
1D

2F

Ab

Fin
com
size
per
and

Ke

1.

Alg
par
inte
tau
in
mo
pro
pix
pre
val
low
com

fin
[8]
[13
alg

A Com
Bas

Department

Faculty of C

bstract

nding the media
mputing, netwo
e are known.
rformance for p
d experimentally

eywords: Algo

Introduc

gorithms for
rticularly the
erest in comp

ught widely [1
sorting via div

ost widesprea
ocessing is fo
xel value is re
edefined neig
lue provides a
wer sensitivity
mputations, m
We have pe

ding algorithm
 [9] and their

3] [14]. Here
gorithms with

mpariso
ed Med

Behrooz P

of Electrica

Computer an

an value in a lis
rking, signal pr
As is the case

problem sizes o
y verify its perf

orithm, Average

ction

selection, als
special case o

puter science
1] [2]. One ap
viding the arr

ad application
or smoothing
eplaced by th

ghborhood [3]
a good alternat
y to outliers

median voting
erformed an
ms for softw
r associated co
e is a brief
h optimal run

n-Based
dian-Fin

Parhami1

al and Comp

nd Informat

st of numbers is
rocessing, and r
e for sorting, h
f practical inter
formance for ap

e-Case Running

so known as
of median-fin
and engineer

pplication of m
ray into two h
n of median

of digital im
he median of
]. In this con
tive to the me
[4]. In multic
comes with si
extensive su

ware implemen
omplexity res

summary. F
nning time(

d Algor
nding in

 Sa

puter Engin

tion Techno

s an important
remote sensing.
however, algor
rest do exist. W
pplications with

g Time, Compu

“order statist
nding, are of
ring, and are

median selecti
halves. Perhap

finding in s
mages, where
f pixel values
ntext, the me

ean value, give
channel redun
imilar advanta
urvey of me
ntation [5] [6
ults [10] [11]

For very larg
(n) exist. Cu

rithm fo
n Signa

aleh Abdel

neering, Uni
USA

ology, Jorda
Jordan

computational
. Algorithms wi
rithms with no

We devise one s
h small-to-mode

utational Compl

tics,”
great
thus

ion is
ps the
signal

each
in a

edian
en its
ndant
ages.
dian-

6] [7]
 [12]

ge n,
urrent

lowe
3n +
to e
our
algo
cons

M
reali
netw
inpu
smo
reali
perf
be a
unab
effic

O
med
Batt
med

or Hard
l Proce

l-hafeez2

iversity of C

an Universit

task that is use
ith worst-case r
on-optimal wor
such algorithm
erate input lists

lexity, Median,

er and upper b
+ o(n), respect
ach other, bu
purposes).

orithms are kn
stant of (n), b
Median-findin
ized by takin

works [15] [1
uts. The spec
othing opera
izable on FP
formance enha
applicable to
ble to find
cient for small
On occasion,
dian value ma
tiato et al. [18
dian in linea

dware- a
ssing A

 Arw

California, S

ty of Scienc

eful for a variety
running times th
rst-case runnin
based on comp
.

 Worst-Case An

bounds for me
tively (the bes
ut the approxi
For certain

nown that do
but they canno
ng with sma
ng advantage
6], which are

cial case of
ations for im

PGAs [17] to
ancement. Sim

other small
software algo
l- to moderate
an approxima

ay suffice. Fo
8] usually pro
ar time; on

The CSI J
Computer
Vol. 14, N
Pages 1-5
Regular P

and Sof
Applicat

wa Damir2

Santa Barba

ce and Techn

y of problems i
hat vary linearl

ng times but w
parisons, analyz

nalysis.

edian finding a
st bounds toda
imations just
small values
better in term

ot be generali
all input lists

of hardware
e particularly
9 inputs, wh
mage proces
 provide har

milar hardware
values of n.

