

Energy-Efficient GPU Arithmetic for Mobile Devices 1 47th Asilomar Conf. Signals, Systems, and Computers
M. Lastras & B. Parhami, July 18, 2013 Pacific Grove, CA, November 3-6, 2013

A Logarithmic Approach to Energy-Efficient GPU Arithmetic for Mobile Devices

Miguel Lastras and Behrooz Parhami
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

parhami@ece.ucsb.edu

Abstract

Graphic processing units (GPUs) have emerged as useful
components in the realization of high-performance and
cost-effective digital systems for numerically intensive
applications, from simple personal devices to large-scale
supercomputers. In this paper, we consider GPUs that
incorporate energy-efficient logarithmic arithmetic units.
After analyzing numerical errors arising from such an
implementation scheme, we present a simple fine-tuning
of the design to reduce the worst-case error.

Keywords––Arithmetic/logic unit, Error compensation,
GPU-based computing, Logarithmic arithmetic unit,
Low-power design.

Introduction and Background

Graphic processing units (GPUs) have evolved from
simple coprocessors, helping CPUs in handling graphics,
to powerful components that dwarf, in many cases, the
performance of the most powerful CPUs. The cost-
effectiveness of GPUs has drawn attention of many
researchers that see them as an inexpensive option to
perform the computations needed for physical simulation
or to manipulate huge amounts of data. This trend is
known as general-purpose computing on GPUs (GPGPU)
and it is currently a very active area of research and
development [1, 4, 11]. As examples of nongraphic
applications, there are several libraries for linear algebra
[7, 2], for solving differential equations [13], or even as a
load balancer for irregular applications [8].

High-performance GPUs can be just as power-hungry
as top-of-the-line CPUs, but the use of GPUs in personal
and mobile devices has led to the development of energy-
efficient variants. Because GPUs are used for applications

that are numerically intensive [14], many more transistors
are devoted to arithmetic/logic units (ALUs) than in more
traditional CPUs. Therefore, efficient implementation of
arithmetic circuits is vital to ensure energy efficiency.

Examples of computations performed by GPUs in the
graphics domain include geometric transformations,
typically formulated as matrix-vector multiplications,
arithmetic-heavy lighting/rendering [15], which entail
vertex and pixel processing, and shading. For data on the
relative arithmetic operation counts in rendering
computations, the reader is referred to [16]. Very roughly
speaking, multiplication and addition/subtraction are
nearly equal in their frequencies, while division is about
1/6 and square-rooting 1/40 as frequent.

Logarithmic Arithmetic Unit

Because rendering is heavy on multiplication, division,
and powering operations, which tend to be slower than
addition/subtraction, the use of logarithmic arithmetic is a
good match. With logarithmic number representation,
multiplication and division are converted to additions and
subtractions, respectively, but addition and subtraction
become more difficult nonlinear operations. Logarithmic
arithmetic also gives rise to the problems of initial
conversion, from binary to logarithmic format, and final
reconversion back to standard binary.

In logarithmic representation, a number x is
represented by its sign Sx and the logarithm Lx of its
magnitude x. Consistent with common practice, we
assume base-2 logarithms, that is, (Sx, Lx) = log2 x.
Because the logarithm of a number in (0, 1) is negative,
we often assume the use of a scale factor m to convert
numbers in the range (0, 1) to (1, m), in order to avoid
using a second sign. Arithmetic operations on logarithmic
numbers are shown in Table 1.

Energy-Efficient GPU Arithmetic for Mobile Devices 2 47th Asilomar Conf. Signals, Systems, and Computers
M. Lastras & B. Parhami, July 18, 2013 Pacific Grove, CA, November 3-6, 2013

Table 1. Arithmetic with Lx = log2x and Ly = log2y.

 Operation Binary Logarithmic

 Multiplication x y Lx + Ly
 Division x y Lx – Ly
 Reciprocation 1 x –Lx
 Square-rooting x Lx >> 1 (right shift)
 Squaring x2 Lx << 1 (left shift)
 Exponentiation xy y Lx
 Addition x + y Lx + log2(1 + 2– (Lx–Ly))
 Subtraction x – y Lx + log2(1 – 2– (Lx–Ly))

Fig. 1. A complete four-function ALU for LNS [12].

