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Abstract—Carry computation is a most important notion in 
computer arithmetic, because it dictates the speed of addition, 
which is in turn vital to high-speed computation, both as a 
directly used primitive and as a building block for synthesizing 
other operations. The theory of fast addition is well-
established, but from time to time, changes in technology 
necessitate a reassessment of strategies for carry network 
implementation, even though the logical functions to be 
realized remain the same. We study the implications of the 
availability of simple, fast, and power-efficient majority gates 
(in technologies such as quantum-dot cellular automata, single-
electron tunneling, tunneling phase logic, magnetic tunnel 
junction, and nanoscale bar magnets) to the design of carry 
networks, offering a reformulation of the carry recurrence that 
allows for building carry networks exclusively out of fully 
utilized majority elements. We compare our novel 
implementations based on 3-input majority elements to prior 
proposals based on these elements, demonstrating advantages 
in both speed and circuit complexity.  

Keywords- Carry network; Carry recurrence; Fast adder; 
Lookahead; Majority logic; Parallel-prefix adder    

I.  INTRODUCTION  
Notions of fast addition and the associated circuitry for 

carry computation were developed very early in the history 
of digital arithmetic [1]. Charles Babbage fiddled with the 
idea of reducing the propagation penalty of ripple-carry 
addition by devising mechanisms for carry anticipation [2]. 
More than five decades after its modern inception in 
electronic implementation of binary arithmetic [3], the notion 
of carry computation via look-ahead techniques is still being 
refined, both theoretically (in terms of parallel-prefix 
formulations) and with regard to extension and fine-tuning 
for use with emerging technologies as well as to 
accommodate newer optimization criteria (of which VLSI 
layout area and energy efficiency are the most notable 
examples). Fast addition can be performed by means of 2-
way or multi-way combining of carry generation and 
propagation information from blocks of the (not necessarily 
binary) operands. Two-way combining leads to the least 
complex carry operator block, but uses both more of such 
blocks and a larger number of levels in the carry network. 
Further expanding the design space is the fact that the carry 
network can be designed in many different ways. 

An interesting taxonomy for parallel-prefix carry 
networks, which only partially covers the full design space, 
was proposed by Harris [4], where alternative designs for a 
k-bit adder entail choices of values for trade-off parameters 
f, t, and l, where gate fan-out is 2f + 1, number of wire tracks 
is 2t, and number of circuit-block levels is �log k� + l.  

All aforementioned designs use AND and OR gates for 
implementing the carry operator. To further expand on the 
available options, use of multiplexers and other kinds of 
building blocks has been investigated [5]. Essentially, new 
technologies bring with them more/less optimal realizations 
of certain building blocks, thus necessitating a fresh look at 
carry networks and other circuits of interest to see if the 
capabilities and limitations of the new technology can be 
accommodated to improve the design. A blind mapping of 
existing designs to new technologies often leads to 
suboptimal designs, even if the mapped implementation 
does offer improvements. 

Quantum-dot cellular automata (QCA) is a new 
technology with broad computational potential [6-7] that 
requires fundamental reassessment of how we perform 
arithmetic. There are other technologies with properties and 
potential similar to QCA, although we have not examined 
them in detail yet. Single-electron integrated circuits [8], 
computational use of nanomagnets [9], and molecular 
computing [10-11] are some examples. Full-adder blocks 
and simple adders have been designed with QCA [12-16], 
but there is no indication whether these are optimal designs 
or just feasible ones produced either manually or by means 
of design tools. On the other hand circuit design 
methodologies, based on majority gates, have been studied 
for developing QCA circuits with at most three input 
variables (e.g., [17-18]).  

All these technologies, and a few others reviewed briefly 
in Section III and in the Appendix, allow efficient 
realization of majority gates, so a natural question, tackled 
in this paper, is whether one can formulate the carry 
computation directly in terms of majority logic, rather than 
trivially translate existing designs by letting partially 
utilized majority elements perform AND as M(0, x, y) and 
OR as M(1, x, y), where M denotes the 3-way majority 
function (see also the end of Section II). 

