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Synonyms

Big-data supercomputing; Computational needs
of big data

Definition

Discrepancy between the explosive growth rate in
data volumes and the improvement trends in pro-
cessing and memory access speeds necessitates
that parallel processing be applied to the handling
of extremely large data sets.

Overview

Both data volumes and processing speeds have
been on exponentially rising trajectories since
the onset of the digital age (Denning and Lewis
2016), but the former has risen at a much higher
rate than the latter. It follows that parallel pro-
cessing is needed to bridge the gap. In addition
to providing a higher processing capability to

deal with the requirements of large data sets,
parallel processing has the potential of easing
the “von Neumann bottleneck” (Markgraf 2007),
sometimes referred to as “the memory wall”
because of its tendency to hinder the smooth
progress of a computation, when operands cannot
be supplied to the processor at the required rate
(McKee 2004; Wulf and McKee 1995). Parallel
processing algorithms and architectures (Parhami
1999) have been studied since the 1950s as a
way of improving computer system performance
and, more recently, as a way of continuing the
exponential rise in performance while keeping
the power consumption in check (Gautschi 2017;
Gepner and Kowalik 2006; Koomey et al. 2011).

Trends in Parallel Processing

Interest in parallel processing began in the
1960s with the design of ILLIAC IV, generally
recognized as the world’s first supercomputer
(Hord 2013). The 64-processor machine, later
built and operated by Burroughs Corporation, had
a single-instruction-stream, multiple-data-stream
architecture, SIMD for short (Flynn and Rudd
1996), which uses a single instruction execution
unit, with each instruction applied to multiple
data items simultaneously. The other main class
of parallel architectures is known as MIMD,
in which there are multiple instruction streams
in addition to multiple data streams. The latter
architectural category has a great deal of variation
in terms of how memory is implemented (global
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or distributed) and how the multiple processors
communicate and synchronize with each other
(shared-variable or message-passing).

Modern supercomputers, including most en-
tries in the Top500 Supercomputers List, which is
updated twice a year (Top-500 2017), tend to be
MIMD DMMP, meaning that they use distributed
memory, whereby processors are endowed with
chunks of the memory space, and communicate
via message-passing. Each processor has direct
(and thus fast) access to its local memory and
indirect (and thus slower) access to nonlocal or
remote chunks of memory. Top-of-the-line super-
computers are often used to perform numerically
intensive computations involving floating-point
numbers. Thus, their performance is measured in
floating-point operations per second, or FLOPS.
As of late 2017, the top supercomputer in the
world had a peak performance of 125 PFLOPS
(Peta-FLOPS) and a sustained performance at
75% of the peak. We are now on the verge
of achieving a peak performance of 1 EFLOPS
(Exa-FLOPS or 1018 FLOPS).

The topmost trend line in Fig. 1 shows the ex-
ponential rise in the number of transistors that can
be placed on a single microchip. This exponential
rise in density is known as Moore’s Law, after

Intel co-founder Gordon E. Moore, who first ob-
served the trend (Brock and Moore 2006; Mack
2011; Schaller 1997). Up to the early 2000s, the
rising chip density was accompanied by exponen-
tial improvement in performance, owing to the
correspondingly higher clock frequencies. Then,
clock frequency and performance trend lines be-
gan to flatten out, mostly because the attendant
growth in power dissipation led to difficulties in
cooling the superdense circuits. Thus, focus on
performance enhancement shifted to using mul-
tiple independent processors on the same chip,
giving rise to multicore processors (Gepner and
Kowalik 2006). Using c cores, each with 1/c, the
performance is more energy-efficient, because
power consumption is a superlinear function of
the single-core performance.

Big data necessitates a reassessment of how
we gauge supercomputer performance. While
FLOPS rating and IOPS, its integer counterpart,
are still important, input/output and storage
bandwidth assume a larger role in determining
performance. A supercomputer doing scientific
calculations may receive a handful of input
parameters and a set of equations that define a
scientific or engineering model and then compute
for days or weeks, before spewing the answers.

Parallel Processing with Big Data, Fig. 1 Trends in transistor density, processor performance, clock frequency, power
dissipation, and number of cores on a chip. (NRC 2011)
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Many big-data applications require a steady
stream of new data to be input, stored, processed,
and output, thus possibly straining the memory
and I/O bandwidths, which tend to be more
limited than computation rate.

