

Log Arithmetic as Alternative to Floating-Point (M. Chugh & B. Parhami) 1 47th Asilomar Conf. Signals, Systems, and Computers, Nov. 3-6, 2013

1

Logarithmic Arithmetic as an Alternative to Floating-Point: A Review

Manik Chugh and Behrooz Parhami

Dept. Electrical & Computer Eng., Univ. of California
Santa Barbara, CA 93106-9560, USA

parhami@ece.ucsb.edu

ABSTRACT: The logarithmic number system (LNS) has found
appeal in digital arithmetic because it allows multiplication
and division to be performed much faster and more accurately
than with the widely used floating-point (FP) number formats.
We review the sign/logarithmic number system and present a
comparison of various techniques and architectures for
performing arithmetic operations efficiently in LNS. As a case
study, we describe the European logarithmic microprocessor,
a device built in the framework of a research project launched
in 1999. Comparison of the arithmetic performance of this
microprocessor with that of a commercial superscalar
pipelined FP processor leads to the conclusion that LNS can
be successfully deployed in general-purpose systems.

KEYWORDS: ALU design, computation errors, interpolation,
instruction-set architecture, logarithmic number system,
machine arithmetic, performance per watt, real arithmetic.

1. Introduction

Proposals for the logarithmic number system (LNS)

began in 1971, when Kingsburg and Rayner [2]
introduced “logarithmic arithmetic” for digital signal
processing. A similar logarithmic number system was
proposed by Swartzlander and Alexopoulos [3] in 1975.
Instead of using 2’s-complement format for logarithms,
numbers were scaled to avoid negative logarithms.

The sign/logarithmic number system overcomes the
slowness of multiplication and division with
conventional weighted numbers, while also avoiding the
problems inherent in a residue number system (RNS).
This advantage, however, is offset by the fact that
addition and subtraction operations require a fairly
complex procedure to be applied to logarithms. Despite
its attractive properties, until fairly recently, only a few
implementations of LNS arithmetic were attempted, all
of which were restricted to low-precision applications,
the difficulty in performing addition and subtraction on
long words being the principal reason. LNS addition and
subtraction require lookup tables whose size grows
exponentially (several times 2l words), with logarithms
that are of width l bits. For this reason, implementations
described in the early literature were limited to 8-12 bits
of fractional precision [4], [5].

It was recognized early on that LNS can offer an
advantage over floating-point (FP) representation only if
LNS addition and subtraction can be performed with the
speed and accuracy at least equal to those of FP.
However, achieving this goal is complicated by the fact
that these operations require the evaluation of nonlinear
functions [6], [7], [8], [9].

Contemplating the development of LNS-based
commercial microprocessors, Lewis et al. [10], Paliouras
et al. [11], and Arnold [12] proposed architectures for
LNS-based processors in the late 1990s and early 2000s,
but did not present a finished design or extensive
simulation results. At about the same time, a European
project, initiated by Coleman et al. [13], [14], laid down
the foundations for the development of such a
commercial digital system, dubbed the European
logarithmic microprocessor (ELM), which provided
performance similar to commercial superscalar pipelined
floating-point processors [15].

Modern computation-intensive applications, with their
increased algorithmic complexities as well larger
problem sizes and data sets, are becoming bounded by
the speed of FP operations. Real-time applications in this
class are exemplified by RLS-based algorithms,
subspace methods required in broadcasting and cellular
telephony, Kalman filtering, and Riccati-like equations
for advanced real-time control. Graphics systems [16]
provide another case in point.

The Gravity Pipe supercomputer (GRAPE), that won
the Gordon Bell Prize in 1999, used LNS representation
and arithmetic. LNS is commonly used as part of hidden
Markov models, exemplified by the Viterbi algorithm,
applied in speech recognition and DNA sequencing. The
past two decades have seen substantial efforts to explore
the applicability of LNS as a viable alternative to FP for
general-purpose processing of single-precision real
numbers, demonstrating LNS as an alternative to
floating-point, with improved accuracy and speed.

Collecting pertinent references and information about
ongoing efforts in one place has been a primary
motivation for writing this paper.

