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Abstract 

 
Graphic processing units (GPUs) have emerged as useful 
components in the realization of high-performance and 
cost-effective digital systems for numerically intensive 
applications, from simple personal devices to large-scale 
supercomputers. In this paper, we consider GPUs that 
incorporate energy-efficient logarithmic arithmetic units. 
After analyzing numerical errors arising from such an 
implementation scheme, we present a simple fine-tuning 
of the design to reduce the worst-case error. 
 
Keywords––Arithmetic/logic unit, Error compensation, 
GPU-based computing, Logarithmic arithmetic unit,   
Low-power design. 

 
Introduction and Background 
 

Graphic processing units (GPUs) have evolved from 
simple coprocessors, helping CPUs in handling graphics, 
to powerful components that dwarf, in many cases, the 
performance of the most powerful CPUs. The cost-
effectiveness of GPUs has drawn attention of many 
researchers that see them as an inexpensive option to 
perform the computations needed for physical simulation 
or to manipulate huge amounts of data. This trend is 
known as general-purpose computing on GPUs (GPGPU) 
and it is currently a very active area of research and 
development [1, 4, 11]. As examples of nongraphic 
applications, there are several libraries for linear algebra 
[7, 2], for solving differential equations [13], or even as a 
load balancer for irregular applications [8]. 

High-performance GPUs can be just as power-hungry 
as top-of-the-line CPUs, but the use of GPUs in personal 
and mobile devices has led to the development of energy-
efficient variants. Because GPUs are used for applications 

that are numerically intensive [14], many more transistors 
are devoted to arithmetic/logic units (ALUs) than in more 
traditional CPUs. Therefore, efficient implementation of 
arithmetic circuits is vital to ensure energy efficiency. 

Examples of computations performed by GPUs in the 
graphics domain include geometric transformations, 
typically formulated as matrix-vector multiplications, 
arithmetic-heavy lighting/rendering [15], which entail 
vertex and pixel processing, and shading. For data on the 
relative arithmetic operation counts in rendering 
computations, the reader is referred to [16]. Very roughly 
speaking, multiplication and addition/subtraction are 
nearly equal in their frequencies, while division is about 
1/6 and square-rooting 1/40 as frequent. 

 
Logarithmic Arithmetic Unit 
 

Because rendering is heavy on multiplication, division, 
and powering operations, which tend to be slower than 
addition/subtraction, the use of logarithmic arithmetic is a 
good match. With logarithmic number representation, 
multiplication and division are converted to additions and 
subtractions, respectively, but addition and subtraction 
become more difficult nonlinear operations. Logarithmic 
arithmetic also gives rise to the problems of initial 
conversion, from binary to logarithmic format, and final 
reconversion back to standard binary. 

In logarithmic representation, a number x is 
represented by its sign Sx and the logarithm Lx of its 
magnitude x. Consistent with common practice, we 
assume base-2 logarithms, that is, (Sx, Lx ) =  log2 x. 
Because the logarithm of a number in (0, 1) is negative, 
we often assume the use of a scale factor m to convert 
numbers in the range (0, 1) to (1, m), in order to avoid 
using a second sign. Arithmetic operations on logarithmic 
numbers are shown in Table 1. 
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Table 1. Arithmetic with Lx = log2x and Ly = log2y. 

 Operation Binary Logarithmic 

 Multiplication x  y Lx + Ly 
 Division x  y Lx – Ly 
 Reciprocation 1  x –Lx 
 Square-rooting x Lx >> 1 (right shift) 
 Squaring x2 Lx << 1 (left shift) 
 Exponentiation xy y  Lx 
 Addition x + y Lx + log2(1 + 2– (Lx–Ly)) 
 Subtraction x – y Lx + log2(1 – 2– (Lx–Ly)) 

 
 

 
Fig. 1. A complete four-function ALU for LNS [12]. 

 
The schematic of a logarithmic ALU is shown in Fig. 1, 

with the 4 bits controlling the ROM, the 2-to-1 muxes, 
and the two adder/subtractors defining which of the 4 
operations of addition, subtraction, multiplication, or 
division is performed, (Table 2). Bear in mind that 
besides the components depicted in Fig. 1, we also need 
blocks for logarithm and antilogarithm computations. 

