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Abstract  The average internode distancein an 
interconnection network (or its average distance for short) is 
an indicator of expected message latency in that network 
under light and moderate network traffic. Unfortunately, it is 
not always easy to find an exact value for the average 
internode distance, particularly for networks that are not 
node-symmetric, because the computation must be repeated 
for many classes of nodes. In this short paper, we derive 
exact formulas for the average internode distance in mesh 
and complete binary tree networks. 
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1. Introduction 
A variety of interconnection networks have been studied 

for linking the nodes in a parallel or distributed system [1-4]. 
It is often difficult to compare such networks with respect to 
their suitability for a particular application domain[5], given 
the multitude of static attributes (diameter, average distance, 
bisection width, VLSI layout area) and dynamic properties 
(routing algorithms, deadlock prevention, traffic balance, 
fault tolerance) to be taken into consideration. New 
interconnection networks that continue to be introduced, 
while enriching the repertoire of parallel computer designers, 
also add to the selection difficulty. 

In this paper, we focus on a particular static attribute of a 
network, its average internode distance ∆, and derive exact 
formulas for it in the case of two highly popular, but 
node-asymmetric, networks. The derivation for meshes takes 
advantage of the fact that average distance in a 
q-dimensional mesh is the sum of average distances along 
the q dimensions. The derivation in the case of the complete 
binary tree utilizes the network’s recursive structure. 

While the average internode distance ∆ is widely 
acknowledged as an important static parameter of an 

interconnection network, exact formulas for it have not been 
published for many useful networks, including the two 
widely used ones: meshes and binary trees. By contrast, we 
almost always have exact formulas for network diameter D, 
in part because it is easier to compute. We take small steps in 
correcting this deficiency. 

We define the average internode distance of an 
interconnection network to be the mean distance from a 
randomly chosen node to every node in the network, 
including the node itself. This inclusion of null paths, that is 
counting paths from each node to itself in computing the 
average distance, leads to cleaner results in most cases and 
has negligible effect on our results. Furthermore, given that 
inclusion of length-0 paths does not affect the various sums 
of distances that we compute, we can resort to the more 
conventional definition by simply dividing at the end the 
overall sum of all n2 path lengths in an n-node network by 
n(n – 1) rather than n2, leading to a slightly larger average. 

2. Average Internode Distance in Meshes 
Nodes in a q-dimensional n1×n2× … ×nq mesh are labeled 

by q-tuples x1x2…xq, wherexi (1 ≤xi≤ni) is the dimension-i 
address of the node. Each nodex =x1x2…xq is connected to up 
to 2q nodes whose labels differ from that of x by 1 in exactly 
one of the q dimensions. A q-dimensional torus is similarly 
defined, except that every node has exactly 2q neighbors due 
to the inclusion of wraparound links that connect the last 
node along each dimension to the first node. For example, 
node 1234, which is connected to nodes 2234, 1134, 1334, 
2244, 2224, and 2233 in a 4 × 4 × 4 × 4 mesh, is also 
connected to nodes 4234 and 1231 in the corresponding 4 × 4 
× 4 × 4 torus. Mesh and torus networks have been quite 
popular in modern supercomputers [1, 3]. 

The shortest path length in a q-dimensional mesh can be 
found by adding the distances of the destination node from 
the source node along each of the q dimensions. Thus, all that 
is required for finding an exact formula for ∆ is to have an 
exact formula for the average distance in a p-node linear 
array, also known as a p-path (Fig. 1).   
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Figure 1.  Linear array with p nodes (a p-path). 