Majority elements, as well as techniques for synthesizing 
logic functions using such gates, have a long history. 
Majority with n inputs is a special case of a threshold 
function, with unit-weight inputs and a threshold value of   
�(n + 1)/2�. During its 70-year history, threshold logic has 
been revisited from time to time in connection with a 
multitude of technologies [19]. Early interest revolved 
around neural networks and neuronlike computational 
elements [20]. Subsequent designs were realized in several 
technologies and entailed capacitance- and inductance-based 
solutions, among others [21]. 
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II. PARALLEL CARRY GENERATION 
Consider the n -bit addition with c0 = cin, viz. 1 1 0...na a a−  

1 1 0 1 1 0... ...n in out nb b b c c s s s− −+ + = . Eqn. set 1 defines the 
required sum ( )is and carry 1( )ic + bit-operations, where ⊕  
and ∨ denote the binary exclusive and inclusive OR, 
respectively. 

i i i is a b c= ⊕ ⊕ , ( ) ( )1 0 1i i i i i ic a b a b c i n+ = ∨ ∨ ≤ ≤ −     (1) 
Because 1ic + is either produced in position i by the 

generate signal i i ig a b= , or is the same as ic , when it 
propagates over position  (if the propagate signal 

i i ip a b= ∨  permits), it can also be expressed as in Eqn. 2. 

1i i i ic g p c+ = ∨            (2) 
Likewise, 2ic +  can be expressed in terms of 1ic + , and 

ic as in Eqn. 3, where 1: 1:( )i i i iG P+ +  indicates the generation 
(propagation) of carry within (over) positions i and 1i + . 

2 1 1 1 1 1 1

1: 1:

i i i i i i i i i i

i i i i i

c g p c g g p p p c
G P c

+ + + + + + +

+ +

= ∨ = ∨ ∨
= ∨

               (3) 

Realization of a generalized version of the latter equation 
has led to fast parallel prefix carry generation networks 
(CGN), where the key operation is expressed by Eqn. 4. For 
example, Kogge-Stone (KS) and Ladner-Fischer (LF) 
parallel-prefix networks [1] (refer to Figs. 14 and 15 in 
Section IV), use 2-bit wide instances of Eqn. 4. 

( ) ( ): : : : 1: : 1:, ,i j i j i k i k k j i k k jG P G P G P P− −= ∨              (4) 

A. Carry circuit as a majority gate 
Because 1 1ic + =  iff at least 2 of the 3 bit-variables ia , 

ib , and ic  are 1, the carry operation within Eqn. set 1 can 
also be expressed as in Eqn. 5. 

1 ( , , )i i i ic a b c+ = Μ           (5) 
Likewise, 2ic + can be expressed as in Eqn. 6, with 

two Μ gates in the critical delay path (CDP) ic to 2ic + . Perri 
et al. [22] have shown that the number of Μ gates in the ic -
to- 2ic + CDP can be reduced to one, as is evident by the 
easily-proven Eqn. set 7. Note that this speed up is at the cost 
of three extra Μ gates (i.e., a total of five), two of which are 
partially utilized. Fig. 1 depicts the required logic, where 
each solid (dashed) building block represents a fully 
(partially) utilized Μ gate. 

2 1 1( , , ( , , ))i i i i i ic a b a b c+ + += Μ Μ           (6) 
( , ,1)i i ip a b= Μ  
( , ,0)i i ig a b= Μ  

2 1 1 1 1( ( , , ), ( , , ), )i i i i i i i ic a b p a b g c+ + + + += Μ Μ Μ                (7) 
Besides the majority-based carry equation, the sum bit 

can be also expressed via majority function as in Eqn. 8, 
where overlined expressions denote logical inversion, and 

2ic +  is derived via Eqn. 5. 

1( , ( , , ), )i i i i i is c a b c c+= Μ Μ                       (8) 
 

a

0

1

bia b ii+1 i+1

gipi

pi gi

ci

ci+1ci+2  
Figure 1.  Two-bit Μ -based carry generation [22] 

 
Other existing Μ -based parallel CGN are due to 

references [14-15]. The pertinent architecture for 8n = [15], 
is depicted in Fig. 2 (with conventional ( , )G P  notation and 
complete carry generation), where 29 Μ gates are used in 5 
levels. In particular, 7c and 8c , required (based on Eqn. 8) 
for 7 8 7 7 7 7( , ( , , ), )s c a b c c= Μ Μ  are delivered in level 5. That 
is the CDP for the most-significant bit of sum passes through 
7 Μ gates. 

