
Sorting-free digital median filter for SOCs

Saleh Abdel-hafeez1 • Behrooz Parhami2 • Arwa Damir1

Received: 22 March 2017 / Accepted: 24 May 2017 / Published online: 8 June 2017

� Springer Science+Business Media, LLC 2017

Abstract In this work, we propose a new median-finding

algorithm which computes the median value in an input list

of integers on-the-fly, without any data-sorting operations.

We present a complete digital CMOS implementation,

associated timing diagrams, and a formal mathematical

proof, which show the overall average number of clock

cycles for median-finding to be linearly proportional to the

input length, that is, O(N) average-time complexity, when

N is less than about 100. Hence, our proposed sorting-free

median algorithm is suitable for practical applications on

3 9 3 and 5 9 5 image scan matrices, which are in com-

mon use for hand-held devices and entertainment graphics

applications. Our proposed hardware precludes the need for

SRAM memory or complex circuitry, such as pipelining

structures, but rather uses simple registers to hold the input

values, performing comparison-swapping on 3 values,

along with counting, to derive the median value. There is

no restriction on the input sequence with regard to having

repeated elements. We evaluate an ASIC design of our

sorting-free median algorithm using 90 nm TSMC tech-

nology, with 1 V supply voltage and a clock frequency of

2 GHz, on example cases of 3 9 3 (9 values) and 5 9 5

(25 values) image-scan matrices. The resulting designs

have a minimum transistor-count ranging from 3202 to

5203. Results show that our sorting-free median algorithm,

when used on 512 9 512 images with 8-bit pixels, takes

0.364 and 1.394 ms to scan the complete image using

3 9 3 and 5 9 5 scan matrices, respectively, with the

associated power consumption ranging from 3.24 to

1.66 mW.

Keywords ASICs � Digital CMOS � Median filter �
Sorting � Scan matrices � SOCs � 2 GHz

1 Introduction

Median-finding is an important functionality in hardware

ICs used for digital signal processing (DSP). Examples

occur in hand-held devices, gaming systems, and home

entertainment applications. One of the essential applica-

tions of median-finding is in median filtering for image and

speech processing, with the goal of reducing the blurring

effects due to frame capturing speed overlaps [1, 2].

Consequently, digital median-finding is extensively stud-

ied, with solutions ranging from hardware circuits [3, 4] to

software algorithms [5, 6] provided as kernel resources.

Many median-finding schemes are based on sorting algo-

rithms, where the median value is extracted after arranging

the numbers of the given sequence in ascending/descend-

ing order. Direct median-finding schemes derive the

desired median value without sorting the data.

Hardware median-filter implementations, which provide

high-throughput processing are categorized into analog

[7–9] and digital [10–14] circuit structures, with each

approach offering certain advantages and suffering from

some drawbacks. Our work presented here is focused on a

digital solution that targets DSP SOCs (systems on chip)

related to home entertainment and hand-held devices,

where further enhancement of digital signal is necessary

for video and audio quality. Commonly, median-finding

schemes based on sorting lead to complex, and thus costly,

& Saleh Abdel-hafeez

sabdel@just.edu.jo

1 Jordan University of Science and Technology, Irbid 22110,

Jordan

2 University of California, Santa Barbara, CA 93106-9560,

USA

123

Analog Integr Circ Sig Process (2017) 92:327–339

DOI 10.1007/s10470-017-0991-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10470-017-0991-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10470-017-0991-6&domain=pdf

hardware designs that include memory and pipelined cir-

cuits [15, 16]. Besides, a sorting-based scheme performs a

lot of unnecessary operations beyond those needed for

finding the median and thus leads to disadvantages in terms

of circuit complexity and power consumption.

By contrast, non-sorting-based median-finding struc-

tures can lead to lower hardware cost and energy con-

sumption by virtue of not performing any redundant

operations [17, 18]. A relevant factor that makes directly-

realized hardware structures cost-effective is that in tar-

geted applications, median-finding is often limited to small

digital-image matrices, often ranging in size from 3 9 3 to

5 9 5; that is, an input data sequence in the range of 9–25

numbers. Sorting algorithms, on the other hand, are often

optimized for very long input sequences, typically in the

range of hundreds to many millions of numbers. Therefore,

there is a need for fast, cost-effective circuit designs for

median-finding in DSP applications featuring graphics,

video, and audio in the context of SOCs. In this paper, we

propose a new median-finding algorithm targeted for cus-

tom SOCs applications that require evaluating the median

on small- to moderate-sized input sequences, such as those

typically found in graphics accelerators and hand-held

video/audio processing DSP chips.

The rest of this paper is organized as follows. Section 2

introduces the principles of our median-finding algorithm,

along with illustrative examples. Section 3 provides perti-

nent mathematical analyses with extreme-case evaluation.

Section 4 is devoted to the hardware data path and control

logic implementations, along with the requisite timing

diagrams. In Sect. 5, we present simulation results and

relate our results to recent hardware implementations.

Section 6 contains our conclusions and elaboration on the

advantages of our proposed design.

2 Algorithm principles and examples

The proposed median-finding algorithm produces the med-

ian value without sorting the numbers in a given sequence.

For simplicity, assume the input is given by a sequence of

integer values I1, I2, …, IN, where the length N of the

sequence is an odd number. Define the first-set to consist of

the pair I1 and IN of inputs; that is, SET1 = [I1, IN] is com-

posed of the first and last numbers in the input sequence. The

second, third, … sets are similarly defined: SET2 = [I2,

I(N-1)] contains the second and next-to-last numbers;

SET3 = [I3, I(N-2)]; and so on, until SET(N-1)/2 = [I(N-1)/2,

I(N?3)/2]). Then, consider themiddle number of the sequence,

that is, I(N?1)/2, and call it the pivot element.