Log Arithmetic as Alternative to Floating-Point (M. Chugh & B. Parhami) 2 47th Asilomar Conf. Signals, Systems, and Computers, Nov. 3-6, 2013

2

2. Background and Terminology

The LNS representation of a number x consists of the
number’s sign Sx and the binary logarithm Lx of its
magnitude. LNS representation equivalent to the 32-bit
(single precision) IEEE standard FP format [13] has a
31-bit logarithm part that forms a 2’s-complement fixed-
point value ranging from –128 to approximately +128.
The real numbers represented are signed and have
magnitudes ranging from 2–128 to ~2+128 (i.e., from 2.9 
10–39 to 3.4  10+38). The smallest representable positive
value, 4000000016, is used as a special code for zero,
while C000000016 is dedicated to represent NaN.

LNS’s uniform geometric error characteristics across
the entire range of values leads to roughly an additional
1/2 bit of precision compared with a FP representation
using the same number of bits. Thus, in signal-
processing applications, LNS offers better signal/noise
ratio as well as a better dynamic range.

LNS multiplication and division are defined as:

Multiplication: Sp = Sx  Sy, Lp = Lx + Ly (1)
Division: Sq = Sx  Sy, Lq = Lx – Ly (2)

Given x and y, with |x| ≥ |y|, z = x ± y is computed as:

 Sz = Sx

 Lz = log2|x ± y| = log2|x(1 ± y / x)| (3)
 = log2|x| + log2|1 ± y / x|

 = log2|x| + log2|1 ± 2(Ly – Lx)|

Let d = Ly – Lx ≤ 0 and±(d) = log2|1 ± 2d|. The value

of ±(d), shown in Fig. 1, can be read out from a ROM,
but this is infeasible for wide words. Schemes based on
interpolation are discussed in Section 3. For now, we
will assume that a ROM is sufficient for our purpose.

Fig. 1. Plots of +(d) and –(d) as functions of d.

Fig. 2. A complete four-function ALU for LNS [21].

Realization of Eqns. (1), (2), and (3) by means of a
comparator, an adder, a subtractor, a read-only memory
(ROM) table, two multiplexers, and a small amount of
peripheral logic can result in a simple four-function
ALU [3], as shown in Fig. 2. The operation latency in
this ALU is TOP = TCOMP + 2TADD + TROM, where TCOMP is
the delay of a comparator. For convenience, we have
assumed the peripheral logic delay to be negligible. In
practice, the comparator may be implemented with a
subtractor, leading to TOP = 3TADD + TROM.

3. Addition and Subtraction

In this section, we focus on the efficient calculation of

the nonlinear term±(d) = log2|1 ± 2d|, where d = Ly – Lx
(or d = j – i, taking Ly as j and Lx as i for simplicity).
Implementation work began with Swartzlander and
Alexopoulos’s 1975 paper [3], with a 12-bit device [4],
while a 1988 scheme extended the width to 20 bits [5].
Both designs were direct implementations of Eqn. (2),
with a ROM covering all possible values of ±(d).

In the preceding simple scheme, table sizes increase
exponentially with the word width, limiting its practical
utility to about 20 bits. Lewis’s 1991 design [6] extended
the word width to 28 bits by implementing the lookup
table for d values only at intervals of. Any negative
value of d satisfies d = –hΔ – δ for some integer value h,
leading to the Taylor-series expansion of F(d), of which
only the first-order term was included in Lewis’s design:

ሺ݀ሻܨ 	ൌ ሺെ݄Δሻܨ	 െ	
ሺെ݄Δሻδܦ

1!
	൅ 	

ᇱሺെ݄Δሻδଶܦ

2!
െ ⋯

Lewis’s scheme exposed a further problem intrinsic to

LNS arithmetic: the difficulty of interpolating –(d) in
the region –1 < d < 0 (Fig. 1). To maintain accuracy, it is
necessary to implement a large number of successively
smaller intervals as d → 0.

 Add/
Sub

Lx > Ly?

 Add/
Sub

ROM for
+, –

Lm

Lx

Ly

Sx

Sy

Lz

Sz

Scale factor

0
1

0
1

Control

2

–1

–2

–3

–4

–5

1

0

 0 –4 –2 –6 –8 –10

+(d)

–(d)

Addition:

Subtraction

d

Log Arithmetic as Alternative to Floating-Point (M. Chugh & B. Parhami) 3 47th Asilomar Conf. Signals, Systems, and Computers, Nov. 3-6, 2013

3

Fig. 3: An LNS adder/subtractor implementation [13].

Coleman et al. [13] published the design of a 32-bit
logarithmic adder/subtractor, using a first-order Taylor-
series approximation, augmented with concurrent error
estimation to form a correction term. The critical path of
their design (Fig. 3) contains a ROM, a multiplier, and
two adders. For the range –1 < d < 0, they employed a
range-shifter for transforming a subtraction into one
having d < –1, with an extra latency of one ROM stage,
a carry-propagate adder, and a carry-save adder.

