behrooz Parhami and Michael McKeown*
Department of Electrical and Computer Engineering, University of California

Santa Barbara, CA 93106-9560, USA
* Currently with Electrical Engineering Department, Princeton University

parhami@ece.ucsb.edu

Abstract

Ternary number representation and arithmetic, based on
the radix-3 digit set {–1, 0, +1}, has been studied at
various times in the history of digital computing. Some
such studies concluded that we should abandon ternary in
favor of binary computation. Others, demonstrated
promise and potential advantages, but, for various
reasons, including inertia, did not lead to widespread use.
By proposing an efficient binary encoding for balanced
ternary numbers, along with the corresponding arithmetic
circuits, we argue that a reexamination of the decision
against using ternary arithmetic might be in order.

Keywords––Arithmetic/logic unit, Computer arithmetic,
Nonbinary systems, Radix-3 number representation.

Background and Motivation

Binary arithmetic is predominant in digital systems, so
much so that few question its superiority or optimality.
Decimal arithmetic, which until recently was mostly
implemented by means of software where needed, has
emerged as a candidate for hardware implementation,
with a variety of representations, algorithms, and design
methods proposed [Wang10]. Early in the history of
electronic computers, the choice of number representation
radix, the binary-versus-decimal question in particular,
was given quite a bit of attention, with the binary system
prevailing at the end [vonN45], [Burk47]. Radices other
than 2h and 10 have been mostly ignored.

In reality, ternary (radix-3) representation came quite
close to being chosen over binary as the preferred
method, eventually losing by a narrow margin. It was
argued that under some fairly realistic assumptions about
circuit cost and latency, radix 3 is closer to the

theoretically optimal radix e (the base of the natural
logarithm) than any other integer radix. However,
practical engineering considerations, having to do with
the ease of dealing with 2-state devices and binary logic,
favored radix 2 over radix 3 [Haye01].

Despite the negative assessment above, the Setun
computer, working with balanced ternary arithmetic, was
actually built in 1958 at Moscow State University and
found to be quite usable and competitive [Klim99]. Until
1965, some 50 units of this machine had been built.
Advantages cited for this ternary machine included lower
production cost and greater energy economy.

The TERNAC computer [Frie72], implemented at State
University of New York, Buffalo, in 1973, did not use
hardware specifically designed for dealing with ternary
numbers, but emulated ternary arithmetic operations by
representing each balanced ternary number as two binary
numbers, one positive and the other negative. Arithmetic
operations were then microprogrammed, using the
hardware’s binary arithmetic capabilities. TERNAC was a
load/store machine, with 24-trit integers and a 48-trit
floating-point (42 for mantissa, 6 for exponent) format.

The history of balanced ternary number system and
arithmetic goes much further back than the Setun and
TERNAC computers, however. In 1820, John Leslie
presented methods for computing in any radix, with an
arbitrary digit set [Lesl20]. Two decades later, Augustin
Cauchy discussed signed-digit numbers in various bases
and Leon Lalanne followed by enumerating the virtues of
balanced ternary number representation. In 1840, Thomas
Fowler (1777-1843), a contemporary of Charles Babbage,
chose balanced ternary to build his calculating machine in
England. A description of this machine by the
mathematician Augustus DeMorgan led Pamela Vass,
David Hogan, and Mark Glusker to design and build a
replica in the year 2000 [Fowl13].

Arithmetic with Binary-Encoded Balanced Ternary Numbers Proc. 47th Asilomar Conf. Signals, Systems, and Computers
B. Parhami & M. McKeown, July 17, 2013 - 2 - Pacific Grove, CA, November 3-6, 2013

Finally, work on ternary number representation and
arithmetic has not been limited to the Setun and TERNAC
experiments [Halp68], [Eich86], [Gund06], [Gund06a],
[Tern13]. Most proposals for ternary arithmetic envisage
multivalued signals to encode the three digit values in
balanced or standard ternary. Multivalued signaling and
logic, extensively studied within a research community
with conferences and a specialized journal [Mult13], and
practically available for several decades, has proven
uncompetitive in most instances.

The last observation above motivates us to investigate
potential advantages of balanced ternary arithmetic, using
binary encoding. Unlike TERNAC, however, we aim to
design actual arithmetic function units that deal with
ternary numbers directly, rather than via emulation with
binary arithmetic instructions.

Notational Conventions

A balanced ternary integer x = (xk–1xk–2 ... x1x0)three, with
each xi being from the digit set {–1, 0, +1}, denotes the
value 0≤i≤k–1 xi3

i. Balanced ternary integers with k digits
have values from –(3k – 1)/2 to (3k – 1)/2, a fully
symmetric range. Negation, or change of sign, is done by
digitwise complementation.