Next, begin with comparing three numbers of the input

sequence, which are the pivot element and the two numbers

in SET1, applying the following rules:

• Rule 1: If the pivot number falls between the two

numbers of SET1, that is, I1\ I(N?1)/2\ IN, or

I1[I(N?1)/2[IN then no change occurs in either the

pivot or SET1.

• Rule 2: If the pivot number does not fall between the

two numbers of SET1, that is, I1\ IN\ I(N?1)/2, then,

the pivot is swapped with IN. In other words, the new

pivot number becomes IN and SET1 becomes [I1, I(N?1/

2)].

• Rule 3: If the pivot number does not fall between the

two numbers of SET1, that is, I(N?1)/2\ I1\ IN, then,

the pivot is swapped with I1. In other words, the new

pivot number becomes I1 and SET1 becomes [I(N?1/2),

IN].

• Rule 4: if the pivot number is equal to either or both

numbers of SET1, then no swap occurs.

• Rule 5: If swapping occurs and thus the pivot number

changes, then the process above is repeated.

Consequently, the new pivot number is to start com-

paring again, beginning with SET1. Otherwise, we keep

comparing the pivot with SET2, SET3, and so on, moving

inwards, that is towards the center of the sequence, until we

get to the center or we encounter a swap. Although the

rules above are defined for SET1, the same rules are applied

to all sets of the sequence of size N. To clarify the process,

we offer Table 1 that tracks the step of a simple example,

demonstrating the working of our algorithm. We have

taken the input list to contain no repeated numbers, in order

to focus on the main functionality of the algorithm. How-

ever, the algorithm is also valid for the case of repeated

numbers, as illustrated in the example of Table 2.

The first line of Table 1 shows the input data sequence

as order shown by the subscript i = 1, 2, …, 9 for N = 9

numbers, as they arrive randomly. As we moved inward

during pass 1, the pivot element 1 is compared with

SET1 = [0, 9]. Since 1 is between 0 and 9, no changes

occur to pivot, nor to SET1 (Rule 1). In pass 2, we compare

Table 1 An example of computing nine distinct random elements as

an input data sequence

X1 X2 X3 X4 Pivot X6 X7 X8 X9

Data 0 7 4 5 1 8 3 6 9

Pass 1 0 7 4 5 1 8 3 6 9

Pass 2 0 7 4 5 6 8 3 1 9

Pass 3 0 7 4 5 6 8 3 1 9

Pass 4 0 7 4 5 6 8 3 1 9

Pass 5 0 7 6 5 4 8 3 1 9

Pass 6 0 7 6 5 4 8 3 1 9

Pass 7 0 7 6 5 4 8 3 1 9

Pass 8 0 7 6 5 4 8 3 1 9

Pass 9 0 7 6 4 5 8 3 1 9

328 Analog Integr Circ Sig Process (2017) 92:327–339

123

the pivot element 1 with SET2 = [6, 7], where the pivot is

replaced by 6 and SET2 becomes [1, 7], by rule 2. In pass 3,

the new pivot element 6 is compared with SET1 = [0, 9]

due to Rule 5 since the pivot was changed in pass 2. Now,

the pivot element 6 falls between the numbers of

SET1 = [0,9]. By Rule 1, we have no changes in the pivot

or SET1. In pass 4, the pivot element 6 is compared with

SET2 = [1, 7]. Again, Rule 1 applies and we have no

changes in the pivot or SET2. In pass 5, the pivot element 6

is compared with SET3 = [3, 4]. Rule 3 causes the pivot to

be replaced with 4 and SET3 to become [3, 6]. Since a

change in the pivot has occurred, we need to start again

from the beginning due to Rule 5. The example of Table 1

shows that we have 9 passes to compute the median ele-

ment (the final pivot value 5). Table 2 illustrates the

example when there are duplicate numbers. The same rules

are followed here, but Rule 4 is used more frequently.

3 Mathematical analysis

From the description of the algorithm in Sect. 2, along with

Tables 1 and 2, it is evident that in the best case, the

algorithm performs N - 1 iterations (steps) when pre-

sented with an odd-length list of N input numbers. The

N - 1 steps correspond to a single pass through the input,

with no swaps or exchanges taking place. For the input list

3, 4, 7, 1, 5, 8, 0, 6, 9, which constitutes a best-case

example, four pairs of comparisons are performed to

establish that the middle element 5 is between 3 and 9,

between 4 and 6, between 7 and 0, and between 1 and 8,

before ending execution with the output result 5. Because

the algorithm begins its scanning anew after each swap

operation, it appears that the worst-case complexity will be

quadratic in N. However, this intuition must be proven

formally, taking care to confirm that at least X(N2) steps

are required in the worst case and that the exchanges will in

fact come to an end after O(N2) steps and will not go on

indefinitely.

Lemma 1 Our median-finding procedure always stops

after a finite number of steps.

Proof Considering the middle element y and the two

symmetrically located elements x and z that are involved in

an exchange, we note that the exchange transforms xyz to

yxz when x[y and x\ z (the other cases are similar). In

this case, the new elements ending up in the locations

originally occupied by x and z will have a larger difference

than |x - z|. Thus, every exchange will increase
Pn�1

2

i¼1 jxkþi � xk�ij [k is the midpoint index] by the differ-

ence of two of the input numbers. For the example shown

in Table 1, the sum above assumes the values 14, 18, 19,

21, and 22 on rows 1–5, respectively. Given that the sum of

the symmetric differences in the expression above has a

finite maximum possible value, the procedure cannot go on

indefinitely. h

We next turn to extreme-case performance assessment

by considering all possible arrangements of N numbers

(exhaustive evaluation). The evaluation was performed for

input sizes from N = 3 to N = 17, taking advantage of

symmetries to reduce the running time towards the upper

end of this range. Usually the temporal scan matrix median

filter ranges in size from 3 9 3 to 5 9 5, with 3 9 3 case

being most likely. Table 3 records our median evaluation

worst case iterations for input sequences of different

lengths N. Additionally, due to the fact that sorting algo-

rithms have also been used for median-finding in some

applications, we report in Fig. 1 the simulation time for our

proposed algorithm against a well-known sorting algorithm

(quick-sort3) for small sequence lengths encountered in

typical median-finding applications. We assess only the

worst-case time for our proposed algorithm against the

average-case time of quick-sort3 as an extreme-case eval-

uation. Simulation times in Fig. 1 show the proposed

median-finding algorithm outperforming the quick-sort3

computing time for sequences of length under 101. From

Fig. 1 and Table 3, the worst-case number of iterations

counts for a sequence of size N can be approximated as:

Worst number of iterations W Nð Þ ¼ 0:4 � N� 1ð Þ2 ð1Þ

Hence, the upper bound complexity in number of iter-

ations is O(N2) with a fairly small scale factor\1, while

the lower bound on the number of iterations is simply

O(N), that is:

Table 2 An example of computing nine (non-distinct) random ele-

ments as an input data sequence

X1 X2 X3 X4 Pivot X6 X7 X8 X9

Data 4 7 4 5 1 8 3 3 9

Pass 1 1 7 4 5 4 8 3 3 9

Pass 2 1 7 4 5 4 8 3 3 9

Pass 3 1 7 4 5 4 8 3 3 9

Pass 4 1 7 4 5 4 8 3 3 9

Pass 5 1 7 4 4 5 8 3 3 9

Pass 6 1 7 4 4 5 8 3 3 9

Pass 7 1 7 4 4 5 8 3 3 9

Pass 8 1 7 5 4 4 8 3 3 9

Pass 9 1 7 5 4 4 8 3 3 9

Pass 10 1 7 5 4 4 8 3 3 9

Pass 11 1 7 5 4 4 8 3 3 9

Pass 12 1 7 5 4 4 8 3 3 9

Analog Integr Circ Sig Process (2017) 92:327–339 329

123

Best number of iterations B Nð Þ ¼ N � 1 ð2Þ

In practice, the number of iterations will fall between the

two bounds above. Figure 2 shows the fraction of worst-

case occurrences as a function of the sequence size N.

According to Fig. 2, worst-case input patterns constitute

only 0.035 (3.5%) of the overall number of arrangements

for sequences of length 9. For N = 25, the worst-case

fraction drops to 10-5. Hence, in a great majority of cases

with N[5, the number of iterations for our algorithm is

far below the worst-case number. By contrast, the worst-

case time for quick-sort3 is O(N2) when the input sequence

is reverse-sorted or when it is already sorted or near-sorted

[11].

4 Cmos hardware realization of our median
algorithm

The overall hardware structure for our median algorithm is

divided into the data path unit and the control unit. Fig-

ure 3 depicts the input–output signals of a complete block

diagram for our median-finding unit, which evaluates the

median for N = 2K input numbers of size K-bits. The basic

architecture operates in two sequential phases: the pivot-

initialization phase (Sect. 4.1) followed by the median-

evaluation phase (Sect. 4.2). The control unit (Sect. 4.2) is

a simple state machine that controls the data path’s phases

using only a small number of D-type flip-flops (DFFs) and

a counter. Median computation begins when the START-

Table 3 Extreme case

sequences types that generate

the worst-case number of

iterations

Number size Sequence numbers order (types) Worst iterations count

3 2 1 3 2

5 1 4 3 5 2 6

7 1 6 3 5 4 7 2 13

9 9 1 4 3 7 6 5 2 8 23

11 11 1 2 6 5 9 8 7 4 3 10 36

13 13 1 2 10 6 5 9 8 7 11 4 3 12 54

15 13 1 2 12 7 6 5 11 10 9 8 14 4 3 15 78

17 1 17 16 3 8 7 6 5 13 12 11 10 9 4 14 15 2 107

Fig. 1 Simulation time of the

proposed median (upper bound)

versus Quick-Sort3 (average)

Fig. 2 Occurrences of worst

case iterations counts with

respect to sequence of size N

330 Analog Integr Circ Sig Process (2017) 92:327–339

123

EXT signal is asserted, while the design signals that median

has been obtained by asserting the END-EXT signal.

Figure 4 depicts the flow-chart of the proposed median-

finding algorithm using standard symbols [19]. This flow-

chart shows the overall simplicity of the design and itera-

tion details to compute the median. The hardware diagram

of Fig. 5 shows the details of components and signals in the

data path and control units. The design comprises of simple

logic components. There is a parallel-in parallel-out serial

shifter of size N registers holding k bits each. In addition,

tri-state buffers are used to guide the direction of data

comparisons, and the equality-detector component to check

whether or not the median has been replaced with a new

number. A simple one-hot counter is used to control the

inward movement of comparisons towards the pivot ele-

ment for the given sequence, which is located in the serial

shifter.

The median-comparator, which is considered the

essential component of this design, is realized in Fig. 6. It

is used to compare the pivot element with SETi = {L, R}

comprised of the right (R) and the left (L) numbers. Sub-

sequently, recalling the algorithm’s rules discussed in

Sect. 2, the outputs of the median-comparator are classified

into one of the following decision actions:

• OM = L; OL = M; OR = R {Pivot number (M) is

swapped with Left number (L)}

• OM = R; OL = L; OR = M {Pivot number (M) is

swapped with Right number (R)}

• OM = M; OL = L; OR = R {No swap operation takes

place}

The median-comparator is comprised of three standard

basic comparators, with each comparator evaluating the

decisions of Greater-than ([) or Equal (=) of the given two

inputs. Tables 4 and 5 show the Boolean truth table for

distinct input numbers and repeated (non-distinct) input

numbers of these three comparators. In way of explanation,

the ‘‘0 0 000 case in the first row of Table 4 illustrates the

condition as follows:

• Pivot number (M) is less than the left number (L) and

the right number (R)

• The left number (L) is less than the right number (R)