In both of the latter works, the conventional propagate 
and generate signals are produced via partially 
utilized Μ gates (i.e., with one constant input). In fact, a 
straightforward mapping of Fig. 7 to an Μ -based CGN, 
would replace each AND and OR with its 
equivalent Μ element, which leads to 7 Μ gates in the 
corresponding CDP and a total of 73 Μ  boxes in the circuit. 
Therefore, the advantages of design of Fig. 2 (i.e., reducing 
the latter two figures of merit to 5 and 29, respectively) are 
considerable. In Section IV, we propose a log n� �� � -level 
(e.g., 3 levels for 8n = ) Μ -based parallel CGN composed 
solely of fully utilized Μ  building blocks. 

III. EMERGING Μ -BASED TECHNOLOGIES 
As noted in Section I, equally weighted majority function is 
a special case of threshold logic gates with weighted inputs. 
The CMOS realization of a majority gate with three Boolean 
inputs a , b  and c  yields ( , , ) ( )a b c a b c abΜ = ∨ ∨ , b .  
   Clearly, Μ  elements can be realized in other technologies 
via direct replacement of the AND and OR pairs in the 
expression above with their equivalents in the target 
technology. However, Μ  is more attractive in some new 
technologies, where it can be realized far more efficiently. 

The 3-input majority function can also be defined by the 
arithmetic expression ( , , ) ( 1) / 3a b c a b cΜ = + + +� �� � , and it 
can be viewed as the median function. The following four 
properties of 3-input majority/median function, when used as 
axioms, define a median algebra: 

( , , )a b b bΜ =  
( , , ) ( , , )a b c a c bΜ = Μ ;      ( , , ) ( , , )a b c c a bΜ = Μ  
( ( , , ), , ) ( , , ( , , ))a x b x c a x b x cΜ Μ = Μ Μ  
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Figure 2.   Five-level 8-bit parallel CGN [15]; dashed Μ gates are partially 
utilized, shaded ones define the CDP 

 

  
Null “1” “0” 

Figure 3.  Three QCA cell configurations 
 

 
(1,1,0) 1Μ =  (0,1,0) 0Μ =

Figure 4.  Two QCA Μ gates 
 

 
Figure 5.  A robust QCA Inverter 

 

A. Quantum-dot cellular automata (QCA) 
The basic QCA cell contains four electron place-holders 

(often called dots), where two injected electrons can assume 
one of the slash and backslash configurations, as in Fig. 3, 
which is borrowed from [23]. QCA realization of the Μ  
gate is depicted in Fig. 4, and that of an inverter in Fig. 5. In 
fact, these two gates constitute a complete logic set, since 
AND and OR functions can be expressed in terms of 
majority gate. For example, direct QCA realization of a 7-
gate full adder (FA) requires 7 partially utilized Μ gates, 
while based on Eqns. 5 and 8, it can be realized via 3 fully 
utilized Μ gates and 2 inverters. 
 

B. Other majority-friendly technologies 
Other emerging technologies that are either based on 

majority gates or lead to better circuit designs with such 
gates include Single-electron tunneling (SET), Tunneling 
phase logic (TPL), Magnetic tunnel junction (MTJ), and 
Nano-scale bar magnets (NBM). A brief survey is presented 
in the Appendix. 

IV. SCALABLE CGNS WITH FULLY UTILIZED Μ  GATES 
Recall Eqn. 6, representing the cost optimized 2- Μ  2-bit 

carry expression, and the delay optimized 5- Μ  (only one 
Μ  within the CDP) Eqn. 7. A compromise solution is 
described below in Eqn. 9, where 1- Μ  delay 2-bit carry 
expression is achieved with a cost of 3 Μ  gates. 