orithms that
e-size lists.
ate or probab
or example, t
ovides a good

average, it

Journal on
r Science and E
No. 1, 2016
5
Paper

ftware-
tions

2

ara, Californ

nology, Irbi

in domains suc
ly with the prob
with better aver
ze its running ti

are 2n + o(n)
ay are a tad clo

cited suffice
s of n, ad-

ms of the lead
zed.
s can be ea
sorting/select
efficient for

hich is useful
sing, is rea

rdware assist
e methods wo
. We have b

are particul

bilistically cor
the algorithm
d estimate of

performs 4

Engineering

nia,

id,

ch as
blem
rage
ime,

and
oser
for

-hoc
ding

asily
tion
0-1

l in
dily
for

ould
been
arly

rrect
m of
f the
4n/3

B. P

com
the
sol
sel

imp
wid
pro
Aft
out
Sec
con

2.

A p
1. W
pro
Sec

the
rep
res
mo

list
sta
and
fall
me
rea
des

init
left
Th
occ
exe

Parhami, S. Ab

mparisons an
eoretical PRAM
lution, with
ection algorith
The aforeme

portance of c
de array of c
ove efficient
fter describing
tline a simula
ctions 4-6 are
nsiderations, a

Figure 1. Our

Algorith

pseudo-code d
We have impl
ogram to obt
ction 4 of the
The algorith

e internal list
peated elemen
sult of excha
odification is p

The rest of t
t x of odd leng
rting at the ce
d x[k + j] suc
l between the

eet the condit
aches the edg
sired median.
Here is a line

tializes the ce
ft and right use
e while-loop
cur. If a scan
ecution ends.

bdel-hafeez and

nd n/3 excha
M CRCW par
high probab

hms have also
entioned effo
omputationall
contexts. Hen
in some setti

g our new med
ation strategy
e devoted to e
and conclusion

r median-find

m Descrip

description of
lemented the a
tain the expe
paper.
m modifies o
x with no r

nts to avoid g
anging equal
performed on
the algorithm
gth n, scannin
enter. Once it
ch that the mid
em, it swaps
tion and resta
ges of the li

e-by-line desc
enter index k,
ed to scan the
on lines 7-23

n is complete

A. Damir: A C

anges. Sen [1
rallel model f
bility. Online
o been conside
orts and varia
ly efficient m
nce new algo
ings or applic
dian algorithm

y for assessin
experimental r
ns, respective

ding algorithm

ption

f our algorithm
algorithm and
erimental res

our original in
repeated elem
getting into i

values back
lines 3-5 of th
makes multip

ng it outward
finds a pair o
ddle element
one of the el

arts from the
ist, the midd

cription of the
the median m

e list from the
3 is where th
ed (ending w

Comparison-Bas

19] considers
for a constant-
e or increm
ered [20] [21]
ations foretel

median finding
orithms that m
cations are us
m in Section 2
ng it in Sectio
results, theore

ely.

m in pseudocod

m is seen in f
d used the resu
sults describe

nput list Data
ments. We rem

nfinite loops
k and forth.
he algorithm.
ple passes thr
in both direct
f elements x[k
m = x[k] doe
lements with
middle. If a
le element is

e algorithm. L
m and the poi
 center to its e

he scanning p
with left = 0)

sed Algorithm f

s the
-time

mental
].
l the

g in a
might
seful.
2, we
on 3.
etical

de

figure
ulting
ed in

a into
move
as a
The

rough
tions,
k – j]

es not
m to
scan

s the

Line 6
inters
ends.
asses
), the

L
outw
start
poin
whe

L
x[lef
cont
“the
x[lef
exch

L
that
actio
cond

3. S

We
adva
the u
gene
perf
rand
wors
eval
mult
iden
1,50

W
valu
obta
of si

Figu
need

Figu
samp
runs

I
by n
perf

for Hardware- a

Line 8 update
ward. The firs
t values k – 1
nters are upda
en swapping o
Lines 9-10 of
ft] < m < x[ri
tinue with th
en” part on li
ft] or x[right
hanged with m
Lines 16-21 se
they detect th

on is require
dition is not m

Simulatio

used exhaus
antage of sym
upper end of
erated sample
formance. We
domly generat
st-case and a
luated the qu
tiple runs w

ntical results,
00,000, in case
We also ran
ues of n for
ained, to provi
imulation resu

ure 2. Distrib
ded for median

ure 3. Variati
ples are added

s converge to t

Initial estimat
noting the di
formed by our

and … (Regula

es the pointer
st execution o
 and k + 1, r

ated in each ite
ccurs on one

f the algorithm
ght]. If so, th

he scan. Othe
ines 11-15), t
t], that is, the
m.
erve a similar
he condition x
d, and perfo

met.