   ∆p-path = (1/p2)Σ0≤j≤p–1[Σ0≤i≤j(j – i) + Σj≤i≤p–1(i – j)]                            (1) 

Recall that we include the 0-length path from each node to itself in calculating the average, hence the normalizing term 1/p2 
in the expression above, in lieu of the often-used 1/[p(p – 1)]. The two sums within the square brackets are sums of distances 
from node j to all to nodes to its left and right, respectively. Using the formulas for the sums of consecutive integers and their 
second powers, we obtain for p≥ 3:  

    ∆p-path = (1/p2)Σ0≤j≤p–1[j(j + 1) – j(j + 1)/2 + (p – j)(p – 1 + j)/2 – j(p – j)] (2) 

= (1/p2)Σ0≤j≤p–1[j2 – (p – 1)j + p(p – 1)/2] 

= (1/p2)[p(p – 1)(2p – 1)/6 – p(p – 1)2/2 + p2(p – 1)/2] 

= (1/3)(p – 1/p) 

The average internode distance in a q-dimensional n1×n2× … ×nq mesh is thus: 

    ∆qD-mesh = (1/3)[Σ1≤i≤q(ni – 1/ni)]                   (3) 

When the dimensions ni are large, the average internode distance in (3) is roughly one-third of the diameter in (4):  

DqD-mesh = Σ1≤i≤qni – q                                                   (4) 

The average internode distance and diameter for a p-ring are similarly derived in (5) and (6), again assuming p≥ 3, leading 
to the average internode distance and diameter for a q-dimensional n1×n2× … ×nq torus network in (7) and (8): 

   ∆p-ring= [p – (p mod 2)/p]/4                      (5) 
   Dp-ring= [p – (p mod 2)/p]/2                      (6) 

   ∆qD-torus= (1/4)Σ1≤i≤q[ni – (ni mod 2)/ni]                (7) 

DqD-torus= (1/2)Σ1≤i≤q[ni – (ni mod 2)/ni]                                     (8) 

Note that the average internode distance of a p-ring is p/4 when p is even and it is slightly less when p is odd. Note also that 
the ∆/D ratio for a ring or torus is always 1/2. 

3. Average Internode Distance in Binary Trees 
Deriving an exact formula for the average internode distance of a binary tree is much harder and, to the best of our 

knowledge, no such formula has been published. We characterize an n-node complete binary tree (Fig. 2) with the parameter 
m = n + 1 = 2l; we say that the tree has l levels, numbered from 1, for the root, up to l, for the leaves. So, Tm, m = 2l≥ 2, refers 
to an (m – 1)-node complete binary tree. The use of the power-of-2 parameter m in lieu of the network size n leads to some 
simplifications in mathematical derivations, as we will see shortly. 

 

Figure 2.  Complete binary tree architecture composed of root r, left subtree L, and right subtree R. 

First, some observations. Given that to get from a leaf node in the left subtree to another leaf node in the right subtree the 
path must go through the root node r, the diameter of Tm is:  

p 1 2 i 
. . . 
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Dbinary-tree = 2l – 2 = 2 log2m – 2                  (9) 

Intuitively, the average internode distance of Tm should be close to D, because each leaf node in the left (right) subtree is D 
hops away from each leaf node in the right (left) subtree. So, more than half of the n2 possible paths in Tm are of length D, with 
the others ranging in length from 0 to D – 1. 

We begin our derivation of ∆binary-tree by calculating the sum σ(Tm) of the lengths of the paths from the root r to every node 
in Tm.  

   σ(Tm) = 1×21 + 2×22 + … + (l – 1)×2l–1 = (l – 2)2l + 2         (10) 

                                                                                           = m log2m – 2m + 2  

Now Tm can be viewed as consisting of three parts: The root node r, the left subtree L, which is a Tm/2 with root node rL, and 
the right subtree R, also a Tm/2 with root node rR (see Fig. 2). To find the sum S(Tm) of the lengths of all paths in Tm, we note 
that each such path must begin and end in one of the 3 parts, creating a total of 8 cases (ignoring the ninth case of a null path 
from r to r). 

