

A Theoretical Analysis of Square versus Rectangular
Component Multipliers in Recursive Multiplication

Behrooz Parhami, Life Fellow, IEEE

Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106-9560, USA

parhami@ece.ucsb.edu

Final version: November 28, 2016

ABSTRACT: Previous discussions of recursive multiplication in
the literature focus on how/why the scheme works and how a
multiplier of a desired size can be built from given component
multipliers or multiply-add modules. The form factors (square
versus rectangular) for the component multipliers and the one
to be synthesized, and how they affect the performance and
cost of the resulting multiplier, have not been contemplated.
We remedy this shortcoming by dealing with the general
problem of synthesizing a possibly non-square k  l multiplier
from b  c component multipliers or multiply-add modules,
demonstrating that in many cases, the use of rectangular
components leads to speed and cost benefits.

KEYWORDS: Architecture optimization; Aspect ratio; Digital
computer arithmetic; Divide and conquer; Fast multiplication;
Modular design; Multiplier; Multiply-add module; Squarer.

I. INTRODUCTION

Multiplication is the most important arithmetic operation
after addition/subtraction. Given that multipliers tend to
be slower and more complex than adders/subtractors, in
many applications the performance and implementation
cost are dictated to a large degree by the design used for
multipliers. It is thus not surprising that from the early
days of digital computers, proposals for fast multipliers
and schemes for designing such circuits in a cost-
effective manner [14], [3]. The attraction of logarithmic
arithmetic [12] is also primarily due to its support for
fast multiplication (as well as division, squaring, and
square-rooting).
 The fastest multipliers tend to be expensive in terms of
chip area (in custom designs) or logic and interconnect
usage (in FPGA-based designs). Thus, alternate designs
are continually sought that either provide a reasonable
speed at lower cost or else provide high throughput for
applications that involve a large number of independent
multiplications. Serial-parallel and array multipliers are
examples of such designs that provide cost-effectiveness
and high throughput, respectively [11].

Recursive multiplication often does not lead to the
fastest possible circuit, but it provides some advantages
that make it a useful addition to the repertoire of a digital
system designer. In this scheme, small multipliers are
used as building blocks for synthesizing a multiplier of
desired size. One immediately obvious application in
hardware is when wider multipliers are needed compared
with those that are built-in on modern FPGAs [15].
Another example of utility is when several parallel
subword multiplications should be performed using the
same basic hardware [5]. A software-implemented
example is multiplying extremely wide numbers of the
kind encountered in cryptography.

The conceptually simplest recursive scheme for
building a k  l multiplier is when k and l are powers of 2
and, at each recursion step, we divide the operands into
halves. The recursion can conceptually continue down to
the bit level, but we often stop when a sufficiently small
operand width has been reached, with efficient available
hardware designs or the possibility of using lookup
tables. Even though some published examples of the use
of small multipliers in synthesizing recursive multipliers
do use non-square modules (e.g., 4  8), a general
discussion of square versus rectangular component
multipliers is lacking in the literature.

The rest of this paper is organized as follows. The
basic ideas of recursive multiplication and its hardware
implementation with smaller multipliers or additive
multiply modules appear in Section II. A discussion of
hardware designs with square modules sets the stage for
our coverage of non-square or rectangular modules in
Section III. Several examples that probe the corner cases
of our general method and its associated analysis are
presented in dot notation. Section IV starts with a recap
of the potential hardware, energy, and latency reductions
offered by rectangular component multipliers and ends
with our conclusions and directions for further research.

157978-1-5386-3954-2/16/$31.00 ©2016 IEEE Asilomar 2016

II. RECURSIVE MULTIPLICATION

A. Basic Theory

Recursive multiplication uses a divide-and-conquer
strategy. We consider only unsigned multiplication in
the following discussion. To multiply a k-bit number by
an l-bit number using b  c component multipliers, we
proceed as follows. Assume for simplicity that k = gb
and l = hc, that is, k and l are divisible by b and c,
respectively. The process begins with performing gh
multiplications on b-bit and c-bit chunks of the two
operands, producing gh partial products of width b + c.
The rest of the process is a multi-operand addition
problem to combine the gh partial products into a single
final product of width k + l. Because the gh partial
products do not span the entire (k + l)-bit width of the
final product, the height of the partial-products matrix is
often significantly less than gh.