on Method

stive evaluati
mmetries to red

this range. F
es to estimate
e began by
ted input lists
average-case n
uality of the

with the same
increasing the
e of discrepan
such random

r which exac
ide a kind of
ults.

bution of the
n-finding in an

ons in the av
d to the simu
the same aver

te for the requ
istribution of
r algorithm, w

r Paper)

rs so that the
of this line set
espectively. S
eration, both
of the lines 12

m are used to e
en no action i
erwise (corre
the smaller o
e one that is

purpose to lin
x[left] > m > x
rm the requi

dology

ion for n up
duce the runn

For n  19, w
e the average
taking a sa

and ran simul
numbers of c
e results by
e sample siz
e sample size

ncies.
mized experim

ct results ha
cross-checkin

e number c
n input list of

verage runnin
lation run for

rage, indicatin

uired sample
f the number
which in ever

e scan can m
ts the pointer
Subsequently,
getting reset t
2, 13, 18, or 1
establish whet
is needed and

esponding to
f the two val

s closer to m

nes 10-15, exc
x[right], where
ired swap if

p to 17, tak
ning time towa
we used random
e and worst-c
ample of 10,
lations to find
comparisons.

noting whet
ze led to ne
 gradually, up

ments for sma
ad already b
ng for the qua

of comparis
f size n = 15

ng time, as m
r n = 19. All f
ng robustness

size was deri
of comparis

ry case was v

 2

move
rs to

the
to k
9.
ther

d we
the

lues
m, is

cept
e no
the

king
ards
mly
case
000

d the
We
ther
arly
p to

aller
been
ality

sons

more
four

ived
sons
very

The CSI Journal on Computer Science and Engineering, Vol. 14, No. 1, 2016 3

similar to the bell-shaped curve in figure 2 (which pertains to
n = 15). The curves all have peaks very close to the average
number of comparisons and slightly longer tails than an
ordinary normal distribution. The high peaks and relatively
small variances bode well for accurate assessment of the
average number of comparisons from a moderately sized
random sample of inputs.

Figure 3 shows quick convergence to the actual average
running time for n = 19, as more samples are introduced on
an incremental basis.

4. Experimental Results

Our experimental results based on the simulation
methodology of Section 3, are shown in Table 1 and plotted
in figure 4. From figure 4, the quadratic lower bound for the
worst-case running time and the super linear average case are
evident. It is also seen that the mean/max ratio declines with
increasing n. The latter trend is good news, as it indicates a
sub quadratic average running time or, at least, quadratic
time with a fairly small coefficient.

Lines 1-3 of Table 1 yield the following quadratic fit to
the number of comparisons: 0.295n2 + 0.440n + 0.025. Lines
4-6 provide 0.305n2 – 0.315n + 4.46. Because there is good
agreement on the second-degree term, we hypothesize the
function c(n) = 0.3n2 + bn + c for the combined range
interval [3, 13] of n, leading to 0.3n2 + 2.04 as a reasonable
approximation with a maximum error of 0.83 in the range
above. Checking the expression against the result for n = 15
and 17, we see that c (15) and c (17) have comparable errors
of 0.94 and 0.53, respectively.