Following this representation, we notice that the cases

‘‘0 0 1’’ and ‘‘1 1 0’’ do not exist, since they violate con-

sistency requirements for the comparison results. Thus,

there are no arrangements of numbers that can lead to

either of these two combinations. Hence, the design of

median-comparator is further simplified. An additional

example provided in Table 5 for the case of repeated

numbers ‘‘= 0 0’’ shows median number is less than the

numbers of the right (R) and left (L), while both right

(R) and left (L) numbers are equal. Following the rules in

Sect. 2, the decision action of the median-comparator is to

swap the pivot (M) with the numbers of the left (L) or right

(R); in our design, we choose to swap the pivot (M) with

the left number (L). Following these representations,

Table 5 shows several cases that cannot arise due to vio-

lations similar to what was cited above. For example, the

case ‘‘1 1 =’’ implies that median number equals the right

number and is greater than the left number, while the left

number is greater than right number. Furthermore, for

cases ‘‘1 0 =’’ or ‘‘1 = 1’’, no swap action should occur. On

the other hand, for cases ‘‘= 0 0’’ and ‘‘= 1 1’’ swap should

occur between the pivot and the left number or the pivot

and the right number.

Another important component is the equality-detector

circuit that is realized in Fig. 7. The equality-detector circuit

is used to verify whether the pivot has been changed during

the current iteration with respect to previous iteration or has

remained the same. The output of this circuit is directed to the

reset input of the counter, which controls the releasing of

SETi from tri-state buffers. The circuit receives the input

signalD1 from the comparator-median circuit and stores it in

the DFF at the falling edge of the CLK signal. After a small

delay, which is measured by an even number of cascaded

inverters, the DFF’s stored value (D1) is re-initialized back

to zero in order to release the counter from the reset

CLK_EXT

RES-EXT

STA-EXT

INPUT-BUS
(K-bit)

R
ES

C
LK

SS
E

M
D

E

EQ
U

A
L

C[0:(N-1)/2]

OUTPUT-BUS
(K-bit)

CONTROL UNIT

DATA PATH UNIT

END-EXT

Fig. 3 Block diagram of the hardware structure for our median-finding unit

Analog Integr Circ Sig Process (2017) 92:327–339 331

123

condition. The small delay provides a small pulse to the input

of the counter’s reset port in order to reset the counter

completely and then releases it from reset, this reset time of

the counter takes approximately 1–2 gate delays.

4.1 Data path unit

The operation of data path is divided into two phases, which

are the pivot-initialize phase and the median-evaluate phase.

The pivot-initialize phase is triggered by START-EXT signal

and ends by the de-assertion of the SSE signal. The median-

evaluate phase starts by the assertion of theMDE signal and

ends by the de-assertion ofMDE signal and the assertion of

the END-EXT signal, indicating the median value of the

stored sequence is available. Each iteration of the data path

happens within a single clock cycle.

Let us first discuss the pivot-initialize phase in some

detail. During this phase, each binary input element is

directed into the serial shifter (SS) of size N = 2K regis-

ters, with k-bit register size. The register size (k-bit) is the

size of the input bus, which is also the width of input

numbers, usually 8 bits. The sequence of numbers is

stored in the serial shifter (SS) by shifting every number

to the next register at every rising clock edge. The serial

shifter is a simple register array (SSi), where the i-th

register stores the i-th input number. This operation is

equivalent to a sequence numbers given the first row of

Tables 1 and 2, where data of the sequence is stored and

the pivot element appears at the center of the array. The

serial shifter (SS) is controlled by two signals (SSE and

RES) with negative edge-trigger clock that is fed from the

control unit, as shown in Fig. 5. In our proposed design

the input sequence is stored in the serial shifter in parallel,

by using the Parallel-in Parallel-out option. This option

allows the sequence of data numbers to be stored in one

clock cycle.

Figure 8 depicts the associated timing diagram, which

shows the detailed streamlined sequential timing for the

pivot-initialize phase. In this diagram, the START-EXT

signal indicates the beginning of a new block of N = 2K

input numbers, each k bits wide. The START-EXT signal

actually arrives randomly; hence, the control circuit is

designed to consecutively trigger several intermediate

signals during the pivot-initialize phase. First, the reset

signal (RES) is asserted high for one clock cycle to ini-

tialize all registers. Next, the SSE signal is asserted for one

clock cycle to store the block of N = 2K input values into

serial shifter using parallel-in parallel-out option.

Following the timing diagram in Fig. 8 for the pivot-

initialize phase cycle time, we see clearly that the RES

signal requires a D-type Flip-Flop (DFF) access time to be

triggered. Similarly, the SSE requires a DFF access time to

be triggered with respect to clock edge. Besides, the serial

shifter, store the numbers in parallel within the DFF access

Fig. 4 Hardware flow for the median-evaluate phase

332 Analog Integr Circ Sig Process (2017) 92:327–339

123

R1RN R2RN-1 R(N-1)/2 +1

TGTG C2 C1
TGC1

TG C2

Median Comparator

OM OROL

M RL

Right-Side (R)Left-Side (L)

M
edian
(M

)

Bus Line
K-bit

Wire Line

STA-EXT

CLK-EXT

END-EXT

Control Logic

Equality-Detector

RES

TG C(N-1)/2
TG C(N-1)/2

C2C(N-1)/2C1 C(N-1)/2

In
pu

t-B
us

K
-b

it

RES

SSE

CLK

C1 C2 C(N-1)/2SSE

RES-EXT

CLKRES

RES

CLKSYNCH BLOCK

Output-Bus
K-bit

MDE
MDE

MDE

MDE

Counter
(one-hot)

C1TGC2

RES

CLK

EQUAL

Data path

0 10 10 10 10 10 1

EVEN INVERTERS DELAY

C
LK

EVEN
 IN

VER
TER

S D
ELA

Y

D1

Fig. 5 Complete hardware structure with all related signals and components

M>R

Comparator

L>R
TG

TG
TG

M
U

X

M
R

R
M

L
M

L

0
1

D
0

D
0

D
1

D
2

D
2

RR LM M

Bus Line (K-bit)