S(L, L) = S(R, R) = S(Tm/2)                             (11) 

S(r, L) = S(r, R) = S(L, r) = S(R, r) = m/2 – 1 + σ(m/2)    (12) 

S(L, R) = S(R, L) = (m/2 – 1)2[2 + 2σ(m/2)/(m/2 – 1)]      (13) 

= (m–2)σ(m/2) + (m–2)2/2                        (13) 

In (12), each of the m/2 – 1 paths is one hop longer than a corresponding path beginning at a subtree root. In (13), each of the 
(m/2 – 1)2 paths is two hops longer than the sum of two paths, one beginning at each of the two subtree roots. 
Substituting σ(m/2) = (m log2m)/2 – 3m/2 + 2 in S(Tm) = 2S(L, L) + 4S(r, L) + 2S(L, R) and simplifying, we arrive at the 
recurrence: 

S(Tm) = 2S(Tm/2) + m2 log2m – 2m2 + 2m             (14) 

The recurrence in (14) has a solution of the form: 

S(Tm) = am2 log2m + bm2 + cm log2m + dm + e            (15) 

Substituting in (14) and equating the coefficient of the terms of various orders on both sides, we arrive at a = 2, b = –6, c = 2, 
and e = 0, leading to:  

S(Tm) = 2m2 log2m – 6m2 + 2m log2m + dm          (16) 

Finally, from (16), d = 6 follows based on the initial condition S(T2) = 0. Thus, we arrive at the final solution (17) and average 
internode distance (18): 

S(Tm) = 2m2 log2m – 6m2 + 2m log2m + 6m                (17) 

   ∆(Tm) = (2m2 log2m – 6m2 + 2m log2m + 6m)/(m – 1)2           (18) 

= 2 log2m – 6 + 2(3m log2m – 3m – log2m + 3)/(m – 1)2 

Note that for very large m, the average internode distance of the (m – 1)-node complete binary tree Tm asymptotically 
approaches 2 log2m – 6, that is, 4 hops less than the diameter in (9); a rather counterintuitive result. As numerical examples, 
the average internode distance of 7-node, 15-node, 31-node, 63-node, … , and 1023-node complete binary trees are 1.959, 
3.271, 4.795, 6.482, … , and 14.026, respectively. The last figure is 3.974 less than the diameter 18 of the network. The ∆/D 
ratios for the trees just listed are 0.490, 0.545, 0.599, 0.648, … , and 0.779. As expected, the difference D – ∆ increases 
uniformly, approaching 4 rather quickly. The∆/D ratio increases and asymptotically tends to 1 as the tree size grows. Given 
the result just obtained for a 1023-node tree, in a highly parallel system having the binary tree architecture, D – 4 is a good 
estimate for the average internode distance ∆. 

Figure 3 depicts the parameters ∆ and D as functions of the number l of levels in the binary tree, confirming that the trend 
line for ∆ eventually becomes parallel to, and stays about 4 units below, the line for D. 
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Figure 3.  Average internode distance ∆ and diameter Dof an l-level binary tree as functions of l. 

4. Conclusion 
We have derived exact formulas for the average internode 

distance ∆ in q-dimensional meshes and complete binary 
trees. Previously, we have proven [6] that in a 
node-symmetric network, the two parameters ∆ and D are 
related by: 

D/2 ≤∆ ≤D               (19) 

Of course, neither meshes nor binary trees are 
node-symmetric, so, the fact that they don’t satisfy (19) isn’t 
surprising. Our results here indicate that whereas meshes do 
not quite satisfy the relationships in (19), they do satisfy the 
laxer relationship:  

D/3 ≤∆ ≤D                (20) 

Trees violate the relationship (19) only for very small 
network sizes (see Fig. 3), but their average-internode 
distance approaches the diameter asymptotically. In other 
words, given any arbitrarily small value ε, the following 
relationship holds for all but a finite number h(ε) of complete 
binary trees. 

(1 – ε)D<∆<D              (21) 

Overall, it is still true that in interconnection networks of 
practical interest, average internode distance and diameter 
are related to each other. 

We close by reiterating that network diameter, average 
internode distance, and other topological properties are not 
as unimportant as some researchers have claimed in the past. 
The space of possibilities for network architectures and 
associated routing algorithms is vast, the choice not being 
limited to low- versus high-dimensional meshes/tori and 
variations on wormhole switching [7-8], although these 
choices have been dominant in the recent past.As we 
continue to discover both new network topologies and novel 
interconnection technologies, optimality criteria and the 
optimal balance may change considerably. So, it is quite 
dangerous to generalize from a small number of high-level 
purely experimental studies. 
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