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Abstract

Finding the median value in a list of numbers is an important computational task that is useful for a variety of problems in domains such as
computing, networking, signal processing, and remote sensing. Algorithms with worst-case running times that vary linearly with the problem
size are known. As is the case for sorting, however, algorithms with non-optimal worst-case running times but with better average
performance for problem sizes of practical interest do exist. We devise one such algorithm based on comparisons, analyze its running time,
and experimentally verify its performance for applications with small-to-moderate input lists.
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1. Introduction

Algorithms for selection, also known as “order statistics,”
particularly the special case of median-finding, are of great
interest in computer science and engineering, and are thus
taught widely [1] [2]. One application of median selection is
in sorting via dividing the array into two halves. Perhaps the
most widespread application of median finding in signal
processing is for smoothing of digital images, where each
pixel value is replaced by the median of pixel values in a
predefined neighborhood [3]. In this context, the median
value provides a good alternative to the mean value, given its
lower sensitivity to outliers [4]. In multichannel redundant
computations, median voting comes with similar advantages.

We have performed an extensive survey of median-
finding algorithms for software implementation [5] [6] [7]
[8] [9] and their associated complexity results [10] [11] [12]
[13] [14]. Here is a brief summary. For very large n,
algorithms with optimal running time ®(n) exist. Current

lower and upper bounds for median finding are 2n + o(n) and
3n + o(n), respectively (the best bounds today are a tad closer
to each other, but the approximations just cited suffice for
our purposes). For certain small values of n, ad-hoc
algorithms are known that do better in terms of the leading
constant of ®(n), but they cannot be generalized.

Median-finding with small input lists can be easily
realized by taking advantage of hardware sorting/selection
networks [15] [16], which are particularly efficient for 0-1
inputs. The special case of 9 inputs, which is useful in
smoothing operations for image processing, is readily
realizable on FPGAs [17] to provide hardware assist for
performance enhancement. Similar hardware methods would
be applicable to other small values of n. We have been
unable to find software algorithms that are particularly
efficient for small- to moderate-size lists.

On occasion, an approximate or probabilistically correct
median value may suffice. For example, the algorithm of
Battiato et al. [18] usually provides a good estimate of the
median in linear time; on average, it performs 4n/3
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comparisons and n/3 exchanges. Sen [19] considers the
theoretical PRAM CRCW parallel model for a constant-time
solution, with high probability. Online or incremental
selection algorithms have also been considered [20] [21].

The aforementioned efforts and variations foretell the
importance of computationally efficient median finding in a
wide array of contexts. Hence new algorithms that might
prove efficient in some settings or applications are useful.
After describing our new median algorithm in Section 2, we
outline a simulation strategy for assessing it in Section 3.
Sections 4-6 are devoted to experimental results, theoretical
considerations, and conclusions, respectively.

A comparnson-based median-finding algorithm
1. Input: integer list Data[0 - n— 1] of odd length n
2. Output: integer median value m in Data
3. fori=0ton—1do
4. x[i] « nx Data[i] + i
5. endfor
6. k (n— 102 m & x[k]; left « k; right « k
7. while left #0
8 Teft « left — 1; right < right + 1
9. 1f m < x[right]
10. then if m < x[lefi]

11. then if x[left] < x[right]

12. then m <> x[left]; left « k; right «— k
13. else m <> x[right]; left < k. right < k
14. endif

15. endif

16. else if x[leff] < m

17. then if x[leff] < x[right]

18. then m <> x[right]; left < k; right « k
19. else m <> x[left]; left « k; right « k
20. endif

21. endif

22. endif

23. endwhile

24. m«Lmml

Figure 1. Our median-finding algorithm in pseudocode

2. Algorithm Description

A pseudo-code description of our algorithm is seen in figure
1. We have implemented the algorithm and used the resulting
program to obtain the experimental results described in
Section 4 of the paper.

The algorithm modifies our original input list Data into
the internal list x with no repeated elements. We remove
repeated elements to avoid getting into infinite loops as a
result of exchanging equal values back and forth. The
modification is performed on lines 3-5 of the algorithm.

The rest of the algorithm makes multiple passes through
list x of odd length n, scanning it outward in both directions,
starting at the center. Once it finds a pair of elements X[k — j]
and x[k + j] such that the middle element m = x[k] does not
fall between them, it swaps one of the elements with m to
meet the condition and restarts from the middle. If a scan
reaches the edges of the list, the middle element is the
desired median.

Here is a line-by-line description of the algorithm. Line 6
initializes the center index k, the median m and the pointers
left and right used to scan the list from the center to its ends.
The while-loop on lines 7-23 is where the scanning passes
occur. If a scan is completed (ending with left = 0), the
execution ends.