B. Multi-Operand Addition

Once the partial products have been obtained from
component multipliers, they must be added together to
form the final product. Let’s focus on square multipliers
first. As shown in Fig. 2, doubling the multiplier width,
from b  b to 2b  2b, entails a 3-operand addition,
which can be performed by one level of carry-save
addition, followed by a normal carry-propagate addition.
Tripling the width requires 5-operand addition,
composed of a 3-level CSA and a CPA. Quadrupling of
the width requires a 4-level CSA and a CPA. In general,
CSA tree depth increases as the logarithm of the height
2g – 1 of the partial-products matrix.

Alternatively, specially designed (n; 2)-compressors
can be used that convert a column of bits of height n to 2
bits, one in the same column and one in the next higher
column (worth twice as much), along with a set of
transfer bits into one or more higher columns. Various
carry configurations and multiplicities are feasible [11].

With non-square final or component multipliers, the
height of the partial-products matrix will change, as we
will see in Section III, leading to simpler and faster
accumulation in many cases. These circuit and time
savings constitute the main points of this paper.

●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● a = aH | aL
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● x = xH | xL
––––––––––––––––––––––––––––––––––
●–●–●–●–●–●–●–●–●–●–●–● aH  xL
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● aH  xH | aL  xL
●–●–●–●–●–●–●–●–●–●–●–●●–●–●–● aL  xH
––––––––––––––––––––––––––––––––––
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● sum & unprocessed bits
●–●–●–●–●–●–●–●–●–●–●●–●–●–● carry bits
––––––––––––––––––––––––––––––––––
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● p = a  x

Fig. 1. An 8  8 multiplier built from 4  4 component multipliers.

Fig. 2. Alignment of partial products in a gb  gb multiplier

built of b  b component multipliers.

Fig. 3. Block diagram of a b  c additive multiply module.

Multiplication
bit-matrix

Additive input

Additive input

4-by-2 AMM

(a) Dot notation (b) Block diagram

Fig. 4. A 4  4 multiplier built of 4  2 AMMs.

C. Additive Multipliers

An additive multiply module (AMM) combines
multiplication and addition by computing the (b + c)-bit
result, where a and y (x and z) are b-bit (c-bit) numbers.

p = ax + y + z

Except at the final circuit level, where the (b + c)-bit
output of the block forms part of the final product p, the
AMM output bits are divided into b-bit and c-bit parts,
with each part connected to an additive input of an
AMM block at the next level. An example of a 4  4
multiplier built of 4  2 AMMs is depicted in Fig. 4,
where the dot notation in part (a) justifies the circuit
diagram in part (b). The circuit in Fig. 4(b) can be
converted to a 4  4 AMM if we connect 4-bit additive
inputs to the 4-bit input at the top and to the two 2-bit
inputs at the top right of the two blocks.

…

b  c AMM
.

…

 . . .

Additive inputs
b-bit c-bit

b-bit
mult.
input

c-bit
mult.
input

(b + c)-bit output

Light shading:
4b  4b

Medium shading:
3b  3b

Dark shading:
2b  2b

4  2 AMM

4  2 AMM
4  2
AMM

158

D. The Special Case of Squaring

Squarers tend to be simpler and faster than multipliers
of the same width. Thus, in applications calling for
squaring operations, it may be more cost-effective to use
specialized squaring circuits instead of using multipliers
with both inputs tied to the same value.

Considering the example in Fig. 1 as a squaring, rather
than multiplication, operation, we note that setting a = x
will make aH  xL and aL  xH equal, allowing us to
replace two rows of dots in the middle section of Fig. 1
with a single row that is the 1-bit left-shifted version of
one of the two identical lines. This modification will
eliminate the need for the CSA, with the summation
performed by just an 11-bit CPA, resulting in a faster
and simpler circuit. Also, we need just 3 components,
instead of 4, with two of them being component squarers
and one being a component multiplier.