For ease of representation, and to avoid confusion
between logical signal values 0 and 1 and ternary digit
values 0 and 1, we represent ternary digits as N (–1), Z
(0), and P (1), and we omit the subscript “three” when
there is no ambiguity. Thus, the 7-digit code x6x5x4x3x2x1x0
= PNZZNNP is the balanced ternary representation of the
integer 36 – 35 – 32 – 31 + 30 = 475.

Any binary encoding of a ternary digit value requires at
least 2 bits. There are 4! = 24 ways of assigning 3 of the 4
possible 2-bit codes to the three digit values N, Z, and P.
For example, one can use a 2-bit 2’s-complement code for
the three digit values: N (11), Z (00), and P (01). Our
prior experience [Jabe12] with the use of posibits (normal
bits, assuming values in {0, 1}) and negabits (negatively
weighted bits, assuming values in {–1, 0}) leads us to use
the n, p encoding for balanced ternary digits: N (10), Z
(00 or 11), and P (01). Note that allowing 11 to denote Z,
rather than using it as a don’t-care state, relieves us from
the burden of watching out for this combination and
setting it to 00 whenever encountered.

The code just discussed has a variant that uses inversely
encoded negabits (IE-negabits), where N is encoded as 0
and Z as 1. This variant, which we may call the n–, p
code, often leads to simplifications, given that the logical

bit value and the corresponding digit value move in the
same direction (0 : N < Z : 1), with the logical bit
essentially being a biased representation of the digit
value, using a bias of +1. To distinguish this encoding, we
attach a “–” superscript to the corresponding IE-negabit
constant: N (0– 0), Z (0– 1 or 1– 0), and P (1– 1).

From this point on, 0 and 1 denote logical signal values,
while N, Z, and P denote balanced ternary digit values;
thus the 0/1 overlap will not lead to any confusion.

Summary of Results

Addition/Subtraction

The truth tables for the sum and carry outputs of a
balanced ternary half-adder are depicted in Fig. 1.
Interpreting the table is quite simple. For example, the
half-addition P + P results in PN, that is, a sum digit N
and a carry digit P (i.e., 1 + 1 = 3 – 1). Such a balanced
ternary half-adder has a gate complexity about twice that
of a binary HA. Similarly, a balanced ternary full-adder
has a complexity comparable to two binary FAs. If
negabits and posibits are written as uppercase and
lowercase letters, respectively, and using d to denote
carry-out (so as to avoid the use of subscripts “in” and
“out” for the carry), we have:

X, x + Y, y + C, c = D, d S, s

A ternary ripple-carry adder can be built by cascading a

number of ternary FAs. The double complexity of a
ternary FA compared with its binary counterpart does not
imply a 100% increase in cost relative to binary
arithmetic. For the same number representation range, a
balanced ternary system needs a factor of log2 3 = 1.585
fewer digits compared with the 2’s-complement format.
The factor of 1.585 improvement in carry propagation
time leads to a faster ripple-carry adder, thus potentially
justifying the cost factor of 2/1.585 = 1.262, even if we do
not consider other advantages of ternary arithmetic.

Fig. 1. Sum and carry digits in balanced ternary half-adder.

N

N

Z

Z

P

P

P

N

N

Z

Z

P

Z P

N

(a) Sum digit

N

N

Z

Z

P

P

N

Z

Z

Z

Z

Z

Z Z

P

(b) Carry digit

Arithmetic with Binary-Encoded Balanced Ternary Numbers Proc. 47th Asilomar Conf. Signals, Systems, and Computers
B. Parhami & M. McKeown, July 17, 2013 - 3 - Pacific Grove, CA, November 3-6, 2013

Designs of fast (logarithmic-time) adders of various
kinds are currently under investigation. Using positive
and negative carry-generate and carry-propagate signals,
one can employ two copies of any fast carry network to
find the intermediate carry signals. For a linear-cost
network, such as the Brent-Kung design [Parh10], the
same cost increase of 1.262 (discussed for ripple-carry
adders) will apply, along with some speed improvement.
For fastest possible networks such as the Kogge-Stone
design, having O(k log k) or greater complexity, the cost
factor would be smaller, thus rendering the improvement
in speed even more cost-effective.

Multioperand Addition

In balanced ternary arithmetic, multioperand addition is

nearly identical to the binary case. This is because, except
for the {0, 1} digit set changing to {N, Z, P}, combining
schemes, and associated block diagrams remain the same.
For example, (3; 2)-counters, (4; 2)-counters, and various
other parallel counter/compressor circuits can be used
here with no modification in the high-level block
diagrams; only the lowest-level circuit detail will change.

