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ABSTRACT: The logarithmic number system (LNS) has found 
appeal in digital arithmetic because it allows multiplication 
and division to be performed much faster and more accurately 
than with the widely used floating-point (FP) number formats. 
We review the sign/logarithmic number system and present a 
comparison of various techniques and architectures for 
performing arithmetic operations efficiently in LNS. As a case 
study, we describe the European logarithmic microprocessor, 
a device built in the framework of a research project launched 
in 1999. Comparison of the arithmetic performance of this 
microprocessor with that of a commercial superscalar 
pipelined FP processor leads to the conclusion that LNS can 
be successfully deployed in general-purpose systems. 
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1. Introduction 

 
Proposals for the logarithmic number system (LNS) 

began in 1971, when Kingsburg and Rayner [2] 
introduced “logarithmic arithmetic” for digital signal 
processing. A similar logarithmic number system was 
proposed by Swartzlander and Alexopoulos [3] in 1975. 
Instead of using 2’s-complement format for logarithms, 
numbers were scaled to avoid negative logarithms. 

The sign/logarithmic number system overcomes the 
slowness of multiplication and division with 
conventional weighted numbers, while also avoiding the 
problems inherent in a residue number system (RNS). 
This advantage, however, is offset by the fact that 
addition and subtraction operations require a fairly 
complex procedure to be applied to logarithms. Despite 
its attractive properties, until fairly recently, only a few 
implementations of LNS arithmetic were attempted, all 
of which were restricted to low-precision applications, 
the difficulty in performing addition and subtraction on 
long words being the principal reason. LNS addition and 
subtraction require lookup tables whose size grows 
exponentially (several times 2l words), with logarithms 
that are of width l bits. For this reason, implementations 
described in the early literature were limited to 8-12 bits 
of fractional precision [4], [5]. 

It was recognized early on that LNS can offer an 
advantage over floating-point (FP) representation only if 
LNS addition and subtraction can be performed with the 
speed and accuracy at least equal to those of FP. 
However, achieving this goal is complicated by the fact 
that these operations require the evaluation of nonlinear 
functions [6], [7], [8], [9]. 

Contemplating the development of LNS-based 
commercial microprocessors, Lewis et al. [10], Paliouras 
et al. [11], and Arnold [12] proposed architectures for 
LNS-based processors in the late 1990s and early 2000s, 
but did not present a finished design or extensive 
simulation results. At about the same time, a European 
project, initiated by Coleman et al. [13], [14], laid down 
the foundations for the development of such a 
commercial digital system, dubbed the European 
logarithmic microprocessor (ELM), which provided 
performance similar to commercial superscalar pipelined 
floating-point processors [15]. 

Modern computation-intensive applications, with their 
increased algorithmic complexities as well larger 
problem sizes and data sets, are becoming bounded by 
the speed of FP operations. Real-time applications in this 
class are exemplified by RLS-based algorithms, 
subspace methods required in broadcasting and cellular 
telephony, Kalman filtering, and Riccati-like equations 
for advanced real-time control. Graphics systems [16] 
provide another case in point. 

The Gravity Pipe supercomputer (GRAPE), that won 
the Gordon Bell Prize in 1999, used LNS representation 
and arithmetic. LNS is commonly used as part of hidden 
Markov models, exemplified by the Viterbi algorithm, 
applied in speech recognition and DNA sequencing. The 
past two decades have seen substantial efforts to explore 
the applicability of LNS as a viable alternative to FP for 
general-purpose processing of single-precision real 
numbers, demonstrating LNS as an alternative to 
floating-point, with improved accuracy and speed. 

Collecting pertinent references and information about 
ongoing efforts in one place has been a primary 
motivation for writing this paper. 
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2. Background and Terminology 
 

The LNS representation of a number x consists of the 
number’s sign Sx and the binary logarithm Lx of its 
magnitude. LNS representation equivalent to the 32-bit 
(single precision) IEEE standard FP format [13] has a 
31-bit logarithm part that forms a 2’s-complement fixed-
point value ranging from –128 to approximately +128. 
The real numbers represented are signed and have 
magnitudes ranging from 2–128 to ~2+128 (i.e., from 2.9  
10–39 to 3.4  10+38). The smallest representable positive 
value, 4000000016, is used as a special code for zero, 
while C000000016 is dedicated to represent NaN. 

LNS’s uniform geometric error characteristics across 
the entire range of values leads to roughly an additional 
1/2 bit of precision compared with a FP representation 
using the same number of bits. Thus, in signal-
processing applications, LNS offers better signal/noise 
ratio as well as a better dynamic range. 

LNS multiplication and division are defined as: 
 
Multiplication: Sp = Sx  Sy,  Lp = Lx +  Ly   (1) 
Division: Sq = Sx  Sy, Lq = Lx –  Ly   (2) 
 
Given x and y, with |x| ≥ |y|, z = x ± y is computed as: 
 
   Sz =  Sx 

  Lz =  log2|x ± y|  =  log2|x(1 ± y / x)|      (3) 
       =  log2|x| + log2|1 ± y / x| 

   =  log2|x| + log2|1 ± 2(Ly – Lx)|   
 
Let d = Ly – Lx ≤ 0 and±(d) = log2|1 ± 2d|. The value 

of ±(d), shown in Fig. 1, can be read out from a ROM, 
but this is infeasible for wide words. Schemes based on 
interpolation are discussed in Section 3. For now, we 
will assume that a ROM is sufficient for our purpose. 