Wire Line

O
R

O
M

O
L

M
U

X 0
1

M>L

Comparator

L

Comparator

100011000111101010

L=R M=L M=R

D1 D2 D00

1,3

2

VDD

VDD

S0S1

D0
D1
D2

D0
D1
D2

M
U

X

D1

Fig. 6 The median-comparator circuit

Analog Integr Circ Sig Process (2017) 92:327–339 333

123

time. It is important to note that all related signals (RES,

SSE) and storing in serial shifter take place within the DFF

access time with respect to clock edge, as clearly shown in

the timing diagram of Fig. 8. Therefore, the pivot-initialize

phase’s cycle time (Tpivot-initialize) is the DFF access time

(TDA). We have:

Tpivot�initialize ¼ TDA ð3Þ

Consequently, the pivot-initialize phase according to

suggested timing diagram requires two cycles (the reset

cycle and the parallel-in/parallel-out store data cycle) to

store N input values.

We next discuss the median-evaluate phase in detail.

The median-evaluate phase begins after the SSE signal is

de-asserted and the MDE signal is asserted, as seen in

Fig. 8. Hence, the median-evaluate phase timing diagram

shown in Fig. 9 starts by enabling the parallel counter at

clock rising edge (CLK-EXT). Subsequently, the parallel

counter enters the first state that enables the tri-state

switches of registers SS1 and SSN that belong to serial

shifter (SS). Hence, it releases SET1 = [I1, IN] for com-

parison with the pivot number. Then, the median-com-

parator compares these values and releases the middle

value (OM), right value (OR), and left value (OL), based on

the rules given in Sect. 2.

Finally, the three values of median-comparator outputs

(OM, OR, OL) are stored back at the negative edge of clock

(CLK) into serial shifter (SS) at the register locations for

SET1 and the pivot register. Concurrently, the equality-

detector receives the D1 value from median-comparator

and stores this value into DFF at the falling edge of clock

(CLK). The D1 value of median-comparator determines

whether or not the pivot number has been swapped with the

set values. Thus, this D1 value is used to reset the counter

or allow the counter to move to next state at the following

rising edge of clock cycle (CLK-EXT). Once the counter

state reaches (N - 1)/2, the median is available and the

MDE signal is de-asserted. Hence, upon the de-assertion of

the MDE signal, the END-EXT signal is asserted indicating

that the median has been obtained.

Following the timing diagram in Fig. 9, we use two

clock signals, which are CLK-EXT and CLK. The CLK

signal is actually a delayed version of CLK-EXT with

inverted assertion level. Taking the measure time from the

rising edge of CLK-EXT to the fall of CLK gives more time

than only working at the two edges of CLK-EXT. Thus,

starting from clock rising edge CLK-EXT, the counter (Tpc)

provides the state that enables the tri-state buffer (Trs) of

serial shifter (SS). Then the median-comparator (Tmc)

releases three numbers, and finally the equality-detector

(Ted) releases the decision to initialize the counter or keep

counting (i.e. enable/reset the counting process). The

equality-detector time (Ted) occurs in parallel with re-store

the numbers of the SETi and the pivot number. Since re-

storing the numbers in serial shifter is only storing within a

DFF access time, we consider the path of equality-detector

Table 4 Truth table for the case non-repeated numbers for the three

comparators in comparator-median circuit

L[R M[L M[R D0 D1 D2 Comments

0 0 0 0 0 1 Swap middle with left

0 0 1 X X X Impossible case

0 1 0 0 1 0 No swapping

0 1 1 1 0 0 Swap middle with right

1 0 0 1 0 0 Swap middle with right

1 0 1 0 1 0 No swapping

1 1 0 X X X Impossible case

1 1 1 0 0 1 Swap middle with left

Table 5 Truth table for the case repeated numbers for the three

comparators in comparator-median circuit

L C R M C L M C R D0 D1 D2 Comments

= 0 0 1 0 0 Swap middle with right

= 1 1 1 0 0 Swap middle with right

1 = 1 0 1 0 No swap

0 = 0 0 1 0 No swap

1 0 = 0 1 0 No swap

0 1 = 0 1 0 No swap

= 0 1 X X X Impossible case

= 1 0 X X X Impossible case

0 = 1 X X X Impossible case

1 = 0 X X X Impossible case

1 1 = X X X Impossible case

0 0 = X X X Impossible case

Q

R
ES

D
INRES

CLK

EQ
U

A
LEV

EN
 IN

VE
R

TE
R

S
D

EL
A

Y

D1

Fig. 7 The equality-detector circuit

334 Analog Integr Circ Sig Process (2017) 92:327–339

123

(Ted) to be the critical path. Therefore, the median-evaluate

phase critical path can be summarized as follow:

Tmedian� evaluate ¼ Tpcþ Trsþ Tmcþ Ted ð4Þ

Clearly, the median-evaluate phase determines the

maximum clock frequency.

The number of cycles in this phase depends on the

number of iterations since each iteration is executed within

one clock cycle. The number of iterations is actually

bounded by Eqs. (1)–(2) derived in Sect. 3. For example, a

3 9 3 scan matrix, which contains nine numbers, requires

a maximum of 23 iterations (upper-bound), while the

minimum number of iterations (lower-bound) is 8. Hence,

the 3 9 3 scan matrix requires between (8 ? 2) to

(23 ? 2) cycles to compute the median of a sequence of

nine numbers. In most cases, the input sequence will

require a number of cycles closer to the lower-bound, as

the exhaustive simulations show in Sect. 2 (see Fig. 3).

4.2 Control unit operation

The control unit receives input signals from the data path

and sends the appropriate control signals back to the data

path; hence, it synchronizes the iterations of the data path.

