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similar to the bell-shaped curve in figure 2 (which pertains to 
n = 15). The curves all have peaks very close to the average 
number of comparisons and slightly longer tails than an 
ordinary normal distribution. The high peaks and relatively 
small variances bode well for accurate assessment of the 
average number of comparisons from a moderately sized 
random sample of inputs. 

Figure 3 shows quick convergence to the actual average 
running time for n = 19, as more samples are introduced on 
an incremental basis. 

4. Experimental Results

Our experimental results based on the simulation 
methodology of Section 3, are shown in Table 1 and plotted 
in figure 4. From figure 4, the quadratic lower bound for the 
worst-case running time and the super linear average case are 
evident. It is also seen that the mean/max ratio declines with 
increasing n. The latter trend is good news, as it indicates a 
sub quadratic average running time or, at least, quadratic 
time with a fairly small coefficient. 

Lines 1-3 of Table 1 yield the following quadratic fit to 
the number of comparisons: 0.295n2 + 0.440n + 0.025. Lines 
4-6 provide 0.305n2 – 0.315n + 4.46. Because there is good 
agreement on the second-degree term, we hypothesize the 
function c(n) = 0.3n2 + bn + c for the combined range 
interval [3, 13] of n, leading to 0.3n2 + 2.04 as a reasonable 
approximation with a maximum error of 0.83 in the range 
above. Checking the expression against the result for n = 15 
and 17, we see that c (15) and c (17) have comparable errors 
of 0.94 and 0.53, respectively. 

Table 1. Best-, average-, and worst-case number of 
comparisons for small input lengths 

n Min Max Mean Mean/Max
3 2 5 4.00 0.80
5 4 15 9.60 0.64
7 6 32 16.97 0.53
9 8 55 26.33 0.48
11 10 85 37.90 0.45
13 12 126 51.91 0.41
15 14 179 68.60 0.38
17 16 242 88.21 0.36

Table 2. Number of comparisons for larger input lengths, 
obtained via running random samples of cases 

n Min Samples/Trials Max Mean Mean/n2

11 10 10K / 4 83 37.91 0.31
13 12 10K / 4 123 51.98 0.31
15 14 10K / 4 171 68.47 0.30
17 16 10K / 4 230 88.13 0.30
19 18 10K / 4 286 111.11 0.31
21 20 10K / 4 338 137.48 0.31
23 22 10K / 4 432 166.46 0.31
25 24 100K / 4 552 200.52 0.32
35 34 150K / 4 1267 434.86 0.35
45 44 150K / 4 2181 800.67 0.40
55 54 150K / 4 3775 1328.36 0.44
65 64 300K / 4 5722 2046.75 0.48
75 74 450K / 4 7884 2987.14 0.53
85 84 1500K / 4 11,085 4178.53 0.58
95 94 1500K / 4 14,427 5648.92 0.63

We also conducted randomized simulation experiments 
for n = 19, 21, 23, 25, and for other selected values of n 

under 100. We performed the same kind of randomized 
experiments for n = 11, 13, 15, 17, as a way of cross-
checking the viability of the randomized approach by 
comparing its results to known exact values in Table 1. The 
cross-checked results (exact versus randomized) showed 
excellent agreement in every case. 

Figure 4. Number of comparisons needed for finding the 
median in a list of size n 

The results of our randomized simulations are shown in 
Table 2. In all these control cases (first 4 lines of Table 2), 
the maximum number of steps obtained for the random 
experiment was within 5.0% of the actual value and the 
aggregate mean was within 0.2%, with no more than 0.9% 
change from one run to another. The larger error for the 
maximum is to be expected, given the long tail of the 
example distribution of the number of comparisons depicted 
in figure 2. 

5. Theoretical Considerations

Even though our presented algorithm is intended for use on 
relatively small data sets, it is nevertheless instructive to 
analyze its behavior theoretically and asymptotically. We 
begin by addressing the issue of termination, which is 
important, regardless of performance issues. 

Theorem 1: Our median-finding procedure always stops 
after a finite number of steps. 