The schematic of a logarithmic ALU is shown in Fig. 1,

with the 4 bits controlling the ROM, the 2-to-1 muxes,
and the two adder/subtractors defining which of the 4
operations of addition, subtraction, multiplication, or
division is performed, (Table 2). Bear in mind that
besides the components depicted in Fig. 1, we also need
blocks for logarithm and antilogarithm computations.

Kim et al. [6] implemented an energy-efficient 32-bit
fixed-point logarithmic arithmetic unit suitable for GPUs
in mobile devices. The 32-bit word consists of 6 whole
bits and 26 fractional bits. This format allows the
representation of base-2 logarithms in the range (–32, 32),
making the number representation range comparable to
32-bit binary format. The main contributions by Kim et
al. actually reside in the converters to/from logarithmic
numbers. To this end, they designed fairly accurate and
energy-efficient logarithmic and antilogarithmic
converters, which we will review in the next two sections
of this paper, along with an error reduction method in the
antilogarithmic converter.

Table 2. Control signals defining the ALU operations.

 Operation minus mux sub1 sub2

 Addition 0 0 1 0
 Subtraction 1 0 1 0
 Multiplication x 1 0 1
 Division x 1 1 0

Logarithmic Converter

The logarithmic converter of Kim et al. [6] uses 8-way
partitioning of the interval [0, 1] for piecewise linear
approximation to improve upon the very simple linear
method of Mitchell [9] and a somewhat more accurate,
but still crude, method of Juang et al. [5], introducing the
relative errors of 5.9% and 2.9%, respectively. The 8
intervals are associated with the linear approximations

log2(1 + x) = aix + bi i = 0, 1, 2, … , 7

Optimal values for ai and bi are determined and values

close to optimal are chosen for a and b to reduce the
hardware and power requirements. Shift-and-add is used
for computing aix. Table 3 shows the implementation
parameters. The hardware needed for the entire
computation consists of a 32-bit leading 0s counter, a
variable shifter, an integer unit producing the 6-bit whole
part of the result, and a fractional unit yielding the
remaining 26 bits of the logarithm. The latter unit,
accounting for most of the latency, uses three 26-bit
carry-save adders, arranged in 3 levels (the inputs to
which come from look-up tables and hardwired shifters),
feeding a 26-bit carry-propagate adder.

As evident from Fig. 2, errors for this converter range
from –0.190%, occurring in the first subinterval [0, 1/8),
to +0.103%, occurring at 3/8.

Table 3. Parameters for a logarithmic converter.

 [From To) aopt bopt 128a 1024b

 0 1/8 1.35877 0.00170531 175 0
 1/8 1/4 1.21558 0.0193393 158 15
 1/4 3/8 1.09970 0.0481159 142 46
 3/8 1/2 1.00399 0.0838589 127 91
 1/2 5/8 0.923621 0.123934 119 123
 5/8 3/4 0.855165 0.166631 110 167
 3/4 7/8 0.796159 0.210815 102 215
 7/8 1 0.744772 0.255722 95 264

Fig. 2. Error plot for the logarithmic converter [6].

 sub1 minus sub2 mux

Energy-Efficient GPU Arithmetic for Mobile Devices 3 47th Asilomar Conf. Signals, Systems, and Computers
M. Lastras & B. Parhami, July 18, 2013 Pacific Grove, CA, November 3-6, 2013

Antilogarithmic Converter

The antilogarithmic converter of Kim et al. [6]
computes the function 2f. Like their logarithmic converter,
this unit also uses 8-way partitioning of the interval [0, 1]
for piecewise linear approximation

2x = ci x + di i = 0, 1, 2, … , 7

Optimal values for ci and di are determined and values

close to optimal are chosen for c and d to reduce the
hardware requirements. Shift-and-add operations are used
for computing cix. Table 4 shows the implementation
parameters. As evident from Fig. 3, errors for this
converter range from –0.070%, occurring at 3/8, to
+0.082%, occurring in the sixth subinterval [5/8, 3/4).