The control unit also receives the external and hand-

shaking signals in order to interface the proposed design

with the external components that are producing the

CLK-EXT

STA-EXT

RES

SSE

MDE

Parallel-in Parallel-out
all Elements in Shifter

TDff

TDff TDff

TDff

TDff

CLK

1 2

Fig. 8 Timing diagram for the pivot-initialize phase

CLK-EXT

Enable C1

If pivot under test is swapped with a new value,
then reset the counter

MDE

EQUAL

Enable C1 Enable C2 Enable C3 Enable C1 Enable (CN-1)/2

END-EXT

CLK

1 2 3 4 5

Tpc + Trs + Tmc Tpc + Trs + Tmc Tpc + Trs + Tmc Tpc + Trs + Tmc Tpc + Trs + Tmc
Tpc + Trs + Tmc

Ted
Ted

(N-1)/2

Fig. 9 Timing diagram for the median-evaluate phase

Analog Integr Circ Sig Process (2017) 92:327–339 335

123

sequence of numbers. There are several methods for

designing the control unit [19], but prior work on median-

finding hardware [10–18] stopped at the data path level,

providing no details on the control logic design. Here, we

present the complete control unit design in order to provide

a fully functional and assessable implementation with all

the required components and signals, leaving no details

out. The detailed presentation illustrates the overall sim-

plicity of our design.

Based on the timing diagrams given in Figs. 8 and 9 for

the two phases, the complete control unit is depicted in

Fig. 10. The control unit is relatively simple, using only

five DFFs and a counter in order to generate the timing

signals required for the two phases of our proposed design.

This simplicity of the control unit arises from the simplicity

of the data path unit which obviates the need for complex

handshake signals and special high-cost components.

5 Imulation and experimental results

In order to facilitate comparison with existing designs for

image median filter applications, we implemented, tested,

and verified our median algorithm hardware architecture

using example systems with input lengths N = 9 and

N = 25, each input being 8 bits wide. These example

system sizes are used in many prior digital hardware

median integrated circuits (ICs) for DSP SOC designs

[12-18]. We designed our proposed median-finding unit at

the CMOS transistor level using 90 nm TSMC technology

with a 1 V power supply [20]. We obtained timing delay

values, total power consumption, and total transistor counts

using HSPICE simulations [21].

Table 6 summarizes all of the components’ delay times

and associated transistor counts. The median-comparator

comprises of three comparators, whose designs are based

on parallel prefix-tree structure [22]. The 4-bit one-hot

counter used in control block is implemented based on a

state-look ahead logic counter structure [23] with front-end

decoder states, giving an equal timing delay to all states.

The equality-detector comprise of only one DFF and few

gates. Additionally, the rest of the components are simple

DFF registers, tri-state buffers, and simple multiplexers,

where we assume all of these simple components have the

same delay time, TTB = TMUX = TDFF, since they have one

logic delay. From Table 6, the total transistor count is

about 3222 and 6294 for 3 9 3 and 5 9 5 scan matrix,

respectively, which represent very small circuits.

Based on the time delay Eqs. (3) and (4) and latencies

reported in Table 6, we show that the pivot-initialize

RES

STA-EXT

RES-EXT

RES-EXT

RES

Q
Q

SET RES

CLK-EXT

DIN

Q

RES

DIN

SSE

RES

DIN
Q MDE

RES
ST

A
TE

S Counter
(one-hot)

C(N-1)/2

EQUAL C1
C2

….
From Data Path Unit

MDE C(N+1)/2

Q

RES

SET

END-EXT

Fig. 10 Control unit circuit for the proposed efficient median hardware circuit

336 Analog Integr Circ Sig Process (2017) 92:327–339

123

phase’s clock cycle time is CLKpivot-initialize\ 0.1 ns and

the median-evaluate phase’s clock cycle time is CLKmedian-

evaluate\ 0.37 ns. These timings result is an approximate

conservative clock frequency of 2 GHz. Consequently, the

total time for a scan matrix of 3 9 3, which has 9 numbers,

will be 10–25 clock cycles (8 ? 2 to 23 ? 2), where 2 is

added due to pivot-initialize phase, assuming the data are

initialized in the serial shifter as parallel-in/parallel-out

mechanism. For a 5 9 5 scan matrix with 25 numbers, the

delay ranges from 26 to 266 clock cycles due to reported

mathematical iterations Eqs. (1) and (2).

We have compared our efficient median-finding design

with prior works with respect to hardware complexity,

maximum operating frequency, switching activites and

power consumption, and the total time needed to scan a

512 9 512 image with 8-bit pixel size. Table 7 shows the

reported data indicating the ranges between the best and

worst case values (best/worst), attributable to 3 9 3 and

5 9 5 scan matrices for the whole image. Designs in Refs.

[15, 16] are based on conventional sorting algorithms with

classical cell circuit structures array and pipelining with

merging memories. These design choices increase the cir-

cuit costs, power, and latencies; besides, memory time

bottleneck limits the maximum running frequency. Refer-

ences [17, 18] are based on rank sort of the numbers within

the sequence, which actually store the numbers based on

their weighted address index. Frequent access to registers

and memory is required, thus limiting the clock frequency

and increasing power consumption. In a variation, Ref. [18]

attempts to reduce the power consumptions by tapping the

index of input numbers instead of working on the values by

using token-ring circuitry. However, the design still uses

Table 6 Component time delays and transistor counts assuming 90 nm technology

Component 3 9 3 5 9 5

Specification Delay

(ns)

Transistor

count

Specification Delay

(ns)

Transistor

count

Parallel-in/out serial

register

9 registers 8 DFFs per

register

0.06 1440 25 registers 8 DFFs per

register

0.06 4000

Tri-state and

multiplexers

8-bit each 18 buffers 0.06 288 8-bit each 50 buffers 0.06 800

Median comparator 8-bit (R) 8-bit (L) 8-bit (M) 0.21 1234 8-bit (R) 8-bit (L) 8-bit (M) 0.21 1234