2 1 1 1 1( ( , , ), ( , , ), )i i i i i i i ic a b a a b b c+ + + + += Μ Μ Μ          (9) 
 

Justification of this equation follows. 
2 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

( )
(g )( ) ( )

( , ,

i i i i i i i

i i i i i i i i i i i

i i i i i i i i i i i i i i

i i i i i i i i i i i i i

i i i i i i i

c g g p c p p
g g p g p p c p p g c
g p a b g p a g p b g p p c

p a g p b g p a g p b c
g p a g p b c

+ + + +

+ + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + +

= + +
= + + + +
= + + + + +
= + + + + + +
= Μ + +

1 1 1 1

)
( ( , , ), ( , , ), )i i i i i i ia b a a b b c+ + + += Μ Μ Μ

Recalling Eqn. 9, let 1: 1 1( , , )i i i i iA a b a+ + += Μ and 

1: 1 1( , , )i i i i iB a b b+ + += Μ . Then, 2ic +  can be expressed as in 
Eqn. 10, which is actually a composite extension of 

1 ( , , )i i i ic a b c+ = Μ  and 2 1 1 1( , , )i i i ic a b c+ + + += Μ , where 1:i iA +   
and 1:i iB +  represent the radix-4 input digits 1i ia a+  and 1i ib b+  
in carry generation. This concept can be further extended to 
higher-radix carry generation, as described and proven in the 
definition, lemma, and theorems that follow. 

2 1: 1:( , , )i i i i i ic A B c+ + += Μ         (10) 
Definition 1 : : : 1: :( , ) : ( , , ),j i j i j i j j j i j iA B A a b A B−= Μ =  

1:( , , )j j j ia b B −Μ � 
Lemma 1 : : : : : : -1: -1:( , ) :j i j i j i j i j i j i i j j i j iA B A B A B g p A B+ = + , 

and : : 1: 1:( )j i j i i j j i j iA B g p A B− −+ = + +  for j i> . 
Proof: : : 1: 1:( , , ) ( , , )j i j i j j j i j j j iA B a b A a b B− −= Μ Μ =

1: 1: 1: 1:(g )( ) .i j j i i j j i i j j i j ip A g p B g p A B− − − −+ + = +   

: : 1: 1:( ) ( )j i j i i j j i j j j iA B g p A g p B− −+ = + + +

1: 1:( )i j j i j ig p A B− −= + + .�  
 

Theorem 1 (Radix- 2 j carries): 1 : :( , , )i j i j i i j i ic A B c+ + + += Μ     
Proof: The proof is by induction on j . 

Base ( 0)j = : 1 : :( , , ) ( , , ).i i i i i i i i ic a b c A B c+ = Μ = Μ  
Induction step: : j 1: 1:( , , ).i j i i i j i ic A B c+ + − + −= Μ  

1 1: 1:( , , )i j i j i j i j i j i j i j i i j i ic g p c g p A B c+ + + + + + + + − + −= + = + Μ   

1: 1: 1: 1:( ( ) )i j i j i j i i j i i j i i j i ig p A B A B c+ + + − + − + − + −= + + +  

1: 1: 1: 1:( ) ( ( ) )i j i j i j i i j i i j i j i j i i j i ig p A B g p A B c+ + + − + − + + + − + −= + + + + . 
The proof can be completed from the latter by 

appropriate substitution, per Lemma 1: 
1 : : : : : :( ) ( , , )i j i j i i j i i j i i j i i i j i i j i ic A B A B c A B c+ + + + + + + += + + = Μ . � 

For example, in radix 8, we have the digits 2 1i i ia a a+ +  and 

2 1i i ib b b+ + , with 3ic +  expressed as: 

3: 3:( , , )i i i i iA B c+ +Μ =

2 2 1: 2 2 1:( ( , , ), ( , , ), )i i i i i i i i ia b A a b B c+ + + + + +Μ Μ Μ  . 
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Theorem 2 (Associativity of the Μ operation): 
: : : 1:( , , )k j i k j j k j j j iA A B A+ + + −=Μ , : : : 1:( , , )k j i k j j k j j j iB A B B+ + + −= Μ  . 