Parallel Processing Models

Parallel processing architectures vary greatly
in their organizations and user interfaces. Over
the years, many abstract models of parallel
processing have been introduced in an effort
to accurately represent processing, storage,
and communication resources, along with their
interactions, allowing developers of parallel
applications to visualize and take advantage of
the available trade-offs, without being bogged
down in machine-specific details. At the coarse
level, we can distinguish data-parallel and
control-parallel approaches to parallel processing
(Parhami 1999).

Data parallelism entails partitioning a large
data set among multiple processing nodes, with
each one operating on an assigned chunk of data,
before participating in the process of combining
the partial results. It is often the case in big-data
applications that the same set of operations must
be performed on each data chunk, making SIMD
processing the most efficient alternative. In prac-
tice, however, synchronization of a large number
of processing nodes introduces overheads and
inefficiencies that cut into the speed gains. So,
it might be beneficial to direct the processing
nodes to execute a single program on multiple
data chunks asynchronously, with sparse coordi-
nation, giving rise to the SPMD (Darema 2001)
parallel processing model.

Google’s MapReduce (Dean and Ghemawat
2008, 2010) is the most prominent cloud-based
system for SPMD parallel processing. In the
map stage, data is distributed within independent
tasks on different processing nodes. Each map-
stage task produces a set of key-value pairs as
its output. These outputs are then fed to reduce-
stage tasks, where they are aggregated into a
smaller set of key-value pairs that constitute the
final output. Hadoop is a widely used open-

source implementation of MapReduce on Apache
servers (Bu et al. 2010). It consists of Hadoop’s
version of MapReduce, the Hadoop distributed
file system (Shafer et al. 2010; Shvachko et al.
2010), that allows a user to store huge data files
across multiple nodes while keeping the image of
a centrally located file (stored in one piece), and
Hadoop YARN (Vavilapalli et al. 2013), which
manages computing resources and allows tasks to
be scheduled on them.

The fully open-source Apache Spark (Zaharia
et al. 2016) is in many ways similar to MapRe-
duce, with the main differences that it uses a
unified engine to replace various other needed
subsystems, thus making the programming effort
much more manageable and less error-prone, and
a data-sharing abstraction, “resilient distributed
data sets” or RDDs, which make it significantly
more efficient for certain workloads.

In control-parallel schemes, which are more
broadly applicable than data parallelism, multiple
nodes operate independently on subproblems,
synchronizing with each other by sending
informational and synchronization messages.
The said independence allows heterogeneous and
application-specific resources to be employed,
without cross-interference or slower resources
hindering the progress of faster ones. More on
this later. An attractive submodel of control
parallelism, that aims to reduce communication
and I/O overheads, is bulk synchronous
parallel, or BSP, processing (Valiant 1990).
BSP computations consist of communication-
and synchronization-free supersteps that are
executed to conclusion independently, before
any communication or synchronization occurs.

Google’s Pregel system (Malewicz et al. 2010)
is a practical implementation of BSP for exe-
cuting iterative graph algorithms, while holding
an entire large graph in memory, spread across
many nodes, so as to avoid disk access latency.
Other examples of the control-parallel paradigm
are seen in event processing and stream process-
ing systems commonly used in social media and
other notification-driven applications (Abadi et
al. 2003; Condie et al. 2010; Eugster et al. 2003;
Rixner 2001).
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Beyond the two broad kinds of parallel
processing, reflected in data-parallel and control-
parallel schemes, there are various other kinds
of parallelism that can be used as competing
or complementary approaches. These include
instruction-level parallelism (Rau and Fisher
1993), subword parallelism (Lee 1997), dataflow
parallelism (Sakai et al. 1989), and simultaneous-
multithreaded parallelism (Eggers et al. 1997),
the latter offering the advantage of lower
overhead as well as greater resource sharing
in running interdependent tasks in parallel.

Heterogeneity and Hardware
Acceleration

Heterogeneous parallel processing entails
using multiple processing resources that have
diverse designs and performance parameters.
Heterogeneity complicates the problems of
task assignment and coordination, but it also
increases flexibility in matching computational
requirements of tasks to hardware and software
capabilities. In a heterogeneous system, users
can have access to the capabilities of a
supercomputer, say, even though their use of
such a powerful machine is too limited to justify
purchase or even a long-term usage contract.

Within a heterogeneous parallel computing
system, some nodes may be specialized for
highly efficient execution of certain computations
through the use of application-specific hardware/-
software and augmentation with accelerators.
Examples include use of graphic processing
units or GPUs as computation engines (Nvidia
2016; Owens et al. 2008; Singer 2013), units
optimized for information retrieval and data
mining (Sklyarov et al. 2015), and a variety
of other specialized resources made accessible
through the cloud (Caulfield et al. 2016).