Table 1. Best-, average-, and worst-case number of
comparisons for small input lengths

n Min Max Mean Mean/Max
3 2 5 4.00 0.80
5 4 15 9.60 0.64
7 6 32 16.97 0.53
9 8 55 26.33 0.48
11 10 85 37.90 0.45
13 12 126 51.91 0.41
15 14 179 68.60 0.38
17 16 242 88.21 0.36

Table 2. Number of comparisons for larger input lengths,
obtained via running random samples of cases

n Min Samples/Trials Max Mean Mean/n2

11 10 10K / 4 83 37.91 0.31
13 12 10K / 4 123 51.98 0.31
15 14 10K / 4 171 68.47 0.30
17 16 10K / 4 230 88.13 0.30
19 18 10K / 4 286 111.11 0.31
21 20 10K / 4 338 137.48 0.31
23 22 10K / 4 432 166.46 0.31
25 24 100K / 4 552 200.52 0.32
35 34 150K / 4 1267 434.86 0.35
45 44 150K / 4 2181 800.67 0.40
55 54 150K / 4 3775 1328.36 0.44
65 64 300K / 4 5722 2046.75 0.48
75 74 450K / 4 7884 2987.14 0.53
85 84 1500K / 4 11,085 4178.53 0.58
95 94 1500K / 4 14,427 5648.92 0.63

We also conducted randomized simulation experiments
for n = 19, 21, 23, 25, and for other selected values of n

under 100. We performed the same kind of randomized
experiments for n = 11, 13, 15, 17, as a way of cross-
checking the viability of the randomized approach by
comparing its results to known exact values in Table 1. The
cross-checked results (exact versus randomized) showed
excellent agreement in every case.

Figure 4. Number of comparisons needed for finding the
median in a list of size n

The results of our randomized simulations are shown in
Table 2. In all these control cases (first 4 lines of Table 2),
the maximum number of steps obtained for the random
experiment was within 5.0% of the actual value and the
aggregate mean was within 0.2%, with no more than 0.9%
change from one run to another. The larger error for the
maximum is to be expected, given the long tail of the
example distribution of the number of comparisons depicted
in figure 2.

5. Theoretical Considerations

Even though our presented algorithm is intended for use on
relatively small data sets, it is nevertheless instructive to
analyze its behavior theoretically and asymptotically. We
begin by addressing the issue of termination, which is
important, regardless of performance issues.

Theorem 1: Our median-finding procedure always stops
after a finite number of steps.

Proof: Considering the middle element y and the two
symmetrically located elements x and z that are involved in
an exchange, we note that the exchange transforms xyz to
yxz when x > y and x < z (other cases are similar). In this
case, the new elements ending up in the locations originally
occupied by x and z have a larger difference than |x – z|.
Thus, using k as the midpoint index, every exchange will
increase the value of

D = 1 i  (n–1)/2 |xk+i – xk–i|

by the difference of two of the input numbers. For the
example input (0, 7, 4, 5, 1, 8, 3, 6, 9), the sum above
assumes the values 14, 18, 19, 21, and 22, respectively.
Given that the sum of the symmetric differences in the
expression above has a finite maximum possible value, the
procedure cannot go on indefinitely.

We next show that for suitably large input size n, the
worst-case number of comparisons in our algorithm is at

B. Parhami, S. Abdel-hafeez and A. Damir: A Comparison-Based Algorithm for Hardware- and … (Regular Paper) 4

least quadratic in n. This result essentially rules out the use of
our algorithm on large input lists, hence our emphases in the
title, abstract, and body of the paper that the algorithm is
suitable only for relatively small input lists found in certain
signal processing applications. But there are two redeeming
factors: (1) The average case is usually much better than the
worst case, as reflected in our experimental results; (2) We
are working on hardware implementations for which the
latency isn’t proportional to the number of comparisons, but
to the number of passes, which is a factor of n smaller than
the worst-case number of comparisons.

Theorem 2: For large n, our median-finding algorithm
requires at least (n2) comparisons in the worst case.