Proof: Considering the middle element y and the two 
symmetrically located elements x and z that are involved in 
an exchange, we note that the exchange transforms xyz to 
yxz when x > y and x < z (other cases are similar). In this 
case, the new elements ending up in the locations originally 
occupied by x and z have a larger difference than |x – z|. 
Thus, using k as the midpoint index, every exchange will 
increase the value of 

D = 1 i  (n–1)/2 |xk+i – xk–i| 

by the difference of two of the input numbers. For the 
example input (0, 7, 4, 5, 1, 8, 3, 6, 9), the sum above 
assumes the values 14, 18, 19, 21, and 22, respectively. 
Given that the sum of the symmetric differences in the 
expression above has a finite maximum possible value, the 
procedure cannot go on indefinitely. 

We next show that for suitably large input size n, the 
worst-case number of comparisons in our algorithm is at 
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least quadratic in n. This result essentially rules out the use of 
our algorithm on large input lists, hence our emphases in the 
title, abstract, and body of the paper that the algorithm is 
suitable only for relatively small input lists found in certain 
signal processing applications. But there are two redeeming 
factors: (1) The average case is usually much better than the 
worst case, as reflected in our experimental results; (2) We 
are working on hardware implementations for which the 
latency isn’t proportional to the number of comparisons, but 
to the number of passes, which is a factor of n smaller than 
the worst-case number of comparisons. 

Theorem 2: For large n, our median-finding algorithm 
requires at least (n2) comparisons in the worst case.  

Proof: We actually prove the worst-case lower bound for 
finding the median of a sequence consisting of 0s and 1s 
only, that is, a potentially simpler problem which is a special 
case of general median-finding. In each iteration of the 
algorithm, the middle value is compared against two 
elements at equal distance to its left and right. When the 
three elements are 000, 001, 011, 100, 110, or 111, no 
exchange takes place. On the other hand, for the patterns 010 
and 101, exchange will take place, turning the pattern into 
001, 100, 011, or 110. The new patterns 0y1 and 1y0 will not 
lead to any additional exchanges in future passes, regardless 
of the value y that appears in the middle. On the other hand, 
we can construct an initial string of 0s and 1s so that 
exchanges occur at positions 1, 2, 3, ... from the middle 
element in consecutive scans. Thus, the total number of 
comparisons will be exactly 

C = 1 i  (n–1)/2 (2i) + (n – 1)/2 + (n – 1) = (n + 7)(n – 1)/4, 
where 2i represents the i comparison pairs until we get to the 
point where an exchange is needed, the second term accounts 
for the extra (n – 1)/2 comparisons for the single exchange in 
each pass, and the last term, n – 1, is for comparisons in the 
final scan without any exchanges. Consider as an example 
the input 10101. We need 3 comparisons in the first pass 
(after which, the sequence becomes 10011), 5 in the second 
pass (00111), and 4 in the final pass, for a total of 12 
comparisons, which agrees with (5 + 7) (5 – 1)/4, suggested 
by the formula above. 

6. Conclusion and Future Work

Our median-finding algorithm is suitable for hardware and/or 
software implementation for input lists of small to moderate 
sizes, for which the benefits of asymptotically linear-time 
algorithms do not kick in. 

A natural question is whether other median-finding 
algorithms with similar asymptotic time complexities exist 
and if so, how our algorithm compares with them. The 
simple bubble-sort and selection-sort algorithms have 
quadratic complexities and can be used to find the median 
value in a list, which will be the middle element after sorting. 
Selection-sort is particularly suitable for this purpose, 
because it can be terminated once half of the list has been 
sorted. In fact, sorting-based median-finding algorithms are 
quite common in practical applications. 

A possible direction for extending this research is to 
conduct detailed comparisons between our algorithm and 
competing ones to better delineate the conditions (input list 

size, distribution of values in the list, etc.) under which each 
algorithm has a performance edge. It is likely that the relative 
performance benefits of each approach will end up being 
language-and machine-dependent; nevertheless, it may be 
possible to draw some general conclusions and practical 
guidelines from the data. 

We are also considering variations on our algorithm to 
see if its average-case or worst-case performance can be 
improved. One such variation is to continue the outward scan 
after an exchange has occurred, rather than begin a new scan 
right away. We have observed that this variation improves 
the performance in some examples formerly constituting the 
worst case, but it is not clear that new worst-case patterns 
won’t arise for the modified version. 
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