Multiplication

Owing to the fact that the product of two ternary digits

in {N, Z, P} also belongs to the same set, balanced
ternary multiplication is simpler than multiplication in
other radices higher than 2. In fact, we can readily prove
that radices 2 and 3, the latter only with the balanced digit
set {N, Z, P}, are the only two radices with this property.
Thus, just as in multioperand addition discussed earlier,
all binary multiplication schemes remain valid for
balanced ternary. These include the slow digit-at-a-time
iterative schemes, fast logarithmic-time tree multipliers,
and high-throughput array designs [Parh10].

The balanced ternary multiplication table is depicted in
Fig. 2. Denoting the two digits being multiplied by (X, x)
and (Y, y), the product digit will have the representation
(Xy  xY, XY  xy). Hardware realization entails the use
of two 2-to-1 muxes, with select and enable controls.

Fig. 2. Truth table for balanced ternary multiplication.

Division and Square-Rooting

Other than the need for digit selection, division and
square-rooting algorithms resemble multiplication. Given
the use of signed-digit values, the distinction between
restoring and nonrestoring division disappears in balanced
ternary arithmetic. Here, we consider only digit-at-a-time
division. Details of other division and square-rooting
schemes will be reported in future. Our exposition is in
terms of dividing a 2k-digit balanced ternary dividend by
a k-digit divisor, producing a quotient and a remainder,
both having k digits. Overflow and divide-by-zero tests
are identical to the same tests in binary division.

Figure 3 depicts an 8-by-4 division example, with the
dividend ZPNZZPNZ (492 in decimal) and divisor NZPN
(–25 in decimal). Using a quotient digit selection rule
identical to that of nonrestoring binary division, based on
the signs of the partial remainder and the divisor,
produces the quotient NPNP (–20 in decimal) and the
remainder ZNZP (–8). Because the standard definition of
division requires that the remainder have the same sign as
the dividend, a correction step is needed at the end,
which, for this example, involves subtracting the divisor
from the final remainder, producing the true remainder of
PNZN (17 in decimal), and adding 1 to the quotient,
yielding the true quotient NPZN (–19).

Note that quotient digit selection requires that the sign
of the partial remainder be detected in every iteration;
divisor sign is determined just once at the outset. Because,
similar to the case of binary signed-digit numbers, the
sign of a balanced ternary number matches the sign of its
most-significant nonzero digit, determining the sign is
nontrivial. One option is to use fast, logarithmic-time sign
detection logic based on lookahead principles [Srik04].
Another option is to avoid the sign detection latency by
using a redundant representation of the quotient, along
with approximate digit selection [Parh10]. These and
other options are being explored.

 N P N P

N Z P N / Z P N Z Z P N Z
 + N Z P N
 Z N P N P N Z
 + P Z N P
 Z P N N N Z
 + N Z P N
 Z N N P Z
 + P Z N P
 Z N Z P

Fig. 3. Division example: 492 / (–25) = –20, remainder –8.

N

N

Z

Z

P

P

P

Z

Z

N

N

Z

Z Z

P

Arithmetic with Binary-Encoded Balanced Ternary Numbers Proc. 47th Asilomar Conf. Signals, Systems, and Computers
B. Parhami & M. McKeown, July 17, 2013 - 4 - Pacific Grove, CA, November 3-6, 2013

Input/Output Conversions

To interface a balanced ternary arithmetic unit with the
external world, we must devise procedures for conversion
of numbers to/from balanced ternary from/to decimal or
binary format. Conversion from/to binary may be
unnecessary if an entire system is designed to operate
with balanced ternary arithmetic, as primary inputs are
almost always in decimal format. At any rate, since the
procedures are the same, regardless of decimal/binary I/O,
we focus only on conversion from/to decimal.

Conversion from decimal to balanced ternary is no
more difficult than conversion to binary. Instead of
repeatedly dividing by 2, we need to implement a
division-by-3 circuit and use it in k cycles to determine all
the digits of the converted operand. Going in the other
direction, we can use Horner’s method [Parh10], which
requires repeated multiplication by 3 (in decimal format),
followed by the addition of a balanced ternary digit.
Again, this process is of the same order of time/circuit
complexity as binary-to-decimal conversion. Design
details will be supplied in future.

Floating-Point Arithmetic

A key advantage of balanced ternary arithmetic

materializes in floating-point arithmetic. A cause of added
complexity and delay in binary and decimal floating-point
arithmetic is the requirement for rounding. Both simple
rounding and symmetric rounding, with midway values
rounded up or down with equal probabilities for more
balanced error (e.g., as in round-to-nearest-even), require
full carry propagation in the worst case, thus lengthening
the critical signal path in a synchronous design. Balanced
ternary numbers, on the other hand, provide the same
error characteristics with simple chopping.