Equality detector 1 DFF 0.12 20 1 DFF 0.13 20

DFFs for control 5 DFFs 0.06 100 5 DFFs 0.06 100

One-hot counter 3-bit Module 4 0.06 120 4-bit Module 12 0.06 160

Table 7 Comparison between prior works and our proposed efficient median

Recent works Image time (ms) 512 9 512 Maximum freq. (MHz) Power (mW) Structure and complexity

[15] 15.72/12.6 90/125 12.3/15.3 Sorting unit

Determine threshold

NxN registers

[16] 12/10.7 50/70 Not available Pipelining architecture

Cascaded comparators

Modify shear sort

[17] 9.3/8.6 330/350 Not available Pipelining architecture

Quantum representations

Long accumulative addition

Comparisons

[18] 6.1/5.2 625/714 9.8/5.3 Rank sort

Token ring

Additional hardware

Proposed 1.394/0.364 2000 3.24/1.66 Non-sort based

Short critical path

Minimum hardware

Suitable for set of N\ 100

Analog Integr Circ Sig Process (2017) 92:327–339 337

123

large memory (registers) and a pipelined architecture that

tend to increase the design complexity and power draw.

Besides, the design uses accumulative operations and

consecutive comparisons that reduces the maximum oper-

ating speed.

Our design alleviates the speed bottleneck components

(i.e., memory) and power-intensive components (i.e.,

pipelining), leading both to higher clock frequency and

lower power requirements. Additionally, the proposed

design uses simple components with simple routing

directions that minimizes the effect of loading and para-

sitics resistor–capacitor components. All components are

gated with enable signals to restrict the activities to the

needed components for the operation. We record the worst-

case arrangemt of 3 9 3 and 5 9 5 scan matrices that give

worst case iterations, assuming, pessimistically, that every

scan matrix of the image is a worst-case arrangements.

Even with such an unrealistic worst-case scenario, our total

processing time for a 512 9 512 image is the fastest

among the designs studied. We have for 3 9 3 scan matrix

the total time (512 9 512)*(23 ?2)*0.5 *10-9/

9 = 0.364 ms and for 5 9 5 scan matrix (512 9 512)

*(264 ? 2)*0.5*10-9/25 = 1.394 ms.

It is also instructive to compare our design with data

reported in the literature for median algorithms [24] that

harness the resources of powerful CPUs. Table 8 reports

the execution time using quick-sort3 for evaluating the

median on image of size 800 9 600 pixels using a scan

matrix of size 3 9 3 that harness the resources of a multi-

core CPU, where the memory initialization time to load the

frame is not counted. By comparison, our proposed hard-

ware median-finding circuit gives a total time for the same

image of 0.66 ms, assuming worst case iteration for every

scan 3 9 3 matrix. This result shows the impressive speed

advantage of our design (about 200x) running on custom

SOCs ICs against other median algorithms that run on

high-performance CPU platforms.

6 Conclusion

In this paper, we proposed a novel sorting-free median

algorithm, along with the associated hardware implemen-

tation. Our median-finding design exhibits linear, O(N),

time complexity on average for sequences of length 100 or

less. The worst-case quadratic, O(N2), complexity is only

encountered in no more than 0.15 fraction of possible input

data arrangements. This small fraction is further dimin-

ished to 0.035 or even 10-5 in the practically important

cases when the sequence length exceeds 5. The elegant

mathematical algorithm limits the design complexity to

only a few registers, comparators, and a counter with

simple basic repeated path operations, making the design

reconfigurable and fast due to its short critical path.

Furthermore, the design has a small geometry that is

targeted for DSP SOCs applications on hand-held devices

and home entertainment image processing. A complete

end-to-end design is presented along with control unit and

all associated signal exchanges that facilitate the interfac-

ing mechanism with neighboring components. A complete

image can be scanned by 3 9 3 or 5 9 5 matrices of 8-bit

pixel values, where the median is derived and written on

every scan matrix of the complete image.

Our sorting-free median-finding circuit is compared with

sorting-based software algorithm (i.e. Quick-Sort3) to scan

regular image of size 800 9 600 8-bit pixel using 3 9 3

scanmatrix, where our design was determined to outperform

the software algorithm by about 200X. The design is

implemented on ASIC standard CMOS library components

of 90 nm TSMC technology with 1 V power supply for

computing the median of 3 9 3 and 5 9 5 matrices, where

the running frequency is 2 GHz, giving the relatively small

transistor counts of 3202 and 5203, respectively. The small

transistor counts imply low power consumption on the order

of less than 2 mW for a complete scan image.

References

1. Ross, J. C. (2011). The image processing handbook (6th ed.).

Boca Raton, FL: CRC Press.

2. Nair, M. S., & Mol, P. M. A. (2013). Direction based adaptive

weighted switching median filter for removing high density

impulse noise. Computers and Electrical Engineering, 39,

663–689.

3. Monajati, M., Fakhraie, S. M., & Kabir, E. (2015). Approximate

arithmetic for low-power image median filtering. Circuits Sys-

tems and signal Process, Springer, 34(10), 3191–3219.

4. Martinez-Hinarejos, C. D., Juan, A., & Casacuberta, F. (2000).

Use of Median String for Classification. In Proceedings 15th

International Conference on Pattern Recognition, (vol. 2,

pp. 903–906).

5. Battiato, S., Cantone, D., Catalano, D., Cincotti, G., & Hofri, M.

(2000). An efficient algorithm for the approximate median

Table 8 Our median hardware against quick sort on high performance CPU computations

Algorithm Platform Average median 3 9 3 scan time (msec) for image frame 800 9 600 Name

Ref [24] Multi-core CPU 200 Quick sort

Proposed ASIC 0.66 Sorting-free median

338 Analog Integr Circ Sig Process (2017) 92:327–339

123

selection problem. Algorithms and complexity, 1767, 226–238.

Springer, LNCS.
6. Musser, D. R. (1997). Introspective sorting and selection algo-

rithms. Software practice and experience, 27(8), 983–993.