III. DESIGNS WITH RECTANGULAR MODULES

Analysis of multipliers built of rectangular modules
entails complicated combinatorial analyses to determine
the height of the partial-products matrix, as we will see
later. It is thus prudent to begin with a couple of
examples for getting a feel for the issues involved.

Consider an example, depicted in Fig. 5, having b = 3,
c = 4, g = 4, and h = 3. In building the 12  12
multiplier, we form 12 partial products, which must be
added. These partial products can be rearranged to form
only 6 lines, as shown near the bottom of Fig. 5. The
same 12  12 multiplier can be built from 2  6
components, also requiring 12 modules and the addition
of 12 partial products, rearrangeable into 7 lines (Fig. 6).
A natural question is which of the components, 4  4 or
3  3, leads to a better 12  12 multiplier in terms of
speed, chip area, and other relevant performance metrics.

Note that the shape of the partial-products matrix and
the total number of rows after row-merging is a function
of g, h and the ratio b/c and not the particular values of b
and c. The same basic shape as Fig. 5 will be observed
for a 24  24 multiplier built of 6  8 modules, or, more
generally, for a 12j  12j multiplier built of 3j  4j
modules. Similarly, the partial-products matrix and final
number of rows for a 12j  12j multiplier built of 2j  6j
modules will look like the one in Fig. 6.

Here is a general analysis for a non-square gb  hb
multiplier built from non-square b  c component
multipliers. Without loss of generality, we assume g  h.
Let bit positions of a be indexed from 0 to gb – 1, and
divide it into b-bit segments beginning at bit positions ib
(0  i  g – 1) and ending at (i + 1)b – 1. Similarly, bits

of the multiplier x are indexed from 0 to hc – 1, with its
c-bit segments beginning at positions jc (0  j  h – 1)
and ending at (j + 1)c – 1. All partial products are b + c
bits wide and we can divide them into two groups of h
rows and g – 1 rows.

●–●
●–●
––
●–●
●–●
●–●
●–●
●–●
●–●
●–●
●–●
●–●
●–●
●–●
●–●
––
●–●
●–●
●–●
●–●
●–●
●–●
––
●–●

Fig. 5. Recursive 12  12 multiplier built of 3  4 modules.

●–●
●–●
––
●–●
●–●●
●–●
●–●
●–●
●–●
●–●
●–●
●–●
●–●
●–●
●–●
––
●–●
●–●
●–●
●–●
●–●
●–●
●–●
––
●–●

Fig. 6. Recursive 12  12 multiplier built of 2  6 modules.

Fig. 7. Recursive gb  hc multiplier built of b  c modules.

h
rows

g groups of b bits

h groups of b bits

1 2 3 4 5

 0 b … gb

 hc

…

1A 2B

B A C

3C
 0

…

(h–1)c hc+b

…

g – 1
rows

gb+c

1C

hc+hb

2A 3B 4C

5A

3A 4B 5C
4A 5B

(g–1)b

b

2b

… …

gb+hc

1B 2C

159

The arrangement of the gh partial products in Fig. 7
establishes a height upper bound of g + h – 1. The
remaining problem is whether the height can be reduced
further. It is easy to see from the diagram that the top h
rows cannot be compressed within themselves. The
bottom g – 1 rows may be compressible, but we will
return to this kind of compression shortly.

A clear possibility for height reduction is the matching
of the staircaselike left boundary of the top h rows and
that at the right side of the bottom g – 1 rows. For
example, if the staircase edge at (g – 1)b of the lower
staircase matches the edge hc + b of the upper one, one
row can be taken out by shifting up the lower rows to
align the boxes 5A and 1C in Fig. 7. More generally, if
the staircase edge at (g – 1)b of the lower staircase
matches the edge hc + bx of the upper one, we get the
height g + h – 1 – x. The fact that x cannot exceed h,
along with the inequality (g – 1)b  xb + hc, leads to the
reduction xmax = max[0, min(h, g – 1 – hc/b)].