A careful inspection of Fig. 3 shows that the percentage
error can be reduced via a minor modification in the d
coefficients in the look-up table. Modification of the c
coefficients is more delicate, since the hardware
implementation is highly tuned to the values chosen. The
fifth and sixth subintervals are the ones dictating the
maximum positive error 0.082%. The idea is to decrease
the associated value of d in these regions, until they no
longer dictate the worst case. Reducing the error in these
subinterval to 0.070% or less, leads to an overall
symmetric error range [–0.070%, +0.070%], a 15%
improvement in the maximum error.

Table 4. Parameters for an antilogarithmic converter.

 [From To) copt dopt 128c 1024d

 0 1/8 0.723972 0.999353 92 1024
 1/8 1/4 0.789497 0.991115 101 1015
 1/4 3/8 0.860952 0.973199 111 995
 3/8 1/2 0.938875 0.943922 121 964
 1/2 5/8 1.02385 0.901373 131 924
 5/8 3/4 1.11652 0.843390 143 864
 3/4 7/8 1.21757 0.767527 155 792
 7/8 1 1.32777 0.671023 169 695

 Fig. 3. Error plot for the antilogarithmic converter [6].

Fig. 4. Improved error plot for the antilogarithmic converter.

Subtracting 1 ulp (1/1024 = 2–10) from the fifth and

sixth d values in Table 4 would shift the curves
downward by too large an amount, so that they then
dictate the maximum negative error. Despite this fact,
there would still be a slight improvement in the maximum
error range; that is, the difference between the maximum
positive error and maximum negative error would
improve from 0.152 to 0.149. On the other hand, by
adding one bit to the width of the lookup table for d,
which is a very minor change not affecting hardware
complexity and having a negligible effect on power
consumption, we can reduce the fifth and sixth d
coefficients by 1/2 ulp, leading to the aforementioned
15% improvement in error.

The reader may wonder why we did not apply the latter
error reduction method to the logarithmic converter of
Fig. 2. The reason has to do with the maximum negative
error occurring in subinterval 1, which includes x = 0.
Adding 1 ulp or 1/2 ulp would indeed improve the worst-
case negative error, but it would also introduce an error of
1/1024 or 1/2048 in computing the logarithm of numbers
very close to 1, producing very large relative errors that
would be quite unacceptable in practice.

Conclusion

We have discussed the power consumption problem in
high-performance graphics processors and how it would
limit their use in low-power mobile devices. We reviewed
an approach to power reduction that takes advantage of a
logarithmic arithmetic unit, showing how a previously
proposed design can be improved in terms of its error
characteristics at negligible cost.

We are currently looking into other possible methods of
improving both the accuracy and energy efficiency of
such arithmetic units.

Energy-Efficient GPU Arithmetic for Mobile Devices 4 47th Asilomar Conf. Signals, Systems, and Computers
M. Lastras & B. Parhami, July 18, 2013 Pacific Grove, CA, November 3-6, 2013

References

[1] D. Blythe, “Rise of the Graphics Processor,” Proc. IEEE,

Vol. 96, No. 5, pp. 761-778, May 2008.

[2] K. Fatahalian, J. Sugerman, and P. Hanrahan,
“Understanding the Efficiency of GPU Algorithms for

Matrix-Matrix Multiplication,” Proc. ACM SIGGRAPH/
EUROGRAPHICS Conf. Graphics Hardware, pp. 133-
137, 2004.

[3] I. Foster, Designing and Building Parallel Programs:
Concepts and Tools for Parallel Software Engineering,
Addison-Wesley, 1995.

[4] D. Geer, “Taking the Graphics Processor Beyond
Graphics,” IEEE Computer, Vol. 38, No. 9, pp.14-16,
September 2005.

[5] T. B. Juang, S. H. Chen, and H. J. Cheng, “A Lower Error
and ROM-Free Logarithmic Converter for Digital Signal
Processing Applications,” IEEE Trans. Circuits and
Systems II, Vol. 56, No. 12, pp. 931-935, December 2009.