7. Bandala-Hernandez, H. C., Rocha-Perez, J. M., Diaz-Sanchez,

A., Lemus-Lopez, J., Vazquez-Leal, H., Diaz-Armendariz, A.,

et al. (2016). Weighted median filters: An analog implementation.

Integration, the VLSI Journal, 55, 227–231.

8. Siskos, S. (2010). Low voltage analog median filters implemen-

tation. In IEEE International Conference on Imaging Systems and

Techniques, (pp. 166–170).

9. Jendernalik, W., Blakiewicz, G., Jakusz, J., & Szczepanski, S.

(2013). A nine-input 1.25 mW, 34 ns CMOS analog median filter

for image processing in real time. Analog Integrated Circuits and

Signal Process, 76, 233–243.

10. Chen, C. T., Chen, L. G., Hsiao, J. H. (1995). A hardware-ori-

ented design for weighted median filter. In Design Automation

Conference, 1995. Proceedings of the ASP-DAC ‘95/CHDL ‘95/

VLSI ‘95., IFIP International Conference on Hardware

Description Languages. IFIP International Conference on Very

Large Scale, (pp. 441–445).

11. Fuguo, D., Hui, F., Da, Y. (2010). A novel image median filtering

algorithm based on incomplete quick sort algorithm. Interna-

tional Journal of Digital Content Technology and its Applica-

tions, 4(6), 79–84.

12. Satyanarayana, V., Srividya, S., & Yedukondalu, U. (2013). High

throughput two-dimensional median filters on FPGA for image

processing applications. International Journal of Engineering

research and Applications (IJERA), 3(4), 1946–1949.

13. Wei, P., Zhang, L., Ma, C. Yeo T. S. (2010). Fast median filtering

algorithm based on FPGA. In IEEE 10th International Confer-

ence on Signal Processing Proceedings (ICSP), (pp. 426–429).

14. Smith, J. L. (1996). Implementing median filters in XC4000E

FPGAs. Xilinx XCELL Journal, issue23, 16.

15. Matsubara, T., Moshnyaga, V. G., Hashimoto K. (2010). A low-

complexity and low power median filter design. In International

Symposium on Intelligent Signal Processing and Communication

Systems (ISPACS 2010), (pp. 1–4).

16. Jerose, G. I., & Selvi, R. S. (2013). Novel highspeed architecture

for median filter. International Journal of Science and Research

(IJSR), 2(4), 57–61.

17. Cadenas, J. O., Megson, G. M., & Sherratt, R. S. (2015). Median

filter architecture by accumulative parallel counters. IEEE

Transactions on Circuits and Systems II: Express Briefs, 62(7),

661–665.

18. Chen, Ren-Der, Chen, Pei-Yin, & Yeh, Chun-Hsien. (2015). A

low-power architecture for the design of a one-dimensional

median filter. IEEE Transactions on Circuits and Systems II:

Express Briefs IEEE, 62(3), 266–270.

19. Hayes, J. P. (1994). Computer architecture and organization (2nd

ed.). New york: McGraw-Hill.

20. Taiwan Semiconductor Manufacturing Corp. (2005). 90 nm

CMOS ASIC Process Digests.

21. HSPICE, Synopsys, (2010) http://www.synopsys.com.

22. Abdel-Hafeez, S., Gordon-Ross, A., & Parhami, B. (2013).

Scalable digital CMOS comparator using a parallel prefix tree.

Journal of. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 21(11), 1989–1998.

23. Abdel-Hafeez, S., & Gordon-Ross, A. (2011). A gigahertz digital

CMOS divide-by-N frequency divider based on a state look-

ahead structure. Journal of Circuits, Systems, and Signal Pro-

cessing, 30(6), 1594–1572.

24. H. Inoue, T. Moriyama, H. Komatsu &T. Nakatani (2007) AA-

SORT: A new parallel sorting algorithm for multi-core SIMD

processors. In 16th International Conference on Parallel Archi-

tecture and Compilation Techniques (PACT 2007), (pp.

189–198).

Saleh Abdel-hafeez received a

Ph.D. in computer engineering

from the University of Texas at

El Paso and M.S. from New

Mexico State University. He

was a senior member of techni-

cal staff at S3 Inc. and Viate-

chnologies.com at the area of

mixed-signal IC design. He also

was Adjunct Professor of com-

puter engineering at Santa Clara

University from 1998 to 2002.

He has three US patents, num-

bered 6265,509 and 6356,509,

with S3 Inc. His current

research interests are in the areas of high speed ICs, computer

arithmetic algorithms, and mixed-signal design. Dr. Abdel-hafeez is

currently the Chairman of Computer Engineering Department at

Jordan University of Science and Technology.

Behrooz Parhami (Ph.D.,

1973, University of California,

Los Angeles) is Professor of

Electrical and Computer Engi-

neering, and former Associate

Dean for Academic Personnel,

College of Engineering, at

University of California, Santa

Barbara, where he teaches and

does research in computer

arithmetic, parallel processing,

and dependable computing.

A Fellow of IEEE, IET, and

British Computer Society, and

recipient of several other awards

(including a most-cited paper award from J. Parallel & Distributed

Computing), he has written six textbooks and more than 280 peer-

reviewed technical papers. Professionally, he serves on journal edi-

torial boards and conference program committees and is also active in

technical consulting.

Arwa Damir received the B.Sc.

Degree of Computer Engineer-

ing in 2001 from Jordan

University of Science and

Technology, Irbid, Jordan. He is

currently Full-time lab lecturer

at the same University. His

research interests include VLSI

components design and Com-

puter Architecture.

Analog Integr Circ Sig Process (2017) 92:327–339 339

123

http://www.synopsys.com

	Sorting-free digital median filter for SOCs
	Abstract
	Introduction
	Algorithm principles and examples
	Mathematical analysis
	Cmos hardware realization of our median algorithm
	Data path unit
	Control unit operation

	Imulation and experimental results
	Conclusion
	References

