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ABSTRACT: Previous discussions of recursive multiplication in 
the literature focus on how/why the scheme works and how a 
multiplier of a desired size can be built from given component 
multipliers or multiply-add modules. The form factors (square 
versus rectangular) for the component multipliers and the one 
to be synthesized, and how they affect the performance and 
cost of the resulting multiplier, have not been contemplated. 
We remedy this shortcoming by dealing with the general 
problem of synthesizing a possibly non-square k  l multiplier 
from b  c component multipliers or multiply-add modules, 
demonstrating that in many cases, the use of rectangular 
components leads to speed and cost benefits. 
 
KEYWORDS: Architecture optimization; Aspect ratio; Digital 
computer arithmetic; Divide and conquer; Fast multiplication; 
Modular design; Multiplier; Multiply-add module; Squarer. 

I. INTRODUCTION 

Multiplication is the most important arithmetic operation 
after addition/subtraction. Given that multipliers tend to 
be slower and more complex than adders/subtractors, in 
many applications the performance and implementation 
cost are dictated to a large degree by the design used for 
multipliers. It is thus not surprising that from the early 
days of digital computers, proposals for fast multipliers 
and schemes for designing such circuits in a cost-
effective manner [14], [3]. The attraction of logarithmic 
arithmetic [12] is also primarily due to its support for 
fast multiplication (as well as division, squaring, and 
square-rooting). 
 The fastest multipliers tend to be expensive in terms of 
chip area (in custom designs) or logic and interconnect 
usage (in FPGA-based designs). Thus, alternate designs 
are continually sought that either provide a reasonable 
speed at lower cost or else provide high throughput for 
applications that involve a large number of independent 
multiplications. Serial-parallel and array multipliers are 
examples of such designs that provide cost-effectiveness 
and high throughput, respectively [11]. 

Recursive multiplication often does not lead to the 
fastest possible circuit, but it provides some advantages 
that make it a useful addition to the repertoire of a digital 
system designer. In this scheme, small multipliers are 
used as building blocks for synthesizing a multiplier of 
desired size. One immediately obvious application in 
hardware is when wider multipliers are needed compared 
with those that are built-in on modern FPGAs [15]. 
Another example of utility is when several parallel 
subword multiplications should be performed using the 
same basic hardware [5]. A software-implemented 
example is multiplying extremely wide numbers of the 
kind encountered in cryptography.   

The conceptually simplest recursive scheme for 
building a k  l multiplier is when k and l are powers of 2 
and, at each recursion step, we divide the operands into 
halves. The recursion can conceptually continue down to 
the bit level, but we often stop when a sufficiently small 
operand width has been reached, with efficient available 
hardware designs or the possibility of using lookup 
tables. Even though some published examples of the use 
of small multipliers in synthesizing recursive multipliers 
do use non-square modules (e.g., 4  8), a general 
discussion of square versus rectangular component 
multipliers is lacking in the literature. 

The rest of this paper is organized as follows. The 
basic ideas of recursive multiplication and its hardware 
implementation with smaller multipliers or additive 
multiply modules appear in Section II. A discussion of 
hardware designs with square modules sets the stage for 
our coverage of non-square or rectangular modules in 
Section III. Several examples that probe the corner cases 
of our general method and its associated analysis are 
presented in dot notation. Section IV starts with a recap 
of the potential hardware, energy, and latency reductions 
offered by rectangular component multipliers and ends 
with our conclusions and directions for further research.   
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II. RECURSIVE MULTIPLICATION 

A. Basic Theory 

Recursive multiplication uses a divide-and-conquer 
strategy. We consider only unsigned multiplication in 
the following discussion. To multiply a k-bit number by 
an l-bit number using b  c component multipliers, we 
proceed as follows. Assume for simplicity that k = gb 
and l = hc, that is, k and l are divisible by b and c, 
respectively. The process begins with performing gh 
multiplications on b-bit and c-bit chunks of the two 
operands, producing gh partial products of width b + c. 
The rest of the process is a multi-operand addition 
problem to combine the gh partial products into a single 
final product of width k + l. Because the gh partial 
products do not span the entire (k + l)-bit width of the 
final product, the height of the partial-products matrix is 
often significantly less than gh.  