            

 
Fig. 1. Plots of +(d) and –(d) as functions of d. 

 
Fig. 2. A complete four-function ALU for LNS [21]. 

 

Realization of Eqns. (1), (2), and (3) by means of a 
comparator, an adder, a subtractor, a read-only memory 
(ROM) table, two multiplexers, and a small amount of 
peripheral logic can result in a simple four-function 
ALU [3], as shown in Fig. 2. The operation latency in 
this ALU is TOP = TCOMP + 2TADD + TROM, where TCOMP is 
the delay of a comparator. For convenience, we have 
assumed the peripheral logic delay to be negligible. In 
practice, the comparator may be implemented with a 
subtractor, leading to TOP = 3TADD + TROM. 

 
3. Addition and Subtraction 

 
In this section, we focus on the efficient calculation of 

the nonlinear term±(d) = log2|1 ± 2d|, where d = Ly – Lx 
(or d = j – i, taking Ly as j and Lx as i for simplicity). 
Implementation work began with Swartzlander and 
Alexopoulos’s 1975 paper [3], with a 12-bit device [4], 
while a 1988 scheme extended the width to 20 bits [5]. 
Both designs were direct implementations of Eqn. (2), 
with a ROM covering all possible values of ±(d). 

In the preceding simple scheme, table sizes increase 
exponentially with the word width, limiting its practical 
utility to about 20 bits. Lewis’s 1991 design [6] extended 
the word width to 28 bits by implementing the lookup 
table for d values only at intervals of. Any negative 
value of d satisfies d = –hΔ – δ for some integer value h, 
leading to the Taylor-series expansion of F(d), of which 
only the first-order term was included in Lewis’s design: 
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Lewis’s scheme exposed a further problem intrinsic to 

LNS arithmetic: the difficulty of interpolating –(d) in 
the region –1 < d < 0 (Fig. 1). To maintain accuracy, it is 
necessary to implement a large number of successively 
smaller intervals as d → 0. 
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Fig. 3: An LNS adder/subtractor implementation [13]. 

 

Coleman et al. [13] published the design of a 32-bit 
logarithmic adder/subtractor, using a first-order Taylor-
series approximation, augmented with concurrent error 
estimation to form a correction term. The critical path of 
their design (Fig. 3) contains a ROM, a multiplier, and 
two adders. For the range –1 < d < 0, they employed a 
range-shifter for transforming a subtraction into one 
having d < –1, with an extra latency of one ROM stage, 
a carry-propagate adder, and a carry-save adder. 

 
4. ELM’s Hardware Architecture 

 
As noted by Coleman et al. [14], interpolation is 

difficult for subtractions in the region –1 < d < 0. 
Because the range –1 < d < –0.5 is not as problematic, 
the smaller range –0.5 < d < 0 is targeted for range 
shifting to reduce the required table size. The range-shift 
algorithm obviates such problematic subtractions by 
transforming i and j into new values that yield d < –1. A 
full description of the theory underlying this unit is 
given in [13]. It has a delay of one ROM access, a carry-
propagate addition, and a carry-save stage. 

The ALU for ELM has two separate circuits for 
add/subtract and multiply/divide. The add/subtract 
circuit is preceded by a range shifter and associated 
control logic, followed by a mux to select either the 
unmodified or range-shifted inputs, depending on the 
value of d. In the special cases involving one or two zero 
operands, or when the two operands are equal, the result 
may either follow one of the operands or be zero itself. 
The two input operands and the value 0 are therefore 
made available to a final 4-way mux, the setting of 
which is determined by the control logic. 

For comparison, Coleman et al. also designed a 32-bit 
FP unit and a 32-bit fixed-point unit on the same lines as 
the LNS unit. As far as possible, blocks were reused 
from the LNS design. They did not design a fixed-point 
or FP divider for comparing division times with LNS, 
but it is known that division typically takes 2-3 times as 
long as multiplication. 

Table 1. Latencies of VLSI arithmetic circuits (ns). 

 Operation Fixed FP LNS 

 Add 4 28 28 
 Subtract 4 28 28/42 
 Multiply 32 22 4 
 Divide -- -- 4    

 
Depending on whether the range-shifter is required in 

a particular subtraction, two timing values are shown for 
subtraction in Table 1. Assuming that the range-shifter 
comes into play in 50% of subtractions on average, the 
mean subtraction time amounts to 35 ns. Assuming an 
equal mix of additions and subtractions, the average 
add/subtract time is about 31 ns, and the average LNS 
multiply/divide time is 4 ns. Thus, the LNS unit would 
reach roughly twice the speed of FP at an add/multiply 
ratio of about 40/60 percent. 