4. ELM’s Hardware Architecture

As noted by Coleman et al. [14], interpolation is

difficult for subtractions in the region –1 < d < 0.
Because the range –1 < d < –0.5 is not as problematic,
the smaller range –0.5 < d < 0 is targeted for range
shifting to reduce the required table size. The range-shift
algorithm obviates such problematic subtractions by
transforming i and j into new values that yield d < –1. A
full description of the theory underlying this unit is
given in [13]. It has a delay of one ROM access, a carry-
propagate addition, and a carry-save stage.

The ALU for ELM has two separate circuits for
add/subtract and multiply/divide. The add/subtract
circuit is preceded by a range shifter and associated
control logic, followed by a mux to select either the
unmodified or range-shifted inputs, depending on the
value of d. In the special cases involving one or two zero
operands, or when the two operands are equal, the result
may either follow one of the operands or be zero itself.
The two input operands and the value 0 are therefore
made available to a final 4-way mux, the setting of
which is determined by the control logic.

For comparison, Coleman et al. also designed a 32-bit
FP unit and a 32-bit fixed-point unit on the same lines as
the LNS unit. As far as possible, blocks were reused
from the LNS design. They did not design a fixed-point
or FP divider for comparing division times with LNS,
but it is known that division typically takes 2-3 times as
long as multiplication.

Table 1. Latencies of VLSI arithmetic circuits (ns).

 Operation Fixed FP LNS

 Add 4 28 28
 Subtract 4 28 28/42
 Multiply 32 22 4
 Divide -- -- 4

Depending on whether the range-shifter is required in

a particular subtraction, two timing values are shown for
subtraction in Table 1. Assuming that the range-shifter
comes into play in 50% of subtractions on average, the
mean subtraction time amounts to 35 ns. Assuming an
equal mix of additions and subtractions, the average
add/subtract time is about 31 ns, and the average LNS
multiply/divide time is 4 ns. Thus, the LNS unit would
reach roughly twice the speed of FP at an add/multiply
ratio of about 40/60 percent.

LNS ALUs have markedly different characteristics
from their FP counterparts and therefore require some
reevaluation of the surrounding microprocessor design to
deploy them to best advantage. Paliouras et al. [11] used
Lewis’s interleaved memory function interpolators [9] as
the basis for the addition unit in a proposed very long
instruction word (VLIW) device optimized for filtering
and comprised of two independent ALUs, each with a 4-
stage pipelined adder and a single-cycle multiplier.

Arnold [12] also proposed a VLIW device with one
single-cycle multiplier and a 4-stage pipelined adder,
suggesting that large-scale replication of functional units
could lead to difficulties with the complexity of the
multiplexing paths leading to and from the registers.

Because variable delay time complicates the pipeline
control algorithm, Coleman et al. [13] decided against
pipelining the adder unit. Instead, they suggested a fully
interlocked pipeline in which a single-cycle ALU
executes all operations except LNS addition/subtraction.
The latter are handled by the multicycle ALU, which
executes with a 3-cycle latency.

Fig. 4. ELM pipeline [14].

To/from bus interface

Instr
cache

Instr
issue

Data
cache

Single-
cycle ALU

( 4)

Multicycle
ALU

( 2)

General reg ( 16)

4-to-2
CSA
(two

levels)

d

4 Tables

F

D

E

P





+

n



i

Carry-
propagate
adder

Carry-
save
adder

Log Arithmetic as Alternative to Floating-Point (M. Chugh & B. Parhami) 4 47th Asilomar Conf. Signals, Systems, and Computers, Nov. 3-6, 2013

4

6. Accuracy and Speed

Coleman et al. [13] used a simulation model of their
LNS unit to compare errors produced by the 32-bit LNS
and FP systems. The LNS or 32-bit FP value was used as
input to the 32-bit implementation under test, while the
80-bit value was supplied to its 80-bit counterpart. In
each case, the 80-bit algorithm returned an accurate
result and from this, error in the 32-bit system was
derived. Values of |e|av rel arith were calculated for both the
32-bit LNS and 32-bit FP implementations over the
entire result file. We see from Fig. 5 that the objective of
an LNS addition algorithm with substantially the same
error as FP has been achieved, the only discrepancy
occurring for subtraction with closely matched operands.