Proof: We provide the proof only for :k j iA + , using induction 
on k . The proof for :k j iB +  is similar. 

Base ( 0)k = , is obvious by Definition 1. 
Induction step: 1 : 1 : 1 : 1:( , , )k j i k j j k j j j iA A B A− + − + − + −= Μ .  

: 1 : 1 :

1 : 1 : 1: 1:

1 : 1 : 1 : 1 : 1:i

( , , )
( , , )

( ( ) )

k j i k j k j k j i k j k j k j i

k j k j k j j k j j j i k j k j j i

k j k j j k j j k j j k j j j

A a b A g p A
g p A B A g g A

p A B A B A

+ + + − + + + − +

+ + − + − + − + + −

+ − + − + − + − + −

= Μ = + =
+ Μ = +

+ + +
  

1 : 1 : 1:( ( ))k j k j k j j k j j j ig p A B A+ + − + − + −= + + . 
With proper replacements based on Lemma 1, we arrive at 
 : : : : : 1:i( )k j i k j j k j j k j j k j j jA A B A B A+ + + + + −= + +  

: : 1:( , , )k j j k j j j iA B A+ + −= Μ .� 
For example, consider radix-16, 4-bit operand digits and 

the following expression for 4ic + : 

4: 4:( , , )i i i i iA B c+ +Μ =  

3: 2 3: 2 1: 3: 2 3: 2 1:( ( , , ), ( , , ), c )i i i i i i i i i i i i iA B A A B B+ + + + + + + + + +Μ Μ Μ . 
Note that for 0j > , the i i jc c +−  path goes through only 

one M gate. Therefore, the 4 equations derived for ci+1, ci+4, 
ci+3, and ci+4, can serve as basic equations for  a carry-
lookahead (CLA) logic block with blocking factor of 4, 
where the CDP travels through 3 Μ  levels, while the total 
cost is 12 Μ  gates.  

There are instances of twin majority functions with 
identical first parameters, and also identical second 
parameters. See, for example, Eqn. 9, Definition 1, and 
Theorem 2. Therefore, it seems useful to formally define this 
concept.  

Definition 2 (Twin majority gate, ΤΜ ): Let ( , )l lA B  
and ( , )r rA B  denote arbitrary pairs per Definition 1. The 
twin majority function, ( , )A B , is defined as 

( , , )l l rA A B A= Μ and ( , , )l l rB A B B= Μ . The ΤΜ  function 
is given the symbolic representation depicted in Fig. 6. � 

To set up a 16-bit CGN, we can use four of the latter 
CLA blocks, in parallel, to generate the required ( , )A B  
pairs 3: 3:( , )i i i iA B+ + , 7: 4 7: 4( , )i i i iA B+ + + + , 11: 8 11: 8( , )i i i iA B+ + + + , and 

15: 11 15: 11( , )i i i iA B+ + + + , that can serve as inputs to another block 
which generates, among others, 7: 7:( , )i i i iA B+ + , 

11: 11:( , )i i i iA B+ + , and 15: 15( , )i i i iA B+ +  pairs. The required carries 

1ic +  to 16ic +  can then be generated, for 1 16j≤ ≤ , as 

1 : :( , , )i i j i i j i ic A B c+ + += Μ . 
 

(A,B)

(Ar,Br)(Al,Bl) AlAr Br

A B

Bl

� 

Figure 6.  Notation for, and structure of, the ΤΜ  gate 

Parallel-prefix-like CGNs can be readily set up, as 
discussed in the following subsection dealing with designs 
based on KS and LF parallel prefix networks. 

A. KS-like and LF-like parallel CGNs built of Μ  gates only 
Figs. 7 and 8 depict n -bit ( 8n = ) KS-like and LF-like 

parallel-prefix networks, respectively, for possibly nonzero 
carry-in inc , where square boxes provide ip  and ig  signals, 
and the black circles (organized in log n� �� �  levels) represent 
2-bit wide instances of Eqn. 4. Note that the required carries 
for the target 8-bit sum bits (i.e., 7 0s s− ) are 7c  to inc  that 
are all available after 3 levels at the latest. Also outc  becomes 
available at the same time as 7s , since the former is ready at 
the forth level (2 gates after 7c ) and the latter one XOR level 
(i.e., 2 gates) after 7c . 