Line 8 updates the pointers so that the scan can move
outward. The first execution of this line sets the pointers to
start values k — 1 and k + 1, respectively. Subsequently, the
pointers are updated in each iteration, both getting reset to k
when swapping occurs on one of the lines 12, 13, 18, or 19.

Lines 9-10 of the algorithm are used to establish whether
x[left] < m < x[right]. If so, then no action is needed and we
continue with the scan. Otherwise (corresponding to the
“then” part on lines 11-15), the smaller of the two values
x[left] or x[right], that is, the one that is closer to m, is
exchanged with m.

Lines 16-21 serve a similar purpose to lines 10-15, except
that they detect the condition x[left] > m > x[right], where no
action is required, and perform the required swap if the
condition is not met.

3. Simulation Methodology

We used exhaustive evaluation for n up to 17, taking
advantage of symmetries to reduce the running time towards
the upper end of this range. For n > 19, we used randomly
generated samples to estimate the average and worst-case
performance. We began by taking a sample of 10,000
randomly generated input lists and ran simulations to find the
worst-case and average-case numbers of comparisons. We
evaluated the quality of the results by noting whether
multiple runs with the same sample size led to nearly
identical results, increasing the sample size gradually, up to
1,500,000, in case of discrepancies.

We also ran such randomized experiments for smaller
values of n for which exact results had already been
obtained, to provide a kind of cross-checking for the quality
of simulation results.
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Figure 2. Distribution of the number ¢ of comparisons
needed for median-finding in an input list of size n = 15
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Figure 3. Variations in the average running time, as more
samples are added to the simulation run for n = 19. All four
runs converge to the same average, indicating robustness

Initial estimate for the required sample size was derived
by noting the distribution of the number of comparisons
performed by our algorithm, which in every case was very
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similar to the bell-shaped curve in figure 2 (which pertains to
n = 15). The curves all have peaks very close to the average
number of comparisons and slightly longer tails than an
ordinary normal distribution. The high peaks and relatively
small variances bode well for accurate assessment of the
average number of comparisons from a moderately sized
random sample of inputs.

Figure 3 shows quick convergence to the actual average
running time for n = 19, as more samples are introduced on
an incremental basis.

4. Experimental Results

Our experimental results based on the simulation
methodology of Section 3, are shown in Table 1 and plotted
in figure 4. From figure 4, the quadratic lower bound for the
worst-case running time and the super linear average case are
evident. It is also seen that the mean/max ratio declines with
increasing n. The latter trend is good news, as it indicates a
sub quadratic average running time or, at least, quadratic
time with a fairly small coefficient.

Lines 1-3 of Table 1 yield the following quadratic fit to
the number of comparisons: 0.295n? + 0.440n + 0.025. Lines
4-6 provide 0.305n% — 0.315n + 4.46. Because there is good
agreement on the second-degree term, we hypothesize the
function c(n) = 0.3n’ + bn + c for the combined range
interval [3, 13] of n, leading to 0.3n? + 2.04 as a reasonable
approximation with a maximum error of +0.83 in the range
above. Checking the expression against the result for n = 15
and 17, we see that ¢ (15) and ¢ (17) have comparable errors
of 0.94 and 0.53, respectively.

Table 1. Best-, average-, and worst-case number of

comparisons for small input lengths
n Min Max Mean Mean/Max
3 2 5 4.00 0.80
5 4 15 9.60 0.64
7 6 32 16.97 0.53
9 8 55 26.33 0.48
1 10 85 37.90 0.45
13 12 126 51.91 0.41
15 14 179 68.60 0.38
17 16 242 88.21 0.36

Table 2. Number of comparisons for larger input lengths,
obtained via running random samples of cases

n Min Samples/Trials Max Mean Mean/n?
11 10 10K /4 83 37.91 0.31
13 12 10K /4 123 51.98 0.31
15 14 10K /4 171 68.47 0.30
17 16 10K /4 230 88.13 0.30
19 18 10K/ 4 286 111.11 0.31
21 20 10K/ 4 338 137.48 0.31
23 22 10K /4 432 166.46 0.31
25 24 100K / 4 552 200.52 0.32
35 34 150K / 4 1267 434.86 0.35
45 44 150K / 4 2181 800.67 0.40
55 54 150K / 4 3775 1328.36 0.44
65 64 300K/ 4 5722 2046.75 0.48
75 74 450K / 4 7884 2987.14 0.53
85 84 1500K / 4 11,085 4178.53 0.58
95 94 1500K / 4 14,427 5648.92 0.63

We also conducted randomized simulation experiments
for n = 19, 21, 23, 25, and for other selected values of n

under 100. We performed the same kind of randomized
experiments for n = 11, 13, 15, 17, as a way of cross-
checking the viability of the randomized approach by
comparing its results to known exact values in Table 1. The
cross-checked results (exact versus randomized) showed
excellent agreement in every case.