Proof: We actually prove the worst-case lower bound for
finding the median of a sequence consisting of 0s and 1s
only, that is, a potentially simpler problem which is a special
case of general median-finding. In each iteration of the
algorithm, the middle value is compared against two
elements at equal distance to its left and right. When the
three elements are 000, 001, 011, 100, 110, or 111, no
exchange takes place. On the other hand, for the patterns 010
and 101, exchange will take place, turning the pattern into
001, 100, 011, or 110. The new patterns 0y1 and 1y0 will not
lead to any additional exchanges in future passes, regardless
of the value y that appears in the middle. On the other hand,
we can construct an initial string of 0s and 1s so that
exchanges occur at positions 1, 2, 3, ... from the middle
element in consecutive scans. Thus, the total number of
comparisons will be exactly

C = 1 i  (n–1)/2 (2i) + (n – 1)/2 + (n – 1) = (n + 7)(n – 1)/4,
where 2i represents the i comparison pairs until we get to the
point where an exchange is needed, the second term accounts
for the extra (n – 1)/2 comparisons for the single exchange in
each pass, and the last term, n – 1, is for comparisons in the
final scan without any exchanges. Consider as an example
the input 10101. We need 3 comparisons in the first pass
(after which, the sequence becomes 10011), 5 in the second
pass (00111), and 4 in the final pass, for a total of 12
comparisons, which agrees with (5 + 7) (5 – 1)/4, suggested
by the formula above.

6. Conclusion and Future Work

Our median-finding algorithm is suitable for hardware and/or
software implementation for input lists of small to moderate
sizes, for which the benefits of asymptotically linear-time
algorithms do not kick in.

A natural question is whether other median-finding
algorithms with similar asymptotic time complexities exist
and if so, how our algorithm compares with them. The
simple bubble-sort and selection-sort algorithms have
quadratic complexities and can be used to find the median
value in a list, which will be the middle element after sorting.
Selection-sort is particularly suitable for this purpose,
because it can be terminated once half of the list has been
sorted. In fact, sorting-based median-finding algorithms are
quite common in practical applications.

A possible direction for extending this research is to
conduct detailed comparisons between our algorithm and
competing ones to better delineate the conditions (input list

size, distribution of values in the list, etc.) under which each
algorithm has a performance edge. It is likely that the relative
performance benefits of each approach will end up being
language-and machine-dependent; nevertheless, it may be
possible to draw some general conclusions and practical
guidelines from the data.

We are also considering variations on our algorithm to
see if its average-case or worst-case performance can be
improved. One such variation is to continue the outward scan
after an exchange has occurred, rather than begin a new scan
right away. We have observed that this variation improves
the performance in some examples formerly constituting the
worst case, but it is not clear that new worst-case patterns
won’t arise for the modified version.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms. New York: McGraw-Hill, 2nd
ed., 2003. (Chapter 9: "Medians and order statistics," pp.
183-196).

[2] C. Gurwitz, "On Teaching Median-Finding Algorithms,"
IEEE Trans. Education, vol. 35, no. 3, pp. 230–232, 1992.

[3] J. C. Ross, the Image Processing Handbook, Boca Raton:
CRC Press, 6th ed., 2011.

[4] I. Pitas, and A. N. Venetsanopoulos, Nonlinear Digital
Filters: Principles and Applications. Berlin: Springer, 1990.

[5] D. J. Bernstein, "Fast Multiplication and Its
Applications," in Algorithmic Number Theory. London:
Cambridge, 2008, pp. 325–384.

[6] D. Dor, and U. Zwick, "Selecting the Median," SIAM J.
Computing, vol. 28, no. 5, pp. 1722–1758, 1999.

[7] K. C. Kiwiel, "On Floyd and Rivest’s SELECT
Algorithm," Theoretical Computer Science, vol. 347, pp.
214–238, 2005.

[8] D. R. Musser, "Introspective Sorting and Selection
Algorithms," Software Practice and Experience, vol. 27, no.
8, pp. 983–993, 1997.

[9] A. Schonhage, M. Paterson, and N. Pippenger, "Finding
the Median," J. Computer and System Sciences, vol. 13, pp.
184–199, 1976.

[10] S. W. Bent, and J. W. John, "Finding the Median
Requires 2n Comparisons," in Theory of Computing. Proc.
7th ACM Symp. 1985, pp. 213–216.

