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PERSPECTIVES

G ene Amdahl presented his 
now-famous performance 
—or speedup—law in a 
short paper he wrote to 

defend high-performance uniproces-
sors against highly parallel systems, a 
debate that was later described as the 
few-elephants versus army-of-ants 
approaches to supercomputing. But 
his original formulation,1 while quite 
valid for the specific point he was try-
ing to make, has been contested2,3 and 
extended to take factors other than 
time-to-completion into account.4–7

Amdahl’s performance law is a 
very useful tool for imparting the notion that when a 
computational problem does not have unlimited paral-
lelism, the utility of a massively parallel solution might 
be quite modest—in other words, indivisible parts of a 
computational task will lead to all but one of the pro-
cessors remaining idle for extended time periods. Sub-
sequent to Amdahl’s original formulation, researchers 
have found the law, which quantifies the performance 
benefits of parallel processing, to be applicable to many 
other domains of system design as well.

Amdahl observed that if a program needs running 
time T = T1 on a uniprocessor, of which the fraction Tf 
(with f < 1) is spent on inherently sequential tasks and the 

remaining fraction T(1 – f) can benefit from parallelism, 
it will run in time Tp = Tf + T(1 – f)/p on a p-processor par-
allel system, assuming perfect parallelization with no 
overhead. In practice, there will be some overhead and 
resource waste, so the cited formula for Tp represents a 
best-case scenario. Thus, the speedup achieved will be
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As Figure 1 shows, the fact that the achieved speedup 
cannot exceed p with p processors is evident, although 
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even this seemingly obvious claim has 
been, rightly, challenged, citing cach-
ing effects or using the analogy that 
moving a heavy sofa can be done much 
more than four times as fast when using 
four movers instead of one.8 

Simply put, it does not pay to speed 
up one part of a computation when 
performance is limited by other parts. 
Amdahl’s contribution was the obser-
vation that the achieved speedup can-
not exceed 1/f, even if p tends to infinity. 
His formula suggests that for a program 
that spends 5 percent of its running 
time performing inherently sequential 
tasks, the parallel speedup that can be 
achieved is upper-bounded by 20, even 

on a parallel system with many thou-
sands of processors.

APPLYING AMDAHL’S LAW
It turns out that Amdahl’s law has a 
much broader domain of applicability 
than merely for parallel processing. 
Several authors, including this one,9 
have used examples such as the follow-
ing to show this generality. 

Let us assume that certain pro-
grams of interest spend 30 percent of 
their execution time on floating-point 
addition, 25 percent on floating-point 
multiplication, and 10 percent on 
floating-point division. Which of the 
three redesign options—making the 

adder twice as fast, making the mul-
tiplier three times as fast, or making 
the divider 10 times as fast—has the 
greatest impact on overall perfor-
mance, if we ignore the costs of the 
three options? Solving the engineer-
ing problem in this example entails 
a straightforward application of 
Amdahl’s performance formula, using 
1 – 0.3, 1 – 0.25, and 1 – 0.1 as the unaf-
fected fraction f of the computation, 
along with improvement factors 2, 3, 
and 10, respectively:
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Note that improving the more exten-
sively used operations can have a 
greater performance impact, even if the 
improvement is by a smaller factor.

The lesson to take away from study-
ing Amdahl’s law and examples such 
as the one above is that achieving high 
performance requires a balanced sys-
tem: improving one aspect of system 
performance (such as certain floating-
point operations in the example above) 
might have a limited impact on the 
overall performance.

In reliability, too, a similar maxim 
is often cited, namely, that reliability 
is a weakest-link phenomenon: a chain 
does not get stronger if you improve 
the strength of some links but make 
no change to the other links. Before 
embarking on a discussion of the 
reliability counterpart to Amdahl’s 
speedup formula, we need to know how 
to compare reliabilities.
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FIGURE 1. Performance enhancement. Speedup s as a function of the number of proces-
sors (or enhancement factor) p and the inherently sequential fraction of the computation (or 
the part of a system unaffected by performance-motivated redesign) f.
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FIGURE 2. Comparing reliabilities. For two candidate systems, mission-time improvement 
at a fixed reliability r, reliability improvement at a fixed mission time T, and mean-time-to-
failure (MTTF) improvement constitute possible comparison yardsticks.
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COMPARING SYSTEM 
RELIABILITIES
As Figure 2 indicates, there are many 
ways to compare reliabilities, but we 
focus on two in this discussion. One 
is the mean time to failure (MTTF), 
which in the special case of a system 
having failure rate λ with exponential 
reliability R = e–λt (often assumed) is 
1/λ. For two systems having failure 
rates λ1 and λ2, the MTTF improve-
ment factor (MTTFIF) of system 2 over 
system 1 is

MTTFIF2/1 = MTTF2/MTTF1 = λ1/λ2.