●–● 4/3/2/1
●–● B/A
––
●–● 1A
●–● 2A●
●–● 3A
●–● 4A
●–● 1B
●–● 2B
●–● 3B
●–● 4B
––
●–● 2B/1A
●–● 1B
●–● 4A
●–● 4B/3A
●–● 3B/2A
––
●–●

Fig. 8. Recursive 12  8 multiplier built of 3  4 modules.

●–● 6/5/4/3/2/1
●–● B/A
––
●–● 1A
●–● 2A
●–● 3A●
●–● 4A
●–● 5A
●–● 6A
●–● 1B
●–● 2B
●–● 3B
●–● 4B
●–● 5B
●–● 6B
––
●–● 2B/1A
●–● 1B

●–● 6A
●–● 6B/5A
●–● 5B/4A
●–● 4B/3A
●–● 3B/2A
––
●–●

Fig. 9. Recursive 12  6 multiplier built of 2  3 modules.

Let us explore the preceding bound by means of a simple
example (Fig. 8). Here, we have b = 3, c = 4, g = 4, h = 2,
leading to x  max[0, min(2, 4 – 1 – 24/3)] = 0. The
overlap of 2 bits among all 5 rows near the bottom of
Fig. 8 confirms our analysis that no compression is
possible. Consider now another example with b = 2, c = 3,
g = 6, h = 2. In this case, as confirmed by Fig. 9, we have
x  max[0, min(2, 6 – 1 – 23/2)] = 2.

Before returning to the topic of possible additional
compression solely within the bottom g – 1 rows, let us
further verify our results by considering some special
cases. For square multipliers built of square components
(b = c, g = h), we get xmax = 0 and the height 2g – 1 of
the partial-products matrix is irreducible, as expected.
For non-square multipliers synthesized from square
components (b = c, g > h), xmax = min(h, g – 1 – h),
leading to the compressed height of g – 1 if g  2h, or 2h
if g > 2h. The latter outcome for the case g > 2h needs to
be amended, as we will see shortly. Now, consider the
bottom g – 1 rows in Fig. 7. It is conceivable that for g
sufficiently larger than h, the bottommost rows will have no
overlap with the topmost rows, leading to further compression
within these rows. For this to happen, the leftmost edge of the
lowermost row, located at index (h + 1)b + hc should be at or
to the right of the edge (g – y)b of the staircase to the right, in
order to get y rows of reduction. Thus, ymax = max[0, min(h,
g – h – 1 – hc/b)].

●–● 7/6/5/4/3/2/1
●–● B/A
––
●–● 1A
●–● 2A
●–● 3A●
●–● 4A
●–● 5A
●–● 6A
●–● 7A
●–● 1B
●–● 2B
●–● 3B
●–● 4B
●–● 5B
●–● 6B
●–● 7B
––
●–● 2B/1A
●–● 1B

●–● 7A
●–● 7B/6A
●–● 6B/5A
●–● 5B/4A
●–● 4B/3A
●–● 3B/2A
––
●–● 2B/1A
●–● 1B

●–● 7A/4B/3A
●–● 7B/6A/3B/2A
●–● 6B/5A
●–● 5B/4A
––
●–●

Fig. 10. Recursive 14  4 multiplier built of 2  2 modules.

160

We use an example to get a feel for the nature of this
additional row compression (Fig. 10). Here, we have b = 2,

c = 2, g = 7, h = 2, leading to y  max[0, min(2, 7 – 2 – 1 –
22/2)] = 2. The compressed version, near the bottom
of Fig. 10, shows a reduction of 2 rows within the lower
set of rows. It turns out that an additional 2 rows can be
removed by merging the upper and lower sets of rows,
and this reduction does not interfere with the other one.
We do not have a precise formulation for the conditions
under which the two kinds of reduction interfere with
each other, so for now, one has to determine the amount
of each reduction separately, using our formulas, and
then check to find the total reduction zmax  xmax + ymax.

Given that the compression within the lower set of
rows occurs only when g > hc/b + h + 1, the resulting
uncertainty in the amount of reduction can be avoided by
ensuring that g isn’t much greater than h. This can be
done for example, by switching the values of b and c,
given that b  c and c  b multipliers have the same cost.