B. Multi-Operand Addition 

Once the partial products have been obtained from 
component multipliers, they must be added together to 
form the final product. Let’s focus on square multipliers 
first. As shown in Fig. 2, doubling the multiplier width, 
from b  b to 2b  2b, entails a 3-operand addition, 
which can be performed by one level of carry-save 
addition, followed by a normal carry-propagate addition. 
Tripling the width requires 5-operand addition, 
composed of a 3-level CSA and a CPA. Quadrupling of 
the width requires a 4-level CSA and a CPA. In general, 
CSA tree depth increases as the logarithm of the height 
2g – 1 of the partial-products matrix. 

Alternatively, specially designed (n; 2)-compressors 
can be used that convert a column of bits of height n to 2 
bits, one in the same column and one in the next higher 
column (worth twice as much), along with a set of 
transfer bits into one or more higher columns. Various 
carry configurations and multiplicities are feasible [11]. 

With non-square final or component multipliers, the 
height of the partial-products matrix will change, as we 
will see in Section III, leading to simpler and faster 
accumulation in many cases. These circuit and time 
savings constitute the main points of this paper. 
 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●    a = aH | aL 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●    x = xH | xL 
–––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●        aH  xL 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●  aH  xH  |  aL  xL 
●–●–●–●–●–●–●–●–●–●–●–●●–●–●–●     aL  xH 
–––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● sum & unprocessed bits 
●–●–●–●–●–●–●–●–●–●–●●–●–●–●        carry bits 
–––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●    p = a  x 
 

Fig. 1. An 8  8 multiplier built from 4  4 component multipliers. 

 
Fig. 2. Alignment of partial products in a gb  gb multiplier 

built of b  b component multipliers. 
 

 
Fig. 3. Block diagram of a b  c additive multiply module. 

 

Multiplication  
bit-matrix 

Additive input 

Additive input 

4-by-2 AMM 

   
(a) Dot notation         (b) Block diagram 

 

Fig. 4. A 4  4 multiplier built of 4  2 AMMs. 

 

C. Additive Multipliers 

An additive multiply module (AMM) combines 
multiplication and addition by computing the (b + c)-bit 
result, where a and y (x and z) are b-bit (c-bit) numbers. 

 

p = ax + y + z 
 

Except at the final circuit level, where the (b + c)-bit 
output of the block forms part of the final product p, the 
AMM output bits are divided into b-bit and c-bit parts, 
with each part connected to an additive input of an 
AMM block at the next level. An example of a 4  4 
multiplier built of 4  2 AMMs is depicted in Fig. 4, 
where the dot notation in part (a) justifies the circuit 
diagram in part (b). The circuit in Fig. 4(b) can be 
converted to a 4  4 AMM if we connect 4-bit additive 
inputs to the 4-bit input at the top and to the two 2-bit 
inputs at the top right of the two blocks. 

… 
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D. The Special Case of Squaring 

Squarers tend to be simpler and faster than multipliers 
of the same width. Thus, in applications calling for 
squaring operations, it may be more cost-effective to use 
specialized squaring circuits instead of using multipliers 
with both inputs tied to the same value. 

Considering the example in Fig. 1 as a squaring, rather 
than multiplication, operation, we note that setting a = x 
will make aH  xL and aL  xH equal, allowing us to 
replace two rows of dots in the middle section of Fig. 1 
with a single row that is the 1-bit left-shifted version of 
one of the two identical lines. This modification will 
eliminate the need for the CSA, with the summation 
performed by just an 11-bit CPA, resulting in a faster 
and simpler circuit. Also, we need just 3 components, 
instead of 4, with two of them being component squarers 
and one being a component multiplier.  

III. DESIGNS WITH RECTANGULAR MODULES 

Analysis of multipliers built of rectangular modules 
entails complicated combinatorial analyses to determine 
the height of the partial-products matrix, as we will see 
later. It is thus prudent to begin with a couple of 
examples for getting a feel for the issues involved. 