Figs. 9 and 10, corresponding to Figs. 7 and 8, 
respectively, represent KS-like and LF-like CGNs that are 
built only from majority gates. The ΤΜ ( )Μ gates yield all 
the required : :( , )k j k jA B pairs (carry signals). For example, 
Fig. 9 contains 11 ΤΜ  and 8 ΤΜ  gates, leading to the 
overall circuit complexity of 30 Μ  gates, all fully utilized. 

The corresponding carry equations and the number of Μ  
gates on the CDP are shown in Table I, for n = 8 and n = 16. 
Also, the number of parallel prefix nodes (PPN) is shown for 
each carry of Fig. 7. Note that the total PPN counts in the 
KS-like AND/OR case of Table I do not include the 8 and 16 
(g, p) generation nodes. 

The LF parallel prefix CGN is known for reduced 
number of PPNs at the cost of high fan-out, which is 
therefore, rather impractical with current implementation 
technologies. However, they can be more attractive in some 
emerging technologies (e.g., QCA), where high fan-out can 
be accommodated via different cells in different clock zones 
of the same wire [24-25]. 

The only M-based LF carry-network design that we have 
encountered [14] uses 54 M gates for 8-bit CGN and its 
CDP passes through 6 Μ  levels. However, our proposed 
ΤΜ -based LF-like CGN, with possibly nonzero carry-in, as 
depicted in Fig. 10, contains only 20 M gates with 4 M 
levels in the CDP of both c7 and cout.  

More generally, our design scheme leads to 1 log n+ � �� �  
levels of M gates on the CDP and a total M-count of 

log 4n n +� �� � . 
Extension of the proposed KS-like design to 16-bit M-

based CGN, shown in Fig. 11, helps with the understanding 
of the network structure and its scalability to larger sizes. 

Note that in Fig. 11, the final internal carry c15 (i.e., the 
required carry for obtaining the most significant sum bit) is 
delivered after 4 M levels. Similarly, the c31 of a 32-bit 
CGN will be ready in 5 M levels, while the design of [15] 
requires at least 10 M levels for a carry network of this size. 
Note that the cout production requiring one more M level 
does not delay the delivery of the most significant sum bit 
(see Eqn. 8). 

11



c1c2c3c4c5c6c7

cout

(a1,b1) (a0,b0)(a2,b2)(a3,b3)(a4,b4)(a5,b5)(a6,b6)(a7,b7) (cin,1)

c 1c2c3c4c5c6c7cout

(a1,b1) (a0,b0)(a2,b2)(a3,b3)(a4,b4)(a5,b5)(a6,b6)(a7,b7) (cin,1)

Figure 7.  KS-like 8-bit parallel prefix CGN with inc  Figure 8.  LF-like 8-bit parallel prefix CGN with inc  