Kim et al. [6] implemented an energy-efficient 32-bit 
fixed-point logarithmic arithmetic unit suitable for GPUs 
in mobile devices. The 32-bit word consists of 6 whole 
bits and 26 fractional bits. This format allows the 
representation of base-2 logarithms in the range (–32, 32), 
making the number representation range comparable to 
32-bit binary format. The main contributions by Kim et 
al. actually reside in the converters to/from logarithmic 
numbers. To this end, they designed fairly accurate and 
energy-efficient logarithmic and antilogarithmic 
converters, which we will review in the next two sections 
of this paper, along with an error reduction method in the 
antilogarithmic converter. 

 
Table 2. Control signals defining the ALU operations. 

 Operation minus mux sub1 sub2 

 Addition 0 0 1 0 
 Subtraction 1 0 1 0 
 Multiplication x 1 0 1 
 Division x 1 1 0 

Logarithmic Converter 
 

The logarithmic converter of Kim et al. [6] uses 8-way 
partitioning of the interval [0, 1] for piecewise linear 
approximation to improve upon the very simple linear 
method of Mitchell [9] and a somewhat more accurate, 
but still crude, method of Juang et al. [5], introducing the 
relative errors of 5.9% and 2.9%, respectively. The 8 
intervals are associated with the linear approximations 

 
log2(1 + x) = aix + bi  i = 0, 1, 2, … , 7 
 
Optimal values for ai and bi are determined and values 

close to optimal are chosen for a and b to reduce the 
hardware and power requirements. Shift-and-add is used 
for computing aix. Table 3 shows the implementation 
parameters. The hardware needed for the entire 
computation consists of a 32-bit leading 0s counter, a 
variable shifter, an integer unit producing the 6-bit whole 
part of the result, and a fractional unit yielding the 
remaining 26 bits of the logarithm. The latter unit, 
accounting for most of the latency, uses three 26-bit 
carry-save adders, arranged in 3 levels (the inputs to 
which come from look-up tables and hardwired shifters), 
feeding a 26-bit carry-propagate adder. 

As evident from Fig. 2, errors for this converter range 
from –0.190%, occurring in the first subinterval [0, 1/8), 
to +0.103%, occurring at 3/8. 

 
Table 3. Parameters for a logarithmic converter. 

 [From To) aopt bopt 128a 1024b 

 0 1/8 1.35877 0.00170531 175 0 
 1/8 1/4 1.21558 0.0193393 158 15 
 1/4 3/8 1.09970 0.0481159 142 46 
 3/8 1/2 1.00399 0.0838589 127 91 
 1/2 5/8 0.923621 0.123934 119 123 
 5/8 3/4 0.855165 0.166631 110 167 
 3/4 7/8 0.796159 0.210815 102 215 
 7/8 1 0.744772 0.255722 95 264 

 

Fig. 2. Error plot for the logarithmic converter [6]. 

 sub1  minus          sub2 mux 
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Antilogarithmic Converter 
 

The antilogarithmic converter of Kim et al. [6] 
computes the function 2f. Like their logarithmic converter, 
this unit also uses 8-way partitioning of the interval [0, 1] 
for piecewise linear approximation 

 
2x = ci x + di  i = 0, 1, 2, … , 7  
 
Optimal values for ci and di are determined and values 

close to optimal are chosen for c and d to reduce the 
hardware requirements. Shift-and-add operations are used 
for computing cix. Table 4 shows the implementation 
parameters. As evident from Fig. 3, errors for this 
converter range from –0.070%, occurring at 3/8, to 
+0.082%, occurring in the sixth subinterval [5/8, 3/4). 

A careful inspection of Fig. 3 shows that the percentage 
error can be reduced via a minor modification in the d 
coefficients in the look-up table. Modification of the c 
coefficients is more delicate, since the hardware 
implementation is highly tuned to the values chosen. The 
fifth and sixth subintervals are the ones dictating the 
maximum positive error 0.082%. The idea is to decrease 
the associated value of d in these regions, until they no 
longer dictate the worst case. Reducing the error in these 
subinterval to 0.070% or less, leads to an overall 
symmetric error range [–0.070%, +0.070%], a 15% 
improvement in the maximum error. 