Consider an example, depicted in Fig. 5, having b = 3, 
c = 4, g = 4, and h = 3. In building the 12  12 
multiplier, we form 12 partial products, which must be 
added. These partial products can be rearranged to form 
only 6 lines, as shown near the bottom of Fig. 5. The 
same 12  12 multiplier can be built from 2  6 
components, also requiring 12 modules and the addition 
of 12 partial products, rearrangeable into 7 lines (Fig. 6). 
A natural question is which of the components, 4  4 or 
3  3, leads to a better 12  12 multiplier in terms of 
speed, chip area, and other relevant performance metrics. 

Note that the shape of the partial-products matrix and 
the total number of rows after row-merging is a function 
of g, h and the ratio b/c and not the particular values of b 
and c. The same basic shape as Fig. 5 will be observed 
for a 24  24 multiplier built of 6  8 modules, or, more 
generally, for a 12j  12j multiplier built of 3j  4j 
modules. Similarly, the partial-products matrix and final 
number of rows for a 12j  12j multiplier built of 2j  6j 
modules will look like the one in Fig. 6. 

Here is a general analysis for a non-square gb  hb 
multiplier built from non-square b  c component 
multipliers. Without loss of generality, we assume g  h. 
Let bit positions of a be indexed from 0 to gb – 1, and 
divide it into b-bit segments beginning at bit positions ib 
(0  i  g – 1) and ending at (i + 1)b – 1. Similarly, bits 

of the multiplier x are indexed from 0 to hc – 1, with its 
c-bit segments beginning at positions jc (0  j  h – 1) 
and ending at (j + 1)c – 1. All partial products are b + c 
bits wide and we can divide them into two groups of h 
rows and g – 1 rows. 

 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 

 
Fig. 5. Recursive 12  12 multiplier built of 3  4 modules. 

 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●  
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 

 
Fig. 6. Recursive 12  12 multiplier built of 2  6 modules. 

 

  
Fig. 7. Recursive gb  hc multiplier built of b  c modules. 
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The arrangement of the gh partial products in Fig. 7 
establishes a height upper bound of g + h – 1. The 
remaining problem is whether the height can be reduced 
further. It is easy to see from the diagram that the top h 
rows cannot be compressed within themselves. The 
bottom g – 1 rows may be compressible, but we will 
return to this kind of compression shortly.  

A clear possibility for height reduction is the matching 
of the staircaselike left boundary of the top h rows and 
that at the right side of the bottom g – 1 rows. For 
example, if the staircase edge at (g – 1)b of the lower 
staircase matches the edge hc + b of the upper one, one 
row can be taken out by shifting up the lower rows to 
align the boxes 5A and 1C in Fig. 7. More generally, if 
the staircase edge at (g – 1)b of the lower staircase 
matches the edge hc + bx of the upper one, we get the 
height g + h – 1 – x. The fact that x cannot exceed h, 
along with the inequality (g – 1)b  xb + hc, leads to the 
reduction xmax = max[0, min(h, g – 1 – hc/b )]. 

 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4/3/2/1 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● B/A 
–––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 1A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 2A● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 3A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 1B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 2B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 3B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4B 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 2B/1A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 1B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4B/3A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 3B/2A 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 

 
Fig. 8. Recursive 12  8 multiplier built of 3  4 modules. 

 
 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 6/5/4/3/2/1 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● B/A 
–––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 1A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 2A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 3A● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 5A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 6A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 1B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 2B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 3B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 5B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 6B 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 2B/1A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 1B 
 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 6A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 6B/5A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 5B/4A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4B/3A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 3B/2A 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 

 
Fig. 9. Recursive 12  6 multiplier built of 2  3 modules. 

Let us explore the preceding bound by means of a simple 
example (Fig. 8). Here, we have b = 3, c = 4, g = 4, h = 2, 
leading to x  max[0, min(2, 4 – 1 – 24/3 )] = 0. The 
overlap of 2 bits among all 5 rows near the bottom of 
Fig. 8 confirms our analysis that no compression is 
possible. Consider now another example with b = 2, c = 3, 
g = 6, h = 2. In this case, as confirmed by Fig. 9, we have 
x  max[0, min(2, 6 – 1 – 23/2 )] = 2. 