TABLE I.  8- AND 16-BIT Μ -BASED AND PPN CARRY EXPRESSIONS 

ic   Μ -based 
carries 

# of Μ s KS-like 
carries 

# of PPNs 
Sub 
total CDP Sub 

total CDP 

1c   0 0( , , )ina b cΜ  1 1 0 0( , )
( ,1)in

g p
c�  1 1 

2c  1:0 1:0( , , )inA B cΜ  3 2 1:0 1:0( , )
( ,1)in

G P
c�  2 2 

3c  2:1 2:1 1( , , )A B cΜ  3 2 2:1 2:1

1

( , )
( ,1)
G P

c�  2 2 

4c   3:2 3:2 2( , , )A B cΜ  3 3 3:2 3:2

2

( , )
( ,1)
G P

c�   2 3 

5c  4:1 4:1 1( , , )A B cΜ  5 3 4:1 4:1

1

( , )
( ,1)
G P

c�  3 3 

6c   5:2 5:2 2( , , )A B cΜ  5 3 5:2 5:2

2

( , )
( ,1)
G P

c�  3 3 

7c   6:3 6:3 3( , , )A B cΜ  5 3 6:3 6:3

3

( , )
( ,1)
G P

c�
 3 3 

8c   7:4 7:4 4( , , )A B cΜ  5 4 7:4 7:4

4

( , )
( ,1)
G P

c�
 3 4 

Total  30 4  19 4

9c   8:1 8:1 1( , , )A B cΜ  7 4 8:1 8:1

1

( , )
( ,1)
G P
c�

 4 4 

10c   9:2 9:2 2( , , )A B cΜ  7 4 9:2 9:2

2

( , )
( ,1)
G P

c�
 4 4 

11c   10:3 10:3 3( , , )A B cΜ  7 4 10:3 10:3

3

( , )
( ,1)
G P

c�
 4 4 

12c   11:4 11:4 4( , , )A B cΜ  7 4 11:4 11:4

4

( , )
( ,1)
G P

c�  4 4 

13c   12:5 12:5 5( , , )A B cΜ  7 4 12:5 12:5

5

( , )
( ,1)
G P

c�
 4 4 

14c   13:6 13:6 6( , , )A B cΜ  7 4 13:6 13:6

6

( , )
( ,1)
G P

c�
 4 4 

15c   14:7 14:7 7( , , )A B cΜ  7 4 14:7 14:7

7

( , )
( ,1)
G P

c�
 4 4 

16c   15:8 15:8 8( , , )A B cΜ  7 5 15:8 15:8

8

( , )
( ,1)
G P

c�
 4 5 

Total  56 5  32 5
Grand 
total  86 5  51 5 

 
In general, for an n-bit adder, the CDP of KS-like Μ -

based CGN passes through log n� �� �  levels of Μ  gates, and 
the carry network has an overall Μ -gate count of 
2 log 3 6n n n− +� �� � . 

B. QCA Implementation 
To demonstrate the feasibility of our proposed designs, we 
implemented the CGN of Fig. 10 via the QCADesigner 
[26], with the associated layout depicted in Fig. 12, where 
color is used to convey the different clock zones. For 
example, the 4inc c−  path goes through the Green, Violet, 
Blue, and Gray clock zones, where the two CDP majority 
gates can be seen as a 5-cell blue cross (right after the violet 
wire) and the 5-cell gray cross.  

The latest carry signal (i.e., 8c ) is delivered after 6 clock 
zones, while the similar circuit design of [13] and the 
custom design of [15] both require 9 clock zones. 

    The I/O pattern related to Fig. 12, for eight different 8-
bit input pairs is seen in Fig. 13. For example, the 
hexadecimal addition 55 inAA c+ +  (i.e., the binary addition 
01010101 10101010 1+ + ), leads to 7 1 11111111c c− = , 
which appear highlighted in Fig. 12. 

V. CONCLUSION 
Our primary contribution in this paper is a formulation of 

the carry recurrence directly in terms of majority gates, using 
the ΤΜ -gate parallel-prefix operator that possesses the 
important associativity attribute, and thus lends itself to the 
synthesis of parallel-prefix networks in a manner similar to 
those used with today’s more conventional circuit 
technologies. 

Our proposed designs are applicable to several emerging 
technologies (including QCA, SET, TPL, MTJ, and NBM) 
that offer efficient realization of majority gates.  

In addition to the formal derivation of the carry 
recurrence using only fully utilized Μ gates, we 
demonstrated fast carry-network implementations by means 
of LF-like and KS-like parallel-prefix networks that exhibit 
the same attributes as the original Ladner-Fischer and 
Kogge-Stone designs. 
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Figure 9.  8-bit KS-like CGN with fully utilized Μ gates Figure 10.  The proposed M-based LF-like parallel CGN 
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Figure 11.  The 16-bit KS-like CGN with fully utilized Μ gates 
 
 

Given that prior fast-adder designs exist for QCA, we 
focused on implementing our ideas in QCA technology to 
facilitate comparisons. A key to greater efficiency in our 
approach is the full use of Μ -gate inputs, in contrast to 
partial use that results when emulating AND and OR gates. 