LNS ALUs have markedly different characteristics 
from their FP counterparts and therefore require some 
reevaluation of the surrounding microprocessor design to 
deploy them to best advantage. Paliouras et al. [11] used 
Lewis’s interleaved memory function interpolators [9] as 
the basis for the addition unit in a proposed very long 
instruction word (VLIW) device optimized for filtering 
and comprised of two independent ALUs, each with a 4-
stage pipelined adder and a single-cycle multiplier.  

Arnold [12] also proposed a VLIW device with one 
single-cycle multiplier and a 4-stage pipelined adder, 
suggesting that large-scale replication of functional units 
could lead to difficulties with the complexity of the 
multiplexing paths leading to and from the registers.  

Because variable delay time complicates the pipeline 
control algorithm, Coleman et al. [13] decided against 
pipelining the adder unit. Instead, they suggested a fully 
interlocked pipeline in which a single-cycle ALU 
executes all operations except LNS addition/subtraction. 
The latter are handled by the multicycle ALU, which 
executes with a 3-cycle latency.  

 

 
Fig. 4. ELM pipeline [14]. 
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6. Accuracy and Speed 
 

Coleman et al. [13] used a simulation model of their 
LNS unit to compare errors produced by the 32-bit LNS 
and FP systems. The LNS or 32-bit FP value was used as 
input to the 32-bit implementation under test, while the 
80-bit value was supplied to its 80-bit counterpart. In 
each case, the 80-bit algorithm returned an accurate 
result and from this, error in the 32-bit system was 
derived. Values of |e|av rel arith were calculated for both the 
32-bit LNS and 32-bit FP implementations over the 
entire result file. We see from Fig. 5 that the objective of 
an LNS addition algorithm with substantially the same 
error as FP has been achieved, the only discrepancy 
occurring for subtraction with closely matched operands. 

ELM was fabricated in 0.18 µm technology and all of 
the measurements reported by Coleman et al. [14] were 
taken from the system running at 125 MHz. As the FP 
comparison basis, they chose the Texas Instruments 
TMS320C6711 DSP chip, a superscalar VLIW device 
with load/store architecture that runs at 150 MHz. 

ELM has a lower latency than TMS in almost all 
cases, and hence a significantly higher scalar throughput. 
The figures suggest that ELM can be expected to offer 
around twice the performance of TMS. Figure 6 contain 
error comparisons for multiply-accumulate. In cases 
involving a large proportion of division and/or square-
root operations, ELM offers even greater advantage.  
 

 

 
Fig. 5. Error in unsigned addition (top) and subtraction (bottom).  

Signed addition exhibits variations similar to subtraction. 

 

 
Fig. 6. Error characteristics of unsigned (top) and signed (bottom) 

multiply-accumulate, ax + y. Sum-of-products, ax + by,  
exhibits fairly similar variations. 

 
7. Case Studies 

 
We have examined in some detail two case studies in 

digital signal processing (recursive least-squares, RLS) 
and numerical methods (Laguerre algorithm) [16]. RLS 
algorithm results are plotted in Fig. 7 in terms of signal-
to-noise ratio (SNR). The LNS implementation is seen to 
offer a significant gain in accuracy for signals of wide 
dynamic range. Over the narrower portion of the range, 
the LNS outperformed FP by an average of 2.7 dB. For 
the wider half, this gain was 10.5 dB. Since 6 dB 
corresponds approximately to 1 bit, this represents a gain 
in accuracy of from 0.5 bit to 1.5 bits. 

The Laguerre algorithm [19], which computes the 
roots of a polynomial, requires square-rooting. In the FP 
version, this was evaluated via an initial approximation 
from a 4K word ROM (covering the entire FP range), 
followed by 2 Newton-Raphson iterations. In all cases, 
LNS error was between 0.74 and 0.79 that of FP. A 
similar consistency was observed with increasing n, as 
shown in Fig 8. The improvement is seen to correspond 
to about 0.5 bit at n = 10. 
 

 
Fig.7. Simulation results for RLS [16]. 
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Fig.8. Simulation results for Laguerre [16]. 

 
 

8. Conclusion 
 

We have come to understand that LNS can offer an 
overall advantage over FP system only if addition and 
subtraction can be performed with the speed and 
accuracy at least equal to that of FP [22]. Satisfying this 
goal is complicated by the latter operations requiring 
interpolation of a nonlinear function. Besides simple 
table lookup, techniques/architectures for interpolation 
of data using expansion series have been investigated, 
and ways to minimize the error have been devised. 

The European logarithmic microprocessor, a device 
built around the research project launched in 1999 which 
aimed to develop a microprocessor based on the LNS, 
demonstrated that LNS’s average performance exceeds 
that of FP, in terms of both speed and accuracy. ELM 
researchers have not offered a comparison of their LNS-
based microprocessor with other commercial systems 
running LNS units. Examples of the latter hybrid 
systems include a Motorola microcontroller chip (120 
MHz LNS 1 GFLOP), which has several parallel LNS 
units, and the IMI-500 graphics workstation from 
Interactive Machines Inc.  

Comparisons among different LNS-based systems, 
and performance evaluation for a broader set of 
applications, constitute suitable areas for further study. 
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