In addition to fixed acceleration resources,
reconfigurable devices, that can be programmed
to act as different kinds of acceleration
mechanisms, may be deployed. Modern FPGAs
(Kuon et al. 2008) offer immense computational
resources that can be tailored dynamically to help
remove processing bottlenecks. Application-

specific circuits, whether custom-designed or
implemented on FPGAs, provide additional
options for acceleration. For example, sorting
networks (Mueller et al. 2012; Parhami 1999)
can be used in a wide array of contexts, which
include facilitating classification or speeding up
subsequent search operations.

Interconnection Networks

Modern parallel computers use commodity pro-
cessors, often multicore, multithreaded, or GPUs,
as computing resources. This allows rapid ad-
vances in processor speed and energy efficiency
to become immediately available to parallel sys-
tems. It follows that the distinction between var-
ious parallel processing systems is, to a great ex-
tent, determined by the interconnection networks
used to allow data exchange between comput-
ing nodes. The network connecting processing
resources can also be commodity, such as Eth-
ernet. However, it often pays to design a custom
network, or at least use a custom configuration of
commodity switches, that matches the communi-
cation requirements.

Over the years, numerous interconnection
network architectures have been proposed
and used (Dally and Towles 2004; Duato et
al. 2003; Parhami 1999) for different system
scales. When computing nodes are on the same
electronic chip, they are connected by an on-
chip network (Benini and De Micheli 2002),
whose design is often more restricted in view of
limitations on area and power. Interconnecting
processing nodes within a large mainframe or
supercomputer system presents challenges in
wiring and packaging, with many theoretically
superior topologies becoming impractical
because they cannot be implemented within
the physical limits imposed by partitioning,
packaging, signal delays on long wires, and the
like (Dally and Towles 2004). Interconnecting
servers within a data center presents fewer
limitations in terms of topology, but given the
scale, energy efficiency considerations, as well
as reliability and serviceability factors, become
dominant.
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Mapping, Scheduling,
and Virtualization

A fundamental problem in parallel processing
is the mapping of computations to hardware re-
sources. Ideally, this mapping should be auto-
matic and transparent, so as to relieve users from
having to deal with hardware details and config-
uration changes. However, user-guided mapping
can result in better running times and more ef-
ficient resource utilization, in view of targeted
optimizations in fitting parts of the tasks to ca-
pabilities of the available processing resources.

An important kind of mapping, whose roots go
back to before computers appeared on the scene,
is scheduling. For parallel processing, scheduling
refers to the assignment of computational sub-
tasks to processing nodes while honoring various
constraints, in such a way that an objective func-
tion is optimized (Sinnen 2007). The simplest
objective function is task completion time, but
a variety of more detailed objectives, such as
meeting deadlines and minimizing energy con-
sumption, may also enter into the picture.

Virtualization (Nanda and Chiueh 2005)
allows system resources to be used effortlessly
among different users while isolating and
protecting them from one another to ensure
privacy and security. The techniques used
represent extensions of, and improvements upon,
time-sharing schemes of the 1960s (Wilkes
1972) that fell out of favor when compact
and inexpensive hardware became available
in the form of minicomputers and, eventually,
microcomputers. Virtual-machine monitors
(Rosenblum and Garfinkel 2005) isolate users
from hardware details, resource fluctuations, and
configuration changes, thus allowing greater
focus on application correctness and high-
level trade-offs. Reliability is also improved,
both because software bugs are isolated within
virtual machines, preventing their spread, and
because any detected hardware malfunction can
be circumvented by rescheduling affected tasks
on other operational virtual machines.

Future Directions

While parallel processing technologies have ma-
tured over more than five decades, requirements
of big-data applications are already creating new
challenges, which will pose greater difficulties
with the continued exponential growth in data
volumes. This explains the proliferation of pro-
posals for hardware architectures, software aids,
and virtualization schemes to ease the key bottle-
necks.

Studies on expected direction of computer
architecture research over the coming decades
(Ceze et al. 2016; Stanford University 2012)
point to substantial growth in the use of paral-
lel processing for performance, scalability, en-
ergy economy, and reliability reasons. Changes
in parallel architectures and attendant virtualiza-
tion techniques will both influence and be driven
by the evolution of cloud computing systems
(Agrawal et al. 2011). As data volumes grow
and the scope of hardware resources for big-data
processing expands, energy efficiency, which is
already a major design and cost consideration,
will grow in importance (Koomey et al. 2011).

Cross-References

� Big Data and Exascale Computing
� Computer Architecture for Big Data
� Energy Implications of Big Data
� GPU-Based Hardware Platforms
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