 
Table 4. Parameters for an antilogarithmic converter. 

 [From To) copt dopt 128c 1024d 

 0 1/8 0.723972 0.999353 92 1024 
 1/8 1/4 0.789497 0.991115 101 1015 
 1/4 3/8 0.860952 0.973199 111 995 
 3/8 1/2 0.938875 0.943922 121 964 
 1/2 5/8 1.02385 0.901373 131 924 
 5/8 3/4 1.11652 0.843390 143 864 
 3/4 7/8 1.21757 0.767527 155 792 
 7/8 1 1.32777 0.671023 169 695 
 

 
  Fig. 3. Error plot for the antilogarithmic converter [6]. 

 

Fig. 4. Improved error plot for the antilogarithmic converter. 

 
Subtracting 1 ulp (1/1024 = 2–10) from the fifth and 

sixth d values in Table 4 would shift the curves 
downward by too large an amount, so that they then 
dictate the maximum negative error. Despite this fact, 
there would still be a slight improvement in the maximum 
error range; that is, the difference between the maximum 
positive error and maximum negative error would 
improve from 0.152 to 0.149. On the other hand, by 
adding one bit to the width of the lookup table for d, 
which is a very minor change not affecting hardware 
complexity and having a negligible effect on power 
consumption, we can reduce the fifth and sixth d 
coefficients by 1/2 ulp, leading to the aforementioned 
15% improvement in error. 

The reader may wonder why we did not apply the latter 
error reduction method to the logarithmic converter of 
Fig. 2. The reason has to do with the maximum negative 
error occurring in subinterval 1, which includes x = 0. 
Adding 1 ulp or 1/2 ulp would indeed improve the worst-
case negative error, but it would also introduce an error of 
1/1024 or 1/2048 in computing the logarithm of numbers 
very close to 1, producing very large relative errors that 
would be quite unacceptable in practice. 

  
 

Conclusion 
 

We have discussed the power consumption problem in 
high-performance graphics processors and how it would 
limit their use in low-power mobile devices. We reviewed 
an approach to power reduction that takes advantage of a 
logarithmic arithmetic unit, showing how a previously 
proposed design can be improved in terms of its error 
characteristics at negligible cost.  

We are currently looking into other possible methods of 
improving both the accuracy and energy efficiency of 
such arithmetic units. 
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Appendix: Sources of Energy Savings 
 

In Section 2, we referred to the energy-efficient 32-bit 
logarithmic arithmetic unit implemented by Kim et al. [6]. 
In this appendix, we provide a brief overview of what 
causes logarithmic representation to have lower energy 
requirements compared with standard 2’s-complement 
binary arithmetic. Essentially, we want to provide a basis 
and an intuitive feel for why logarithmic arithmetic fares 
better in terms of energy/power consumption. 

The energy efficiency advantage of logarithmic number 
representation was known for quite some time through 
episodic evidence, as various designers demonstrated 
low-power circuits for particular applications running on 
associated fine-tuned hardware platforms. Subsequently, 
V, Paliouras and T. Stouraitis (Proc. 15th IEEE Symp. 
Computer Arithmetic, 2001, pp. 229-236) published a 
study of signal transitions in logarithmic arithmetic versus 
fixed-point arithmetic, showing significant reduction in 
activity with linear (uniform and correlated Gaussian) 
input data. Power savings from reduced activity are 
augmented by reduction in circuit complexity due to the 
fact that for LNS, multipliers, dividers, squarers, and 
square-rooters are replaced by the much simpler add, 
subtract, left-shift, and right-shift circuitry. 

For many practical, compute-intensive applications, the 
savings from reduced activity and circuit simplifications 
are substantial enough to compensate for the energy 
requirements of conversion and reconversion processes, 
needed to interface the system with non-logarithmic data 
sources and sinks, and the somewhat greater complexity 
of addition and subtraction. The accrued benefits are, of 
course, dependent on implementation parameters such as 
word width, precision (location of the radix point in the 
logarithm field), and logarithm base. 

In recent years, a variety of new applications and 
associated circuit realizations have confirmed the energy 
benefits of logarithmic arithmetic, as suggested by the 
preceding discussion.    