This work constitutes a beginning in the efficient use of 
majority-friendly technologies for realizing fast arithmetic 
circuits. Not all results derived with QCA will carry over 
directly to other majority-friendly technologies surveyed in 
the Appendix and others that may emerge in future.  

Layouts and some other circuit implementation details 
will no doubt vary, creating a need for optimizations in each 
case. However, unless serious unanticipated overheads arise 
in the course of implementation and optimization, we expect 
that similar advantages will accrue in these other cases as 
well. We plan to pursue improvements and fine-tuning of 
our QCA designs and to investigate the extent to which the 
designs carry over to other majority-friendly technologies 
and associated implementation styles.  
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Figure 12.  A QCA realization of the LF-like adder of Fig. 10 

Figure 13.  Sample I/O for Fig. 12 
 

An intriguing possibility for future investigation is to 
consider the incorporation of reliability features [27] using 
triple-modular redundancy with voting, given that the 
required voting element is essentially a single Μ  gate. 

APPENDIX: NEW Μ -GATE BASED EMERGING TECHNOLOGIES 

A. Single-electron tunneling (SET) 
Single-carrier electronics offers the ultimate in 

compactness and energy efficiency. The technology allows 
for controlled transfer of individual electrons, using the 
single-electron tunneling phenomenon, hence the name. In 
order to use this technology for computation, it is necessary 
to demonstrate feasible logic gates, and this has been done 
successfully for majority elements [28]. 

Figure 14 shows the majority circuit along with an 
inverter that is needed to make the set universal. 

Inputs
a

b

c

a(a,b,c) a

Figure 14.  SET circuits for Μ  (left) and inversion (right) [28] 

B. Tunneling phase logic (TPL) 
In this technology, several capacitively coupled inputs 

feed a load capacitance (Figure 15), which under the right 
conditions can realize the 3-input minority function [29, 30]. 
The output of a minority element is the inverse of one input 
when the other two inputs are opposites of each other, thus 
the element can also serve as an inverter. The same structure 
can form the basis for 3-input NAND and NOR gates. 

C. Magnetic tunnel junction (MTJ) 
MTJ is one of the new spintronics technologies which is 

based on devices with two ferromagnetic thin-film layers, 
free and fixed, separated by an oxide-tunneling barrier. The 
fixed layer’s magnetization is not easily changeable, whereas 
the free layer can change magnetization readily to align itself 
with, or be opposite to, that of the fixed layer, forcing the 
resistance of the junction to become low or high, which in 
turn allows the representation of a bit [31-32]. Fig. 16 shows 
how two of these elements constitute an Μ  gate.  

Cl
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k 
2

Pu
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a b c

(a
,b

,c
)

Figure 15.  Basic TPL gate [30] 
 

WE
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cba

cba cba

cba

cba

+I

-I
�

Figure 16.  Majority gate in MTJ logic [32] 
 

 

Figure 17.  Two types of nanomagnet wires 
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Figure 18.  Voting with nanomagnets 
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D. Nano-scale bar magnets (NBM) 
The use of nanomagnets as computational elements [9] 

was pursued as a way of overcoming some difficulties with 
QCA. Computing with magnetic elements actually dates 
back to the early days of digital technology, the new aspect 
here being the minute size of the magnets. The magnetic 
directions can be horizontal (on the surface) or vertical 
(perpendicular to the surface), with the latter option bearing 
some advantages. The primary benefits of computing with 
nanomagnets are their extreme energy efficiency and lack of 
need for latches in pipelining, due to the built-in non-volatile 
storage capability. However, this approach is no match for 
silicon-based technologies in terms of computation speed. 
Two types of nanomagnet-based wires are shown in Fig. 17 
and four voting instances appear in Fig. 18, where the output 
on the right is actually the complement of the majority value. 

E. Other technologies 
We refrain from describing biological embodiments of 

the majority function, which form a basis for neural 
computation in human and animal brains [11]. It appears that 
majority (or 2-out-of-3 agreement), extending both OR (1-
out-of-2) and AND (2-out-of-2) functions of standard gates, 
is a capability that arises rather naturally, so we can expect 
additional new technologies to support its efficient 
realization. 
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