Thus, halving the failure rate doubles 
the MTTF and leads to an MTTFIF of 2.0.

A second comparative measure10 is 
the reliability improvement index (RII), 
defined as

RII2/1 = ln R1/ln R2.

The motivation behind defining the 
RII is that for systems of practical inter-
est, the reliability is always very close 
to 1 so that neither reliability difference 
(RD) R2 – R1 nor reliability ratio (RR) R2/
R1 provides good discrimination among 
systems. Consider, for example, three 
systems with reliabilities R1 = 0.99,  
R2 = 0.999, and R3 = 0.9999. We have 
RD2/1 = 0.009, RD3/2 = 0.0009, and  
RD3/1 = 0.0099, which are all fairly 
small numbers with insignificant 
variation. Similarly, RR2/1 = 1.0091,  
RR3/2 = 1.0009, and RR3/1 = 1.0100 are 
all close to 1, again providing insuf-
ficient discrimination. On the other 
hand, RII2/1 ≈ 10.05,  RII3/2 ≈ 10.00, and  
RII3/1 ≈ 100.5 properly reflect significant 
differences in reliabilities.

Note that the two measures MTTFIF 
and RII coincide in the case of systems 

with exponential reliability formulas 
because for such systems, ln R = –t/MTTF.

AMDAHL’S RELIABILITY LAW
According to the arguments to follow, 
Amdahl’s reliability law states that 
when you improve the failure rate for 
parts of the system, accounting for a 
fraction 1 – f of system complexity, by 
a factor p, then the overall improve-
ment achieved is not only less than p, as 
expected, but it cannot exceed 1/f also. 
For example, if only half the system is 
improved, then the overall improve-
ment cannot exceed 2.0, regardless of 
the improvement factor p.

Let a system with an overall failure 
rate λ, or exponential reliability equa-
tion ROriginal = e–λt, consist of parts 1 
and 2 having failure rates λf and λ(1 – f), 
respectively. If part 1 is left unchanged 
and part 2 is improved to have a lower 
failure rate λ(1 – f)/p, the new overall 
failure rate will be γ = λ[f + (1 – f)/p], 
with an associated reliability equation 
RImproved = e–λ[f + (1 – f)/p]t. The RII is thus
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As noted earlier, the MTTF improve-
ment factor is characterized by the 
same formula:

f f p
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It is quite interesting that a formula 
developed to expose the pitfalls of 

parallel processing when applications 
exhibit limited parallelism can be used 
to broadly assess the importance of bal-
ance in attaining high performance or 
reliability—as well as in formulating 
other design, scheduling, and manage-
ment paradigms.

Just as we have a generalized form of 
Amdahl’s performance law that envis-
ages performance improvements of 
various magnitudes in different parts of 
the system, we can formulate a general-
ized form of Amdahl’s reliability law. If 
n different parts of our system account-
ing for the fractions λfi of the total fail-
ure rate λ, with f1 + f2 + … + fn = 1, are 
improved by the corresponding factors 
pi, then the overall improvement is

=

+ + +
f
p

f
p

f
p

RII 1

... n

n

General
1

1

2

2

.

We would use the performance ver-
sion of this formula if we carried out 
all three improvements in our example 
with floating-point operations at once, 
leading to

=
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1.69.

Improved-all-flp-units

 

Similarly, if the failure rates for var-
ious parts of a system are improved by 
different factors, the formula above for 
RIIGeneral yields the resulting reliability 
improvement index.
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Formulating the age-old maxim 
that reliability is a weakest-link 
phenomenon via the introduc-

tion of Amdahl’s reliability formula is 
beneficial for putting the maxim on 
a quantitative footing and making it 
more believable to students and practi-
tioners of reliability engineering. This 
is another example of the extremely 
wide applicability of Amdahl’s law 
beyond computer performance model-
ing and parallel system speedup.

A particularly promising area for 
future work would be bringing the cost 
of improved reliability into consider-
ation alongside the generalized form of 
Amdahl’s reliability formula. There are 
many possibilities  for the cost function 
C(fi, pi), depending on how cost rises 

with the improved part’s complexity 
and the extent of improvement—for 
example, linear and superlinear func-
tions of pi, as well as general functions 
specified in tabular form. Standard 
optimization procedures would be 
useful in determining how to allocate 
a reliability improvement budget for 
each of the n parts. 
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