[11] M. Blum, R. W. Floyd, V. Pratt, R. Rivest, and R.
Tarjan, "Time Bounds for Selection," J. Computer and
System Sciences, vol. 7, pp. 448–461, 1973.

[12] W. Cunto, and J. I. Munro, "Average Case Selection,"
in Theory of Computing. Proc. 16th ACM Symp. 1984, pp.
369–375.

The CSI Journal on Computer Science and Engineering, Vol. 14, No. 1, 2016 5

[13] R. W. Floyd, and R. R. Rivest, "Expected Time Bounds
for Selection," Communications of the ACM, vol. 18, no. 3,
pp. 165–172, 1975.

[14] M. S. Paterson, "Progress in Selection," in Algorithm
Theory. Proc. 5th Scandinavian Workshop. 1996, pp. 368–
379.

[15] D. Knuth, the Art of Computer Programming—vol. 3:
Sorting and Searching. Boston: Addison-Wesley, 2nd ed.,
1998.

[16] B. Parhami, Introduction to Parallel Processing:
Algorithms and Architectures. New York: Plenum, 1999.

[17] J. L. Smith, "Implementing Median Filters in XC4000E
FPGAs," Xilinx XCELL Journal, iss. 23, p. 16, 1996.

[18] S. Battiato, D. Cantone, D. Catalano, G. Cincotti, and
M. Hofri, "An Efficient Algorithm for the Approximate
Median Selection Problem," in Algorithms and Complexity.
Berlin: Springer, LNCS vol. 1767, 2000, pp. 226–238.

[19] S. Sen, "Finding an Approximate Median with High
Probability in Constant Parallel Time," Information
Processing Letters, vol. 34, pp. 77–80, 1990.

[20] L. Denenberg, "Online Median Finding," Draft paper
available: http://denenberg.com/omf.pdf.

[21] R. R. Mettu, and C. G. Plaxton, "The Online Median
Problem," SIAM J. Computing, vol. 32, no. 3, pp. 816–832,
2003.

Behrooz Parhami earned a PhD degree in
computer science from University of
California, Los Angeles, USA, in 1973. He
is currently Professor of Electrical and
Computer Engineering, and former
Associate Dean for Academic Personnel,
College of Engineering, at University of

California, Santa Barbara, USA, where he teaches and does
research in computer arithmetic, parallel processing, and
dependable computing. A Life Fellow of IEEE, a Fellow of
IET and British Computer Society, and recipient of several
other awards (including a most-cited paper award from J.
Parallel & Distributed Computing), he has written six
textbooks and more than 290 peer-reviewed technical papers.
Professionally, he serves on journal editorial boards and
conference committees and is also active in technical
consulting.
Email: parhami@ece.ucsb.edu

Saleh Abdel-hafeez received a PhD in
computer engineering from the University
of Texas at El Paso and MS from New
Mexico State University. He was a senior
member of technical staff at S3 Inc. and
Viatechnologies.com in the area of mixed-
signal IC design. He also was an Adjunct

Professor of Computer Engineering at Santa Clara University
from 1998 to 2002. He has two US patents, numbered
6,265,509 and 6,356,509, with S3 Inc. His current research
interests are in the areas of high speed ICs, computer
arithmetic algorithms, and mixed-signal design. Dr. Abdel-
hafeez is currently the Chairman of Computer Engineering
Department at Jordan University of Science and Technology.
Email: sabdel@just.edu.jo

Arwa Damir earned a BS degree, with
honors, in Electrical and Computer
Engineering from Jordan University of
Science and Technology in 2000. Since
then, she has been a staff member of
Computer Engineering Department,
supervising instructional labs on hardware

description languages and microprocessor
design. Email: d-arwa@just.edu.jo

Paper Handling Data:

Submitted: 11.01.2017
Received in revised form: 21.02.2017
Accepted: 12.03.2017
Corresponding author: Dr. Behrooz Parhami,
Department of Electrical and Computer Engineering,
University of California, Santa Barbara, California,
USA.