Before returning to the topic of possible additional 
compression solely within the bottom g – 1 rows, let us 
further verify our results by considering some special 
cases. For square multipliers built of square components 
(b = c, g = h), we get xmax = 0 and the height 2g – 1 of 
the partial-products matrix is irreducible, as expected. 
For non-square multipliers synthesized from square 
components (b = c, g > h), xmax = min(h, g – 1 – h), 
leading to the compressed height of g – 1 if g  2h, or 2h 
if g > 2h. The latter outcome for the case g > 2h needs to 
be amended, as we will see shortly. Now, consider the 
bottom g – 1 rows in Fig. 7. It is conceivable that for g 
sufficiently larger than h, the bottommost rows will have no 
overlap with the topmost rows, leading to further compression 
within these rows. For this to happen, the leftmost edge of the 
lowermost row, located at index (h + 1)b + hc should be at or 
to the right of the edge (g – y)b of the staircase to the right, in 
order to get y rows of reduction. Thus, ymax = max[0, min(h, 
g – h – 1 – hc/b )]. 

 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 7/6/5/4/3/2/1 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● B/A 
–––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 1A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 2A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 3A● 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 5A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 6A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 7A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 1B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 2B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 3B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 5B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 6B 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 7B 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 2B/1A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 1B 
 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 7A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 7B/6A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 6B/5A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 5B/4A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 4B/3A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 3B/2A 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 2B/1A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 1B 
 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 7A/4B/3A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 7B/6A/3B/2A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 6B/5A 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 5B/4A 
–––––––––––––––––––––––––––––––––––––––––––––––––––– 
●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–●–● 

 
Fig. 10. Recursive 14  4 multiplier built of 2  2 modules. 

 

160



 

We use an example to get a feel for the nature of this 
additional row compression (Fig. 10). Here, we have b = 2, 

c = 2, g = 7, h = 2, leading to y  max[0, min(2, 7 – 2 – 1 – 
22/2 )] = 2. The compressed version, near the bottom 
of Fig. 10, shows a reduction of 2 rows within the lower 
set of rows. It turns out that an additional 2 rows can be 
removed by merging the upper and lower sets of rows, 
and this reduction does not interfere with the other one. 
We do not have a precise formulation for the conditions 
under which the two kinds of reduction interfere with 
each other, so for now, one has to determine the amount 
of each reduction separately, using our formulas, and 
then check to find the total reduction zmax  xmax + ymax.  

Given that the compression within the lower set of 
rows occurs only when g > hc/b + h + 1, the resulting 
uncertainty in the amount of reduction can be avoided by 
ensuring that g isn’t much greater than h. This can be 
done for example, by switching the values of b and c, 
given that b  c and c  b multipliers have the same cost. 

IV. CONCLUSION 

We have studied the implications of using non-square 
or rectangular component multipliers for building both 
square and rectangular multipliers recursively. The key 
to simplifications reviewed here and the attendant area, 
power, and latency reductions is the skewed partial-
products dot matrix, as exemplified by Fig. 11, which 
hints at the possibility of reducing the matrix height 
during the multi-operand addition phase. 

We derived closed-form formulas for the total number 
of partial-products rows may must be compressed as part 
of the multiplication process, along with conditions 
under which the formulas are valid. We observed that 
the special cases where the formulas fail and additional 
computational steps are needed to deduce the height of 
the partial-products matrix are of limited practical 
significance. Additional work is required to see if 
formulas that work in all cases can be derived. 

Actual circuit realizations or detailed circuit modeling 
is needed to derive area, power, and latency reductions 
resulting from rectangular component multipliers. 

 

 
Fig. 11. The counterpart of Fig. 2 when the component multipliers are 

rectangular, rather than square. 
 

One key conclusion is that the choice of aspect ratio 
for component multipliers will impact the overall 
design’s regularity and complexity, as well as its latency. 
Our results also have a bearing on the tradeoffs involved 
in choosing components to optimize a design for specific 
implementation technology, such as LUT-based FPGAs. 
In the latter context, 2  4 or 3  3 component 
multipliers may be preferable to other sizes, if 6-input 
LUTs are available. Such specific options for realization 
constitute fruitful areas for further investigation. 
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