IV. CONCLUSION

We have studied the implications of using non-square
or rectangular component multipliers for building both
square and rectangular multipliers recursively. The key
to simplifications reviewed here and the attendant area,
power, and latency reductions is the skewed partial-
products dot matrix, as exemplified by Fig. 11, which
hints at the possibility of reducing the matrix height
during the multi-operand addition phase.

We derived closed-form formulas for the total number
of partial-products rows may must be compressed as part
of the multiplication process, along with conditions
under which the formulas are valid. We observed that
the special cases where the formulas fail and additional
computational steps are needed to deduce the height of
the partial-products matrix are of limited practical
significance. Additional work is required to see if
formulas that work in all cases can be derived.

Actual circuit realizations or detailed circuit modeling
is needed to derive area, power, and latency reductions
resulting from rectangular component multipliers.

Fig. 11. The counterpart of Fig. 2 when the component multipliers are

rectangular, rather than square.

One key conclusion is that the choice of aspect ratio
for component multipliers will impact the overall
design’s regularity and complexity, as well as its latency.
Our results also have a bearing on the tradeoffs involved
in choosing components to optimize a design for specific
implementation technology, such as LUT-based FPGAs.
In the latter context, 2  4 or 3  3 component
multipliers may be preferable to other sizes, if 6-input
LUTs are available. Such specific options for realization
constitute fruitful areas for further investigation.

REFERENCES

[1] K. Biswas, P. Mokrain, H. Wu, and M. Ahmadi,
“Truncation Schemes for Recursive Multipliers,” Proc.
39th Asilomar Conf. Signals, Systems, and Computers,
2005, pp. 1177-1180.

[2] K. Biswas, H. Wu, and M. Ahmadi, “Fixed-Width
Multi-Level Recursive Multipliers,” Proc. 40th
Asilomar Conf. Signals, Systems, and Computers, 2006,
pp. 935-938.

[3] L. Dadda, “Some Schemes for Parallel Multipliers,”
Alta Frequenza, Vol. 34, pp. 346-356, May 1965.

[4] A. N. Danysh and E. E. Swartzlander, “A Recursive
Fast Multiplier,” Proc. 32nd Asilomar Conf. Signals,
Systems, and Computers, 1998, Vol. 1, pp. 197-201.

[5] J. Fridman, “Sub-word Parallelism in Digital Signal
Processing,” IEEE Signal Processing Magazine, Vol.
17, No. 2, pp. 27-35, March 2000.

[6] C. Ghest, “Multiplying Made Easy for Digital
Assemblies,” Electronics, Vol. 44, pp. 55-61, 22
November 1971.

[7] G. J. Hekstra and R. Nouta, “A Fast Parallel Multiplier
Architecture,” Proc. IEEE Int’l Symp. Circuits and
Systems, 1992, Vol. 5, pp. 2128-2131.

[8] K. Hwang, Computer Arithmetic: Principles,
Architecture, and Design, Wiley, 1979.

[9] J. Kim and E. E. Swartzlander, “Improving the
Recursive Multiplier,” Proc. 34th Asilomar Conf.
Signals, Systems, and Computers, 2000, Vol. 2, pp.
1320-1324.

[10] N. Nedjah and L. de Mercedo Mourelle, “Fast Less
Recursive Hardware for Large Number Multiplication
Using Karatsuba-Ofman’s Algorithm,” Computer and
Information Sciences, LNCS Vol. 2869, Springer, 2003,
pp. 43-50.

[11] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford, 2nd ed., 2010.

[12] B. Parhami, “A Review of Logarithmic Arithmetic,” in
preparation.

[13] C. C. Stearns and P. H. Ang, “Yet Another Multiplier
Architecture,” Proc. IEEE Custom Integrated Circuit
Conf., 1990, pp. 24.6.1-24.6.4.

[14] C. S. Wallace, “A Suggestion for a Fast Multiplier,”
IEEE Trans. Electronic Computers, Vol. 13, pp. 14-17,
February 1964.

[15] Xilinx, “Using Embedded Multipliers in Spartan-3
FPGAs,” Application Note, May 13, 2003.

161