Conclusion

We have argued that the use of balanced ternary
number representation and arithmetic, by means of
binary-encoded digits, can be competitive, and leads to
higher speeds for certain applications. Advantages of
balanced ternary include fully symmetric representation,
ease of negation or sign change (by switching Ps and Ns),
use of fewer digits for the same range (albeit, with 2 bits
used to represent each digit), and rounding to nearest
value via truncation. The benefits result in part from our
efficient encoding using posibits and negabits.

References

[Burk47] Burks, A. W., H. H. Goldstine, and J. von Neumann,

“Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument,” Institute for Advanced
Study Report, 2nd ed., 1947.

[Eich86] Eichmann, G., Y. Li, and R. R. Alfano, “Optical Binary
Coded Ternary Arithmetic and Logic,” Applied Optics,
Vol. 25, No. 18, pp. 3113-3121, 1986.

[Fowl13] Web site for “The Ternary Calculating Machine of Thomas
Fowler” (Accessed on July 17, 2013):
http://www.mortati.com/glusker/fowler/index.htm

[Frie72] Frieder, G., “Ternary Computers — Part 1: Motivation &
Part 2: Emulation,” Proc. 5th Workshop
Microprogramming, 1972, pp. 83-89.

[Gund06] Gundersen, H. and Y. Berg, “A Novel Balanced Ternary
Adder Using Recharged Semi-Floating Gate Devices,”
Proc. IEEE Int’l Symp. Multivalued Logic, 2006, pp. 18-21.

[Gund06a] Gundersen, H. and Y. Berg, “A Balanced Ternary
Multiplication Circuit Using Recharged Semi-Floating Gate
Devices,” Proc. 24th Norchip Conf., 2006, pp. 205-208.

[Halp68] Halpern, I. and M. Yoeli, “Ternary Arithmetic Unit,” Proc.
IEE, Vol. 115, No. 10, pp. 1385-1388, October 1968.

[Haye01] Hayes, B., “Third Base,” American Scientist, Vol. 89, No. 6,
pp. 490-494, November-December 2001.

[Jabe12] Jaberipur, G. and B. Parhami, “Efficient Realisation of
Arithmetic Algorithms with Weighted Collections of
Posibits and Negabits,” IET Computers & Digital
Techniques, Vol. 6, No. 5, pp. 259-268, September 2012.

[Klim99] Klimenko, S. V., “Computer Science in Russia: A Personal
View,” IEEE Annals of the History of Computing, Vol. 29,
No. 3, pp. 16-30, 1999.

[Knut81] Knuth, D., The Art of Computer Programming:
Seminumerical Algorithms, Addison-Wesley, 2nd ed.,
1981, pp. 190-192.

[Lesl20] Leslie, J., The Philosophy of Arithmetic: Exhibiting a
Progressive View of the Theory and Practice of
Calculation, 2nd ed., 1820.

[Mult13] Multivalued logic home page, sponsored by IEEE
Computer Society (accessed on July 17, 2013):
http://web.cecs.pdx.edu/~mperkows/ISMVL/=index.html

[Parh10] Parhami, B., Computer Arithmetic: Algorithms and
Hardware Designs, Oxford, 2nd ed., 2010.

[Srik04] Srikanthan, T., S. K. Lam, and M. Suman, “Area-Time
Efficient Sign Detection Technique for Binary Signed-Digit
Number System,” IEEE Trans. Computers, Vol. 53, No. 1,
pp. 69-72, January 2004.

[Stak02] Stakhov, A., “Brousentsov’s Ternary Principle, Bergman’s
Number System and Ternary Mirror-Symmetrical
Arithmetic,” The Computer J., Vol. 45, pp. 221-236, 2002.

[Tern13] Ternary.info, Web site of the Special Interest Group on
Balanced Ternary Numeral System and Trinary Logic
(Accessed on July 17, 2013):
http://www.ternary.info/modules/newbb/index.php

[vonN45] von Neumann, J., “First Draft of a Report on the EDVAC,”
IEEE Annals of the History of Computing, Vol. 15, No. 4,
pp. 27-75, 1993. [A reproduction of the 1945 report.]

[Wang10] Wang, L. K., M. A. Erle, C. Tsen, E. Schwarz, and M. J.
Schulte, “A Survey of Hardware Designs for Decimal
Arithmetic,” IBM J. Research and Development, Vol. 54,
No. 2, pp. 8:1-8:15, March-April 2010.