ELM was fabricated in 0.18 µm technology and all of
the measurements reported by Coleman et al. [14] were
taken from the system running at 125 MHz. As the FP
comparison basis, they chose the Texas Instruments
TMS320C6711 DSP chip, a superscalar VLIW device
with load/store architecture that runs at 150 MHz.

ELM has a lower latency than TMS in almost all
cases, and hence a significantly higher scalar throughput.
The figures suggest that ELM can be expected to offer
around twice the performance of TMS. Figure 6 contain
error comparisons for multiply-accumulate. In cases
involving a large proportion of division and/or square-
root operations, ELM offers even greater advantage.

Fig. 5. Error in unsigned addition (top) and subtraction (bottom).

Signed addition exhibits variations similar to subtraction.

Fig. 6. Error characteristics of unsigned (top) and signed (bottom)

multiply-accumulate, ax + y. Sum-of-products, ax + by,
exhibits fairly similar variations.

7. Case Studies

We have examined in some detail two case studies in

digital signal processing (recursive least-squares, RLS)
and numerical methods (Laguerre algorithm) [16]. RLS
algorithm results are plotted in Fig. 7 in terms of signal-
to-noise ratio (SNR). The LNS implementation is seen to
offer a significant gain in accuracy for signals of wide
dynamic range. Over the narrower portion of the range,
the LNS outperformed FP by an average of 2.7 dB. For
the wider half, this gain was 10.5 dB. Since 6 dB
corresponds approximately to 1 bit, this represents a gain
in accuracy of from 0.5 bit to 1.5 bits.

The Laguerre algorithm [19], which computes the
roots of a polynomial, requires square-rooting. In the FP
version, this was evaluated via an initial approximation
from a 4K word ROM (covering the entire FP range),
followed by 2 Newton-Raphson iterations. In all cases,
LNS error was between 0.74 and 0.79 that of FP. A
similar consistency was observed with increasing n, as
shown in Fig 8. The improvement is seen to correspond
to about 0.5 bit at n = 10.

Fig.7. Simulation results for RLS [16].

160
140
120
100
80
60
40
20

0
 1 108 1016 1024 1032 1040

 SNR (dB)

 FP

Range

 LNS

 |e|av rel arith
0.60
0.50
0.40
0.30
0.20
0.10
0.00

 1 108 1016 1024 1032
Range

 LNS

 FP

 |e|av rel arith
0.25
0.20
0.15
0.10
0.05
0.00

 1 108 1016 1024 1032

Range

 LNS

 FP

0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

 1 108 1016 1024 1032 1040 1048 1056 1064

 |e|av rel arith

 LNS

 FP

Range

0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

 1 108 1016 1024 1032 1040 1048 1056 1064

 FP

 LNS

 |e|av rel arith

Range

Log Arithmetic as Alternative to Floating-Point (M. Chugh & B. Parhami) 5 47th Asilomar Conf. Signals, Systems, and Computers, Nov. 3-6, 2013

5

Fig.8. Simulation results for Laguerre [16].

8. Conclusion

We have come to understand that LNS can offer an
overall advantage over FP system only if addition and
subtraction can be performed with the speed and
accuracy at least equal to that of FP [22]. Satisfying this
goal is complicated by the latter operations requiring
interpolation of a nonlinear function. Besides simple
table lookup, techniques/architectures for interpolation
of data using expansion series have been investigated,
and ways to minimize the error have been devised.

The European logarithmic microprocessor, a device
built around the research project launched in 1999 which
aimed to develop a microprocessor based on the LNS,
demonstrated that LNS’s average performance exceeds
that of FP, in terms of both speed and accuracy. ELM
researchers have not offered a comparison of their LNS-
based microprocessor with other commercial systems
running LNS units. Examples of the latter hybrid
systems include a Motorola microcontroller chip (120
MHz LNS 1 GFLOP), which has several parallel LNS
units, and the IMI-500 graphics workstation from
Interactive Machines Inc.

Comparisons among different LNS-based systems,
and performance evaluation for a broader set of
applications, constitute suitable areas for further study.

References

[1] H. L. Garner, “Number Systems and Arithmetic,” in
Advances in Computers, Vol. 6, F. L. Alt and M. Rubinoff
(eds.), Academic Press, 1965.

[2] N. G. Kingsbury and P. J. W. Rayner, “Digital Filtering
Using Logarithmic Arithmetic,” Electronics Letters, Vol.
7, pp. 56-58, 1971.