[6] H. Kim, B. G. Nam, J. H. Sohn, J. H. Woo, and H. J. Yoo,
“A 231-MHz, 2.18-mW 32-bit Logarithmic Arithmetic
Unit for Fixed-Point 3-D Graphics System,” IEEE J.
Solid-State Circuits, Vol. 41, No. 11, pp. 2373-2381,
November 2006.

[7] J. Kruger and R. Westermann, “Linear Algebra Operators
for GPU Implementation of Numerical Algorithms,” ACM
Trans. Graphics, Vol. 22, No. 3, pp. 908-916, 2005.

[8] M. A. Lastras-Montano, M. M. Michael, and J. A. Bivens,
“Dynamic Work Scheduling for GPU Systems,” in GPUs
and Scientific Applications at Parallel Architectures and
Compilation Techniques, 2010.

[9] J.N. Mitchell, “Computer Multiplication and Division
Using Binary Logarithms,” IRE Trans. Electronic
Computers, Vol. 11, No. 4, pp. 512-517, 1962.

[10] NVIDIA, Cuda Programming Guide 2.3, NVIDIA Corp.,
2009.

[11] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Kruger, A. E. Lefohn, and T. J. Purcell, “A Survey of
General-Purpose Computation on Graphics Hardware,”
Computer Graphics Forum, Vol. 26, pp. 80-113, 2007.

[12] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford, 2nd ed., 2010.

[13] J. C. Thibault and I. Senocak, “CUDA Implementation of
a Navier-Stokes Solver on Multi-GPU Desktop Platforms
for Incompressible Flows,” Proc. 47th AIAA Aerospace
Sciences Meeting, pp. 1-15, 2009.

[14] W. Vogels, “Expanding the Cloud—Adding the
Incredible Power of the Amazon EC2 Cluster GPU
Instances,” 2011 (document accessed on July 18, 2013).
http://www.allthingsdistributed.com/2010/11/cluster_gpu
_instances_amazon_ec2.html

[15] J. H. Woo, J. H. Sohn, H. Kim, and H .J. Yoo, “A 195
mW, 9.1 MVertices/s Fully Programmable 3-D Graphics
Processor for Low-Power Mobile Devices,” IEEE J.
Solid-State Circuits, Vol. 43, pp. 2370-2380, 2008.

[16] K. Yoshida, T. Sakamoto, and T. Hase, “A 3D Graphics
Library for 32-bit Microprocessors for Embedded
Systems, IEEE Trans. Consumer Electronics, Vol. 44,
No. 3, pp. 1107-1114, 1998.

Appendix: Sources of Energy Savings

In Section 2, we referred to the energy-efficient 32-bit
logarithmic arithmetic unit implemented by Kim et al. [6].
In this appendix, we provide a brief overview of what
causes logarithmic representation to have lower energy
requirements compared with standard 2’s-complement
binary arithmetic. Essentially, we want to provide a basis
and an intuitive feel for why logarithmic arithmetic fares
better in terms of energy/power consumption.

The energy efficiency advantage of logarithmic number
representation was known for quite some time through
episodic evidence, as various designers demonstrated
low-power circuits for particular applications running on
associated fine-tuned hardware platforms. Subsequently,
V, Paliouras and T. Stouraitis (Proc. 15th IEEE Symp.
Computer Arithmetic, 2001, pp. 229-236) published a
study of signal transitions in logarithmic arithmetic versus
fixed-point arithmetic, showing significant reduction in
activity with linear (uniform and correlated Gaussian)
input data. Power savings from reduced activity are
augmented by reduction in circuit complexity due to the
fact that for LNS, multipliers, dividers, squarers, and
square-rooters are replaced by the much simpler add,
subtract, left-shift, and right-shift circuitry.

For many practical, compute-intensive applications, the
savings from reduced activity and circuit simplifications
are substantial enough to compensate for the energy
requirements of conversion and reconversion processes,
needed to interface the system with non-logarithmic data
sources and sinks, and the somewhat greater complexity
of addition and subtraction. The accrued benefits are, of
course, dependent on implementation parameters such as
word width, precision (location of the radix point in the
logarithm field), and logarithm base.

In recent years, a variety of new applications and
associated circuit realizations have confirmed the energy
benefits of logarithmic arithmetic, as suggested by the
preceding discussion.