Comparisons /
200
My
150 /
100 /
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Figure 4. Number of comparisons needed for finding the
median in a list of size n

The results of our randomized simulations are shown in
Table 2. In all these control cases (first 4 lines of Table 2),
the maximum number of steps obtained for the random
experiment was within 5.0% of the actual value and the
aggregate mean was within 0.2%, with no more than 0.9%
change from one run to another. The larger error for the
maximum is to be expected, given the long tail of the
example distribution of the number of comparisons depicted
in figure 2.

5. Theoretical Considerations

Even though our presented algorithm is intended for use on
relatively small data sets, it is nevertheless instructive to
analyze its behavior theoretically and asymptotically. We
begin by addressing the issue of termination, which is
important, regardless of performance issues.

Theorem 1: Our median-finding procedure always stops
after a finite number of steps.

Proof: Considering the middle element y and the two
symmetrically located elements x and z that are involved in
an exchange, we note that the exchange transforms xyz to
yxz when x >y and x < z (other cases are similar). In this
case, the new elements ending up in the locations originally
occupied by x and z have a larger difference than |x — z|.
Thus, using k as the midpoint index, every exchange will
increase the value of

D =21 < < (12 Xkt = Xl

by the difference of two of the input numbers. For the
example input (0, 7, 4, 5, 1, 8, 3, 6, 9), the sum above
assumes the values 14, 18, 19, 21, and 22, respectively.
Given that the sum of the symmetric differences in the
expression above has a finite maximum possible value, the
procedure cannot go on indefinitely.

We next show that for suitably large input size n, the
worst-case number of comparisons in our algorithm is at
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least quadratic in n. This result essentially rules out the use of
our algorithm on large input lists, hence our emphases in the
title, abstract, and body of the paper that the algorithm is
suitable only for relatively small input lists found in certain
signal processing applications. But there are two redeeming
factors: (1) The average case is usually much better than the
worst case, as reflected in our experimental results; (2) We
are working on hardware implementations for which the
latency isn’t proportional to the number of comparisons, but
to the number of passes, which is a factor of n smaller than
the worst-case number of comparisons.

Theorem 2: For large n, our median-finding algorithm
requires at least Q(n?) comparisons in the worst case.

Proof: We actually prove the worst-case lower bound for
finding the median of a sequence consisting of Os and 1s
only, that is, a potentially simpler problem which is a special
case of general median-finding. In each iteration of the
algorithm, the middle value is compared against two
elements at equal distance to its left and right. When the
three elements are 000, 001, 011, 100, 110, or 111, no
exchange takes place. On the other hand, for the patterns 010
and 101, exchange will take place, turning the pattern into
001, 100, 011, or 110. The new patterns Oyl and 1y0 will not
lead to any additional exchanges in future passes, regardless
of the value y that appears in the middle. On the other hand,
we can construct an initial string of 0s and 1s so that
exchanges occur at positions +1, £2, £3, ... from the middle
element in consecutive scans. Thus, the total number of
comparisons will be exactly
C=Z1gcpur @)+ (n-1)2+M-1)=n+7)(n-1)/4,

where 2i represents the i comparison pairs until we get to the
point where an exchange is needed, the second term accounts
for the extra (n — 1)/2 comparisons for the single exchange in
each pass, and the last term, n — 1, is for comparisons in the
final scan without any exchanges. Consider as an example
the input 10101. We need 3 comparisons in the first pass
(after which, the sequence becomes 10011), 5 in the second
pass (00111), and 4 in the final pass, for a total of 12
comparisons, which agrees with (5 + 7) (5 — 1)/4, suggested
by the formula above.

6. Conclusion and Future Work

Our median-finding algorithm is suitable for hardware and/or
software implementation for input lists of small to moderate
sizes, for which the benefits of asymptotically linear-time
algorithms do not kick in.

A natural question is whether other median-finding
algorithms with similar asymptotic time complexities exist
and if so, how our algorithm compares with them. The
simple bubble-sort and selection-sort algorithms have
quadratic complexities and can be used to find the median
value in a list, which will be the middle element after sorting.
Selection-sort is particularly suitable for this purpose,
because it can be terminated once half of the list has been
sorted. In fact, sorting-based median-finding algorithms are
quite common in practical applications.

A possible direction for extending this research is to
conduct detailed comparisons between our algorithm and
competing ones to better delineate the conditions (input list

size, distribution of values in the list, etc.) under which each
algorithm has a performance edge. It is likely that the relative
performance benefits of each approach will end up being
language-and machine-dependent; nevertheless, it may be
possible to draw some general conclusions and practical
guidelines from the data.

We are also considering variations on our algorithm to
see if its average-case or worst-case performance can be
improved. One such variation is to continue the outward scan
after an exchange has occurred, rather than begin a new scan
right away. We have observed that this variation improves
the performance in some examples formerly constituting the
worst case, but it is not clear that new worst-case patterns
won’t arise for the modified version.
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