[3] E. E. Swartzlander and A. G. Alexopoulos, “The
Sign/Logarithm Number System,” IEEE Trans.
Computers, Vol. 24, pp. 1238-1242, 1975.

[4] J. H. Lang, C. A. Zukowski, R. O. LaMaire, and C. H.
An, “Integrated-Circuit Logarithmic Units,” IEEE Trans.
Computers, Vol. 34, pp. 475-483, 1985.

[5] F. J. Taylor, R. Gill, J. Joseph, and J. Radke, “A 20 Bit
Logarithmic Number System Processor,” IEEE Trans.
Computers, Vol. 37, pp. 190-200, 1988.

[6] M. Combet, H. Van Zonneveld, and L. Verbeek,
“Computation of the Base Two Logarithm of Binary
Numbers,” IEEE Trans. Electronic Computers, Vol. 14,
pp. 863-867, 1965.

[7] D. Marino, “New Algorithm for the Approximate
Evaluation in Hardware of Binary Logarithms and
Elementary Functions,” IEEE Trans. Computers, Vol. 21,
pp. 1416-1421, 1972.

[8] F. J. Taylor, “An Extended Precision Logarithmic
Number System,” IEEE Trans. Acoustics, Speech, and
Signal Processing, Vol. 31, pp. 232-234, 1983.

[9] D. M. Lewis, “An Architecture for Addition and
Subtraction of Long Word Length Numbers in the
Logarithmic Number System,” IEEE Trans. Computers,
Vol. 39, pp. 1326-1336, 1990.

[10] D. Yu and D. M. Lewis, “A 30-b Integrated Logarithmic
Number System Processor,” IEEE J. Solid-State Circuits,
Vol. 26, pp. 1433-1440, 1991.

[11] V. Paliouras, J. Karagiannis, G. Aggouras, and T.
Stouraitis, “A Very-Long Instruction Word Digital Signal
Processor Based on the Logarithmic Number System,”
Proc. 5th IEEE Int’l Conf. Electronics, Circuits and
Systems, Vol. 3, pp. 59-62, 1998.

[12] M. G. Arnold, “A VLIW Architecture for Logarithmic
Arithmetic,” Proc. Euromicro Symp. Digital System
Design, 2003, pp. 294-302.

[13] J. N. Coleman, E. I. Chester, C. Softley, and J. Kadlec,
“Arithmetic on the European Logarithmic
Microprocessor,” IEEE Trans. Computers, Vol. 49, pp.
702-715, 2000; erratum, Vol. 49, p. 1152, 2000.

[14] J. N. Coleman, C. I. Softley, J. Kadlec, R. Matousek, M.
Tichy, Z. Pohl, A. Hermanek, and N. F. Benschop, “The
European Logarithmic Microprocessor,” IEEE Trans.
Computers, Vol. 57, pp. 532 - 546, 2008.

[15] J. N. Coleman and E. I. Chester, “A 32-Bit Logarithmic
Arithmetic Unit and Its Performance Compared to
Floating-Point,” Proc. 14th IEEE Symp. Computer
Arithmetic, 1999, pp. 142-151.

[16] J. N. Coleman, C. I. Softley, J. Kadlec, R. Matousek, M.
Licko, Z. Pohl, and A. Hermanek, “Performance of the
European Logarithmic Microprocessor,” Proc. SPIE
Annual Meeting, 2003, pp. 607-617.

[17] Texas Instruments, TMS320C3x User's Guide, 1997.
[18] C. H. Chen, R.-L. Chen, and C.-H. Yang, “Pipelined

Computation of Very Large Word-Length LNS
Addition/Subtraction with Polynomial Hardware Cost,”
IEEE Trans. Computers, Vol. 49, pp. 716-726, 2000.

[19] W. H. Press, et al., Numerical Recipes in Pascal,
Cambridge, 1989.

[20] Wikipedia, “Logarithmic Number System,”
http://en.wikipedia.org/wiki/Logarithmic_number_system
(accessed on April 30, 2013).

[21] Parhami, B., Computer Arithmetic: Algorithms and
Hardware Designs, Oxford, 2nd ed., 2010.

[22] Parhami, B. and M. Chugh, “A Fresh Look at
Sign/Logarithmic Computer Arithmetic: Implementation
Challenges and Performance Benefits,” in preparation.

 1 2 3 4 5 6 7 8 9 10

 |e|av rel arith

 FP

n

 LNS

90

80

70

60

50

40

30

20

10

0

